EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 01.03.2000 Bulletin 2000/09

Application number: 95305554.8

Date of filing: 09.08.1995

Colour mapping system
Farbbildungssystem
Système d'application de couleurs

Designated Contracting States: DE FR GB

Priority: 11.08.1994 AU PM741194
24.03.1995 AU PN195195
03.07.1995 AU PN394995

Date of publication of application: 14.02.1996 Bulletin 1996/07

Proprietors:
• CANON KABUSHIKI KAISHA
 Tokyo (JP)
• CANON INFORMATION SYSTEMS RESEARCH AUSTRALIA PTY LTD.
 North Ryde, NSW 2113 (AU)

Inventor: Donelly, Ross Alexander c/o Canon PTY LTD
 New South Wales 2113 (AU)

Representative: Beresford, Keith Denis Lewis et al
 BERESFORD & Co.
 High Holborn
 2-5 Warwick Court
 London WC1R 5DJ (GB)

References cited:
EP-A- 0 273 398
 US-A- 4 992 861

 PO-CHIEH HUNG: “Colorimetric calibration in electronic imaging devices using a look-up-table model and interpolations”

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of the Invention

[0001] The present invention relates to the curve fitting of a series of data points and has particular applications to curved fittings so as to produce suitable color look up tables for a color space re-mapping process. Such a color re-mapping process finds particular application in the re-calibration of color printing and scanning devices.

Background of the Invention

[0002] The background of the invention will now be described with reference to the accompanying drawings in which:

Fig. 1 is a schematic block diagram of a known color conversion process; and
Fig. 2 illustrates various methods utilised in deriving a predetermined set of output values.

[0003] Referring now to Fig. 1, there is shown a simplified form of a prior art color copying process. Hitherto, an image which is to be copied is placed on a scanner 1 and scanned at a high resolution, commonly 600 dots per inch (dpi). In the full color scanning process, known to those skilled in the art, the scanned values produced for each pixel of the image on scanner 1 includes separate values for the Red, Green and Blue (RGB) color components. Hence, the scanned pixels can be plotted in a three dimensional RGB color space, also known as an additive color space. The scanned pixels are normally printed out on a printer 2, which normally prints an image by utilising multiple color passes. The printer 2, normally works in a subtractive color space such as a Cyan, Magenta and Yellow (CYM) color space, or a Cyan, Yellow, Magenta and black (CMYK) color space. In order to transfer color values from RGB space to CYMK or CYM space, it is necessary to determine the corresponding Cyan, Yellow, Magenta and black components for each possible Red, Green and Blue value which a pixel of the scanned image can take. As each color component of the input signal can take a large number of values, with common systems utilising eight bit color component values, giving 256 possible levels for each color component, the number of overall combinations of values for input pixels is extremely large (in this example over 16 million values).

[0004] In order to determine the mapping for any particular RGB - CYMK transfer function, a series of known RGB values can be printed out by the output device or printer 2 and their colorimetric CYMK values can be measured using a colorimeter.

[0005] As the number of possible color points is excessively large, one method of determining a transfer function is to measure the color component values of a predetermined number of points and to derive a table with each entry being a 7 tuple (RGBCGMYK) comprising the RGB values and corresponding CYMK values obtained from measurements. Points not in the table can then be derived by means of interpolation. The normal interpolation technique used is linear interpolation and an example of such a system is given in US Patent No. 3,893,166 by Pugsley, entitled “Color Correcting Image Reproduction Methods and Apparatus”.

[0006] The predetermined points can be chosen utilising a number of criteria. Firstly, it is desirable that the points cover the whole of the color space. Secondly, the system utilised for interpolation can require the predetermined points to be, for example, evenly spaced within one or other of the color spaces. Alternatively, it can be desirable to increase the number of points where the color transfer function is not well behaved, at the expense of decreasing the number of points where the transfer function is well behaved, thereby giving an overall increase in accuracy for the interpolation process.

[0007] Unfortunately, the physical color conversion process is known to be a highly non-linear process with the actual color produced by printer 2 being dependent on a large number of factors including the type of inks used, the type of paper used and the type of scanners used to scan the image from scanner 1. Consequently, given an initial set of sample points, it is unclear how to derive a set of desired predetermined points from the set of sample points.

[0008] Referring now to Fig. 2, there will now be explained an example of two prior art color conversion processes. As stated previously, the color conversion process is a highly non-linear one and includes interactions between the various color components. Although the process is a multi-dimensional one, Fig. 2 shows a single slice through the multi-dimensional plane for constant green and blue for illustration of a particular transfer function between the Red component of an input image and the required Magenta output component.

[0009] It is assumed that, for a series of sample points, 30-38, the corresponding Red components 20-28 and corresponding Magenta components 40-48 are measured. This set of sample points can then be plotted on the Red-Magenta axes, and from this series of plots an overall curve or transfer function derived.
first method known as Lagrange interpolation, a polynomial is fitted to the sample data such that it passes through each of the sample data points. Use of Lagrange interpolation often produces inadequate results for those sample points which are not well behaved (i.e. do not substantially conform to a linear relationship) and the Lagrange interpolation can result in a transfer function having excessive oscillation thereby producing unrealistic results.

A second known method is that known as "least squares" which, in its simplest form, fits a straight line, in the vicinity of the given data points such that the sum of the squares of the distances of those points from the straight line is minimised, where the distance is measured in the vertical direction. Unfortunately, the least squares method can itself lead to a substantial reduction in the fidelity of the transfer function as much detail is lost. The fitting of quadratics and higher order polynomials utilising a least squared methodology is also known to those skilled in the art but goes only part of the way to solving this problem of fidelity loss. A "least squares" algorithm is disclosed in US-A-4 992 861 (EASTMAN KODAK Co.)

A third method of deriving the transfer function can consist of constructing straight line segments between the various data points. However, this method can lead to large discontinuities of derivatives at the various end points. In the color conversion process, such a transfer function has been found to produce unacceptable results with banding and other artifacts being found in certain images.

Summary of the Invention

It is an object of the present invention to provide an improved method for determining the output values of a first series of input points, given the output values of a second series of input points. By use of such a method, the necessary transfer function can be derived.

In accordance with one aspect of the present invention, there is provided a method for computing the output values of a first series of input points, given the output values of a second series of input points, said method comprising,

for each of said first series of input points:

forming a weighted distance measure, for each of said second series of input points, derived from the absolute distance between said first series input point and said second series input point;

determining an error measure function including a summation over each of said second series of input points, of an absolute error between a proposed line or curve and the output value of said second series of points, weighted by said weighted distance measure;

substantially minimizing said error function to produce a finalized line or curve; and,

utilizing said finalized line or curve to derive an output value at said first series point.

Preferably, said step of determining said error measure function comprises determining said summation from a previously calculated summation forming part of said error measure functions for adjacent input points of a current one of said first series of input points and from said second series of points which are between said adjacent input points and said current one of said first series of input points.

Preferably, said step of determining said error measure function further comprises multiplying said previously calculated summation by a constant.

Brief Description of the Drawings

A number of preferred embodiments of the present invention will now be described with reference to the accompanying drawings in which:

Fig. 3 illustrates a second example of an input - output mapping utilising a single weighting function;

Fig. 4 illustrates the weighting function of Fig. 3 when applied to a series of equally spaced input points;

Fig. 5 illustrates the process of calculating a new output point in accordance with the recurrence relationship utilised as part of a second embodiment;

Fig. 6 illustrates the weighting function of Fig. 3 in two dimensions;

Fig. 7 illustrates the process of forming a summation from lower, previously calculated summations;

Fig. 8 to Fig. 15 illustrate the process of determining a summation from many different part summations; and

Fig. 16 is a flowchart indicative of a fundamental embodiment of the described invention.

Detailed Description of the Preferred Embodiments

Turning now to a first embodiment of the present invention, the transfer function is determined by utilising a "weighted least squares" process, the details of which will be further described herein, firstly in relation to the a one dimensional transfer process and subsequently in relation to a multi-dimensional transfer process.

In a two dimensional case it is desired to determine a corresponding function value at a predetermined series
of points 12-19 of Fig. 2, given the sample input values 20-28 and corresponding output values 4048. The method for determining output values for each of the set of points 12-19 utilises a weighting \(w_i\) which is assigned to each sample point 20-28 depending on how close it is to a desired value e.g. 12. Although many different weighting functions can be used, it has been found that an inverse exponential weighting function produces a suitable result. In particular, a weighting function of the following form is preferred:

\[
\text{EQ1}\] w = e^{-d/\sigma}

[0020] In this equation, \(d\) represents an absolute distance measure between the sample point, and the desired output point and \(\sigma\) is a scaling or noise following factor. Larger values of \(\sigma\) result in the closer points having substantially more influence on the resultant output value. In the preferred embodiment the value used for \(\sigma\) is 0.06 when the color values take on the range 0 to 1.

[0021] Once a weighting value has been assigned to each value point, a weighted error squared function can be formed as follows:

\[
\text{EQ2}\] E = \sum_i w_i (ax_i + b - v_i)\]

where \(v = ax + b\) is the equation of a line to approximate the data points in the vicinity of the desired point. In the present example \(x\) signifies the Red axis and \(v\) signifies the Magenta axis. To minimise the weighted error squared function \(E\), the partial derivatives of \(E\) are taken and set to zero as follows:

\[
\text{EQ3}\] \frac{\partial E}{\partial a} = \sum_i 2w_i x_i (ax_i + b - v_i) = 0

i.e.

\[
\text{EQ4}\] \sum_i w_i x_i v_i = a (\sum_i w_i x_i^2) + b (\sum_i w_i y_i x_i)

\[
\text{EQ5}\] \frac{\partial E}{\partial b} = \sum_i 2w_i (ax_i + b - v_i) = 0

i.e.

\[
\text{EQ6}\] \sum_i w_i v_i = a (\sum_i w_i x_i) + b (\sum_i w_i)

[0022] This gives two linear equations (4), (6) with two unknowns \((a, b)\). Hence, this system of equations can be solved for \(a\) and \(b\) and the final equation of the line \(v = ax + b\) can be used to determine an output value for the point \(v\) at the desired input point \(x\).

[0023] The above process can then be repeated for each of the desired predetermined points 12-19 to produce an overall series of corresponding output values.

[0024] The above process can be readily extended to many dimensions. For example, to calculate a mapping from three input dimensions \((x, y, z)\) to one output dimension \((v)\), given a predetermined set of sample points \((x_i, y_i, z_i, v_i)\), each desired output point is calculated in the following manner:

[0025] Firstly, a weighting \((w_i)\) is assigned to each sample point depending on how close it is to the desired output point, with the distance being calculated using a Euclidean distance measure. Next, a weighted error squared function is formed as follows:
where \(V = ax + by + cz + d \) is the equation of a hyperplane which approximates the data points in the four dimensional space. To minimise \(E \), the partial derivatives are again set to zero:

\[
\frac{\partial E}{\partial a} = \sum_{i} 2w_{i}x_{i}(ax_{i} + by_{i} + cz_{i} + d - v_{i}) = 0
\]

this gives:

\[
\left(\sum_{i} w_{i} x_{i} v_{i} \right) = a \left(\sum_{i} w_{i} x_{i}^{2} \right) + b \left(\sum_{i} w_{i} y_{i} x_{i} \right) + c \left(\sum_{i} w_{i} z_{i} x_{i} \right) + d \left(\sum_{i} w_{i} x_{i} \right)
\]

Similarly, from \(\frac{\partial E}{\partial b} = 0 \) we have:

\[
\left(\sum_{i} w_{i} y_{i} v_{i} \right) = a \left(\sum_{i} w_{i} x_{i} y_{i} \right) + b \left(\sum_{i} w_{i} y_{i}^{2} \right) + c \left(\sum_{i} w_{i} z_{i} y_{i} \right) + d \left(\sum_{i} w_{i} y_{i} \right)
\]

Similarly, from \(\frac{\partial E}{\partial c} = 0 \) we have:

\[
\left(\sum_{i} w_{i} z_{i} v_{i} \right) = a \left(\sum_{i} w_{i} x_{i} z_{i} \right) + b \left(\sum_{i} w_{i} y_{i} z_{i} \right) + c \left(\sum_{i} w_{i} z_{i}^{2} \right) + d \left(\sum_{i} w_{i} z_{i} \right)
\]

Similarly, from \(\frac{\partial E}{\partial d} = 0 \) we have:

\[
\left(\sum_{i} w_{i} v_{i} \right) = a \left(\sum_{i} w_{i} x_{i} \right) + b \left(\sum_{i} w_{i} y_{i} \right) + c \left(\sum_{i} w_{i} z_{i} \right) + d \left(\sum_{i} w_{i} \right)
\]

This then gives four linear equations and four unknowns \((a, b, c, d)\). It is therefore possible to solve for \((a, b, c, d)\) and substitute the desired input value into the derived hyperplane to obtain an output value for \(v \) at the point \((x, y, z)\). This process can then be repeated for each desired output point.

The obtained points can then be loaded into a color correction system such as that disclosed in US Patent No. 3,893,166 and utilised in an interpolation system for deriving color space transformation values.

Other weighting functions, such as a Gaussian or a linear distance measure can be used, however, the stated weighting function has been found to produce the best results to date. An example weighting function which is somewhat quicker to evaluate on modern computers and which also gives suitable results and which can be used in substitution for Equation 1 is:

\[
e^{-[(dx)^{2} + (dy)^{2} + (dz)^{2}]/c}
\]

where \(dx, dy \) and \(dz \) are distances measured from the sample point in question to the desired output point in \(x, y \) and \(z \) co-ordinates respectively.
Modern color laser copiers are often subject to substantial color variation over their operational life. It is therefore often the case that they require constant recalibration. Unfortunately, the above mentioned process is too computationally intensive for use in anything but a batch process. As it is desirable to be able to quickly recalibrate an output device, a less computationally demanding color mapping process is desired.

One such form of efficient calibration will now be described. However, for simplification of the method to be described, a reformulation of the problem and solution is required.

Firstly, the one dimensional case of the problem can be described as the calculation of a mapping of a one-dimensional array of equally-spaced point-values from a randomly distributed set of point-values utilising the previously described "exponential" least squares fit to calculate each equally spaced point-value.

Referring now to Fig. 3, there is shown a second example of an input - output mapping utilising a single weighting function. The weighting function 51 is illustrated in the one dimensional case. It is assumed that eleven sample points 52 - 61 are provided and it is desired to calculate the output value Q 64 at the desired point X, 62 in accordance with the previously described weighted exponential method with reference to Equation 1.

In this method, the "exponential" least squares fit involves a weighted summation of quantities from the sample input values. For example, an example of the resultant summation can be characterised as:

\[\sum_{i} (w(x_i) \cdot x_i) \]

or \[\sum_{i} (w(y_i) \cdot y_i) \]

where \((x_i, y_i)\) is the position of sample point \(i\), \(\sum_i\) is the sum over all the sample values and \(w(x)\) is the desired weighting function.

The sample points closer to the desired point 65 are more important, so they have a greater weight attached to them when summing.

The desired form of the weighting function for the particular desired output \(X\) value is made up of two exponential curves 67, 68 which take the following form:

\[w_X(a) = e^{-(a - X)/\alpha} \]

if \(a > X\)

\[w_X(a) = e^{-(X - a)/\alpha} \]

if \(a \leq X\)

Referring now to Fig. 4, there is shown the weighting function of Fig. 3 when applied to a series of equally spaced input points. To create the mapping, it is assumed that the output values of a series of equally spaced points 65, 70 - 74, must be calculated. These points can be denoted \(\{X_0, X_N\}\), where \(X_j = K \cdot X, K\) being a constant.

If each point is calculated in turn from left to right, the weighting function can be said to "move" from left to right. This is illustrated in Fig. 4 where the weighting function takes the same form around each of the desired input points \(X_1\) to \(X_N\).

It should be noted that it is a property of an exponential curve that moving the curve by a constant amount is equivalent to multiplying its value by another constant. Mathematically, this can be represented by the expression:

\[e^{x - c} = e^{-c} \cdot e^x \]

From Fig. 3, the weighting function 67, 68 is made up of two separate exponential curves, the left curve and the right curve. If the overall sum required to be calculated is expressed as follows:

\[S(X) = \sum_{i} (w_X(x_i) \cdot v_i) \]

then it is possible to split the contribution from the weighted sample values into a "left hand side" portion and a "right hand side" portion as follows:

\[S_{\text{left}}(X) = \sum_{i=1}^{i<X} (w_X(x_i) \cdot v_i) \]

\[S_{\text{right}}(X) = \sum_{i>X}^{i=N} (w_X(x_i) \cdot v_i) \]
Now the sums S_{left} and S_{right} can be calculated independently. By way of example, the sum S_{left} can be calculated for the left hand side points in accordance with the following pseudo-code:

S_{\text{left}}(X_0) = S_{\text{left}}(0) = 0 by definition.

For $j = 1$ to N calculate $S_{\text{left}}(X_j)$ using $S_{\text{left}}(X_{j-1})$ as follows:

$$S_{\text{left}}(X_j) = \sum_{i:x_i < X_j} (w_{X_j}(x_i) \times v_i)$$

$$= \sum_{i:x_i < X_j} (w_{X_j}(x_i) \times v_i) + \sum_{i:X_j - 1 \leq x_i < X_j} (w_{X_j}(x_i) \times v_i)$$

$$= \sum_{i:x_i < X_j} (e^{-X_j \times x_i} / \sigma \times v_i) + \sum_{i:X_j - 1 \leq x_i < X_j} (w_{X_j}(x_i) \times v_i)$$

$$+ \sum_{i:X_j - 1 \leq x_i < X_j} (w_{X_j}(x_i) \times v_i)$$

$$= e^{-X_j / \sigma} \sum_{i:x_i < X_j} (e^{-X_j \times x_i} / \sigma \times v_i)$$

$$+ \sum_{i:X_j - 1 \leq x_i < X_j} (w_{X_j}(x_i) \times v_i)$$

$$= e^{-X_j / \sigma} . S_{\text{left}}(X_{j-1}) + \sum_{i:X_j - 1 \leq x_i < X_j} (w_{X_j}(x_i) \times v_i)$$

Hence, all of the S_{left} sums can be calculated in one pass through the sample data as the final form of $S_{\text{left}}(X)$ is in the form of a recurrence relation involving the previous sum $S_{\text{left}}(X_{j-1})$ and those values between a previous input point and a current input point. The process of calculating S_{right} can be determined in a similar manner, moving right-to-left instead of left-to-right.

Referring now to Fig. 5, there is shown the process of calculating a new output point in accordance with the recurrence relationship utilised as part of a second embodiment. At the stage of the process illustrated, it is desired to calculate the output value for the new point 80. The value of the previous sum, calculated for the point 81 is known. Therefore, in order to move from the point 81 to the point 80, the previous sum for the point 81 is multiplied by the constant $e^{-K / \sigma}$ and added to the weighted value of any sample point e.g. 82, which is between the points 80 and 81, to produce the new sum.

Once S_{left} and S_{right} are calculated for all points, they can then be added together to produce values of S at all points. The least-squares fit can then be performed.

Since it is desired to utilise the above process for color conversion of colors stored as three dimensional values, the process needs to be extended into three dimensions. As noted previously, a number of different alternative weighting functions can be utilised. However, to extend the above one dimensional process into three dimensions, the following weighting function was chosen:
This weighting function is analogous to the well known "Manhattan" distance measure of treating each dimension independently, being in an equivalent form to Equation 13.

Referring now to Fig. 6, there is shown the weighting function of Fig. 3 in two dimensions. Of course, the weighting function is inherently a three dimensional process \((w(x,y,z))\), however, due to the difficulties of illustrating a three dimensional process, only two dimensions \((w(x,y))\) are illustrated in Fig. 6. In Fig. 6, any movement of the weighting function in the direction of constant \(y\) (in the direction of arrow 86), can be simulated by the multiplication of the relevant sums by a constant.

More formally, the process of calculation can be set out in a similar way to the one-dimensional case as follows:

\[
S(X,Y,Z) = \sum_i (w_{X,Y,Z}(x_i,y_i,z_i) * v_i) \tag{EQ23}
\]

Then the weighting function can be split into a "left hand side" and a "right hand side":

\[
S_{\text{left}}(X,Y,Z) = \sum_{x_i < X} (w_{X,Y,Z}(x_i,y_i,z_i) * v_i) \tag{EQ24}
\]

\[
S_{\text{right}}(X,Y,Z) = \sum_{x_i \geq X} (w_{X,Y,Z}(x_i,y_i,z_i) * v_i) \tag{EQ25}
\]

Therefore:

\[
S(X,Y,Z) = S_{\text{left}}(X,Y,Z) + S_{\text{right}}(X,Y,Z) \tag{EQ26}
\]

The sums \(S_{\text{left}}\) and \(S_{\text{right}}\) can then be calculated independently. For example, the sum \(S_{\text{left}}\) is calculated at all points as follows:
The final result is in the same form as the one dimensional case.

It will be evident to those skilled in the art that whereas the normal method of calculating an exponentially weighted least squares fit over the input sample data would require in the order of \(O(N^3) \) passes through three dimensional data, the above incremental calculation process reduces the number of passes to be of \(O(N^2) \) passes.

The above three dimensional incremental process can be further improved on from an order \(O(N^2) \) process to a process requiring order \(O(1) \) passes through a set of three dimensional input data at the expense of requiring \(O(N^3) \) storage locations, which is practical for most applications.

Firstly, instead of \(S_{\text{left}} \) and \(S_{\text{right}} \), a partial sum for each of the eight ‘octants’ around a point in 3D space is determined as follows:

\[
S_{<<<}(X, Y, Z) = \sum_{i} x_i < X, y_i < Y, z_i < Z (w_{X, Y, Z}(x_i, y_i, z_i) \cdot v_i) \tag{EQ27}
\]

\[
S_{<<>}(X, Y, Z) = \sum_{i} x_i < X, y_i < Y, z_i > Z (w_{X, Y, Z}(x_i, y_i, z_i) \cdot v_i) \tag{EQ28}
\]

\[
S_{<><}(X, Y, Z) = \sum_{i} x_i < X, y_i > Y, z_i < Z (w_{X, Y, Z}(x_i, y_i, z_i) \cdot v_i) \tag{EQ29}
\]
Trivially then, \(S(X,Y,Z) \) will be just the sum of each of the octants:

\[
S(X,Y,Z) = S_{<<<}(X,Y,Z) + S_{<><}(X,Y,Z) + S_{<>>}(X,Y,Z) + S_{><>}(X,Y,Z) + S_{>>>}(X,Y,Z)
\]

Firstly, consider the calculation of \(S_{<<<} \) for all grid points. Turning now to Fig. 7, there is shown a three-dimensional space. It is assumed that possible data input values take on a range of values between zero and one, and it is desired to find the value of \(S(X,Y,Z) \) at the point \((X,Y,Z)\). \(S_{<<<}(X,Y,Z) \) is the summation formed from all sample points in the cubic region \(W \).

Now the region \(W \) can be made up from a number of sub-regions or sub-volumes. In Fig. 8 to Fig. 15, there is shown a number of sub-regions \(V_0 - V_7 \). These regions include:

- \(V_0 \) (Fig. 8) which is the rectangle bounded by the points \((X-K,Y-K,Z-K)\) and \((X,Y,Z)\).
- \(V_1 \) (Fig. 9) which is the rectangle bounded by the points \((0,0,0)\) and \((X-K,Y-K,Z-K)\).
- \(V_2 \) (Fig. 10) which is the rectangle bounded by the points \((0,0,0)\) and \((X,K,Y,Z)\).
- \(V_3 \) (Fig. 11) which is the rectangle bounded by the points \((0,0,0)\) and \((X,Y,Z-K)\).
- \(V_4 \) (Fig. 12) which is the rectangle bounded by the points \((0,0,0)\) and \((X,Y-K,Z)\).
- \(V_5 \) (Fig. 13) which is the rectangle bounded by the points \((0,0,0)\) and \((X-K,Y,Z-K)\).
- \(V_6 \) (Fig. 14) which is the rectangle bounded by the points \((0,0,0)\) and \((X,K,Y,Z-K)\).
- \(V_7 \) (Fig. 15) which is the rectangle bounded by the points \((0,0,0)\) and \((X-K,Y-Z-K)\).

Taking each of the volumes \(V_0 - V_7 \), it can be seen that the volume \(W \) can be created utilising the following formula:

\[
W = V_0 + V_2 + V_3 + V_4 - V_5 - V_6 - V_7 + V_1
\]

Therefore, \(S_{<<<}(X,Y,Z) \) can be created from a number of separate sums in accordance with Equation 36. These summation are as follows:

- \(S_{<<<}(X,K,Y,Z,K) \), which sums over \(V_1 \).
- \(S_{<<<}(X-K,Y,Z,K) \), which sums over \(V_2 \).
- \(S_{<<<}(X,Y,Z-K) \), which sums over \(V_3 \).
- \(S_{<<<}(X,Y-K,Z) \), which sums over \(V_4 \).
- \(S_{<<<}(X-K,Y,Z-K) \), which sums over \(V_5 \).
- \(S_{<<<}(X,Y,K,Z-K) \), which sums over \(V_6 \).
- \(S_{<<<}(X-K,Y,Z-K) \), which sums over \(V_7 \).

This means that the sum for \(W \) (i.e. \(S_{<<<}(X,Y,Z) \)) can be calculated from the sums for \(V_0 - V_7 \) (i.e. the other sums \(S_{<<<} \) mentioned above). These sums must be multiplied by a constant to allow for the shift in the central point of the weighting function.

Hence the only actual summing of data required to calculate \(S_{<<<}(X,Y,Z) \) is the sum over \(V_0 \). The sum over the remaining volume is calculated from previous \(S_{<<<} \) sums. \(V_0 \) is one cube in the grid of points to be calculated.

Calculating all the \(S_{<<<} \) sums involves summing over all such cubes. This is the same as making one pass...
through the data. Calculating the entire mapping will therefore involve eight passes through the data, one per octant.

[0059] Algorithmically, the process is as follows:

[0060] First create a three dimensional array $G_{j,l,m}$ of partial sums (this will contain the V0 sums), where $0 < j < = N$, $0 < l < = N$, $0 < m < = N$, and $G_{j,l,m}$ is defined as:

$$G_{j,l,m} = \sum_{i:K.(j-1) < x < K.j,K.(l-1) < y < K.l,K.(m-1) < z < K.m} (w_{K.j,K.l,K.m}(x_i,y_i,z_i) * v_i)$$

(EQ37)

[0061] Algorithmically, the process is as follows:

First create a three dimensional array $G_{j,l,m}$ of partial sums (this will contain the V0 sums), where $0 < j < = N$, $0 < l < = N$, $0 < m < = N$, and $G_{j,l,m}$ is defined as:

$$G_{j,l,m} = \sum_{i:K.(j-1) < x < K.j,K.(l-1) < y < K.l,K.(m-1) < z < K.m} (w_{K.j,K.l,K.m}(x_i,y_i,z_i) * v_i)$$

(EQ37)

Each data point takes part in exactly one of the sums in the array. So for each data point, the process is to calculate which sum it belongs to and add it to that sum. This can be represented algorithmically as follows:

$$G_{j,l,m} = 0 \text{ for all } j,l,m$$

For all i

$$j = \text{floor}(x_i * N) + 1$$

$$l = \text{floor}(y_i * N) + 1$$

$$m = \text{floor}(z_i * N) + 1$$

$$G_{j,l,m} += w_{K.j,K.l,K.m}(x_i,y_i,z_i) * v_i$$

In addition, we define $G_{j,l,m} = 0$ for $j = 0$ or $l = 0$ or $m = 0$ (these are ‘inclusive-OR’s).

$S_{<<<}$ can then be calculated in the following way:

$$S_{<<<}(X,Y,Z) = 0 \text{ for } X = 0 \text{ or } Y = 0 \text{ or } Z = 0 \text{ (these are ‘inclusive-OR’s)}$$

by definition

For $j = 1$ to

For $l = 1$ to N

For $m = 1$ to N

$$X = K.j$$

$$Y = K.l$$

$$Z = K.m$$

$$S_{<<<}(X,Y,Z) = G_{j,l,m}$$

$$+ e^{-K} / \sigma . S_{<<<}(X-K,Y,Z) + S_{<<<}(X,Y-K,Z) + S_{<<<}(X,Y,Z-K))$$

$$+ S_{<<<}(X-K,Y,Z-K)$$

$$+ e^{-3K} / \sigma . S_{<<<}(X-K,Y-K,Z-K)$$

[0062] Of course, all the $S_{<<<}$ terms in the above formula will have already been calculated when they are required.

[0063] The other summations of Equation 27 to Equation 34 can then be calculated in a similar manner. Finally, Equation 35 can be utilised to produce a value of $S_{<<<}(X,Y,Z)$ for each desired output point.

[0064] Normally, the first method least-squares operation requires $O(N^3)$ passes through the data. Using the basic three dimensional incremental calculation method, this is reduced to $O(N^2)$ passes. Using the fully three-dimensional method, it is reduced to $O(1)$ passes at the cost of $O(N^3)$ storage spaces.

[0065] In practice, when generating a 16 x 16 x 16 mapping, execution time for the standard method was found to
be approximately 30 minutes. The basic incremental method was found to take 4 minutes and the fully three-dimen-
sional incremental method was found to take 15 seconds. The times being measured on an unloaded SUN SPARC
station IPX.

[0066] Appendix A attached discloses the ‘C’ code implementation of the final fully three-dimensional incremental
method described above.

[0067] The foregoing describes only a number of embodiments of the present invention and modifications, obvious
to those skilled in the art, can be made thereto without departing from the scope of the present invention.

[0068] It will be appreciated that the invention can be implemented as mentioned above in a general purpose com-
puting apparatus, or by dedicated hardware or software within an image processing apparatus such as a printer or
scanner. The invention may be supplied in the form of programs recorded on suitable recording media.

[0069] By printing the converted image signals on paper, or by outputting them in other machine-readable or visible
form, superior quality images can be obtained than by using the conventional colour mapping techniques.

15 Claims

1. A method of generating an output signal representing displayable output values of a first series of input points in
a first colour space, given the output values of a second series of input points in a second colour space, said
method comprising, for each input point of said first series the steps of:

 forming a weighted distance measure for each of said second series of input points derived from the absolute
distance between said first series input point and said second series input point;

determining an error measure function including a summation over each of said second series of input points
of an absolute error between a proposed line or curve and the output value of said second series of points
weighted by said weighted distance measure;

 substantially minimizing said error measure function to produce a finalized line or curve; and

 utilizing said finalized line or curve to derive an output value at said first series point, said output value being
used to generate said output signal.

2. A method as claimed in claim 1, wherein said weighted distance measure includes a negative exponential function
of an absolute distance measure between said first series point and said second series point.

3. A method as claimed in claim 2, wherein said weighted distance measure is of the form:

 \(e^{-d/\sigma} \)

 where \(d \) is said absolute distance and \(\sigma \) is a constant scaling factor.

4. A method as claimed in claim 3, wherein \(\sigma \) takes the value 0.06.

5. A method as claimed in any preceding claim, wherein said error measure function includes the square of the
absolute error between said proposed line or curve and the output values of said second series of points.

6. A method as claimed in any preceding claim, wherein both said series of points comprise three dimensional values.

7. A method as claimed in claim 6, wherein said three dimensional values are values in a Red, Green and Blue color
space and said output value is from the group of Cyan, Magenta, Yellow or Black.

8. A method as claimed in claim 2, wherein said negative exponential function is substantially of the form:

 \(e^{-(dx+dy+dz)/\sigma)} \)

 where \(dx \), \(dy \) and \(dz \) are distance measures between said second series input point and said first series input
point, and \(\sigma \) is a constant scaling factor.
9. A method as claimed in claim 1 or 2, wherein said step of determining said error measure function comprises determining said summation from a previously calculated summation forming part of said error measure functions for adjacent input points of a current one of said first series of input points and from said second series of input points which are between said adjacent input points and said current one of said first series of input points.

10. A method as claimed in claim 9, wherein said step of determining said error measure function further comprises multiplying said previously calculated summation by a constant.

11. A method as claimed in claim 1, wherein said first series of input points comprise spaced input points and said second series of input points comprise sample points, said summation comprising a spaced input point summation, said method further comprising, for each of said spaced input points, forming a spaced input point summation comprising the steps of:

(A) calculating a series of final octant sums, comprising the steps of:

 (1) utilising each spaced input point to perform the steps of:

 (i) forming a first series of volumes having eight corners, each corner comprising an adjacent spaced input point;
 (ii) forming a series of values, denoted gsum values, corresponding in number to said first series, each initially being zero;

 (2) for each of the eight volume octants around a given sample point, determining a final octant summation comprising the steps of:

 (i) for each sample point, performing the steps of:

 (a) determining a corresponding volume of said series of volumes, for said sample point;
 (b) adding a weighted value times the output value of said sample point, to the corresponding gsum value, said weighting being with respect to a distance measure from a determined corner of said corresponding volume; said determination being made with respect to a current volume octant of said for each of the eight volume octants;

 (ii) for each equally spaced input point, performing the steps of:

 (a) in a predetermined order, forming a current one of said final octant sums from said gsum values and weighted final octant sums of previously calculated final octant sums;

(B) forming said spaced input point summation from said partial sums of the current equally spaced input point.

12. A method as claimed in claim 11, wherein said spaced input points are equally spaced in an input space.

13. A method as claimed in claim 12, wherein said summation requires $O(1)$ passes through the said second series of input points.

14. A method for color converting an input signal in a first color space to an output signal in a second color space including deriving a color table in accordance with the method set out in any one of claims 1 to 13.

15. A method of calibrating a color printing device including the method as set forth in any one of claims 1 to 14.

16. Apparatus for generating an output signal representing displayable output values of a first series of input points in a first colour space given the output values of a second series of input points in a second color space, said apparatus comprising:

 means for forming a weighted distance measure for each of said second series of input points derived from the absolute distance between said first series input point and said second series input point;
 means for determining an error function including a summation over each of said second series of input points weighed by said weighted distance measure;
 means for substantially minimising said error measure function to produce a finalised line or curve, and means
for utilising said finalised line or curve derive an output value at said first series point, said output value being used to generate said output signal.

17. Apparatus according to claim 16, wherein said means for forming the weighted distance function utilise a negative exponential function of an absolute measure between said first series point and said second series point.

18. Apparatus according to claim 17, wherein said weighted distance measure is of the form:

\[e^{-\frac{d}{\sigma}} \]

where \(d \) is said absolute distance and \(\sigma \) is a constant scaling factor.

19. Apparatus according to claim 18 wherein \(\sigma = 0.06 \).

20. Apparatus according to any one of claims 16 to 19, wherein said means for determining said error measure function include means for generating the square of the absolute error between said proposed curve or line and the output values of said second series of points.

21. Apparatus according to any one of claims 16 to 20, wherein both said series of points comprise three dimensional values.

22. Apparatus according to claim 17, wherein said negative exponential function is substantially of the form:

\[e^{-\frac{\sqrt{(dx^2 + dy^2 + dz^2)}}{\sigma}} \]

where \(dx \), \(dy \) and \(dz \) are distance measures between said second series input point and said first series input point, and \(\sigma \) is a constant scaling factor.

23. Apparatus according to claim 16 or claim 17, wherein said means for determining said error measure function further comprise means for determining said summation from a previously calculated summation forming part of said error measure functions for adjacent input points of a current one of said first series of input points and from said second series of input points which are between said adjacent input points and said current one of said first series of input points.

24. Apparatus according to claim 16, wherein said first series of input points comprise spaced input points and said second series of input points comprise sample points, said apparatus further comprising:

means for forming a spaced input point summation for each of said spaced input points, said means for forming comprising:

means for calculating a series of final octal sums, said calculating means being adapted:

(i) to utilise each spaced input point to form a first series of volumes having eight corners, each corner comprising an adjacent spaced input point;
(ii) to form a series of values, denoted gsum values, corresponding in number to said first series, each initially being zero; and
(iii) to determine for each of the eight volume octants around a given sample point a final octant summation.

25. Apparatus according to claim 24, wherein said calculating means are adapted to determine for each sample point a corresponding volume of said series of volumes.

26. A recording medium storing machine readable instructions for causing a processor to generate an output signal representing displayable output values of a first series of input points in a first colour space by the steps of:

forming a weighted distance measure for each of said second series of input points derived from the absolute distance between said first series input point and said second series input point;
determining an error measure function including a summation over each of said second series of input points, of an absolute error between a proposed line or curve and the output value of said second series of points, weighted by said weighted distance measure; substantially minimizing said error measure function to produce a final line or curve; and utilizing said finalized line or curve to derive an output value at said first series point, said output value being used to generate said output signal.

Patentansprüche

1. Verfahren zur Erzeugung eines Ausgangssignals, das anzeigbare Ausgangswerte einer ersten Folge von Eingangspunkten in einem ersten Farbraum darstellt, wobei die Ausgangswerte einer zweiten Folge von Eingangspunkten in einem zweiten Farbraum gegeben sind, mit den Schritten für jeden Eingangspunkt der ersten Folge
 - Bilden eines gewichteten Distanzmaßes für jeden Eingangspunkt der zweiten Folge, das aus der absoluten Distanz zwischen dem Eingangspunkt der ersten Folge und dem Eingangspunkt der zweiten Folge hergeleitet wird,
 - Bestimmen einer Fehlermaßfunktion, was eine Summation eines absoluten Fehlers zwischen einer vorgeschlagenen Linie oder Kurve und dem Ausgangswert der durch das gewichtete Distanzmaß gewichteten Punkte der zweiten Folge über jeden Eingangspunkt der zweiten Folge einschließt,
 - wesentliches Minimieren der Fehlermaßfunktion zur Erzeugung einer endgültigen Linie oder Kurve und Verwenden der endgültigen Linie oder Kurve zum Herleiten eines Ausgangswerts an dem Punkt der ersten Folge, wobei der Ausgangswert zur Erzeugung des Ausgangssignals verwendet wird.

2. Verfahren nach Anspruch 1, wobei das gewichtete Distanzmaß eine negative Exponentialfunktion eines absoluten Distanzmaßes zwischen dem Punkt der ersten Folge und dem Punkt der zweiten Folge umfasst.

3. Verfahren nach Anspruch 2, wobei das gewichtete Distanzmaß die Form
 \[d^\sigma \]
 hat, wobei \(d \) die absolute Distanz und \(\sigma \) ein konstanter Skalierungsfaktor ist.

4. Verfahren nach Anspruch 3, wobei \(\sigma \) den Wert 0,06 hat.

5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Fehlermaßfunktion das Quadrat des absoluten Fehlers zwischen der vorgeschlagenen Linie oder Kurve und den Ausgangswerten der Punkte der zweiten Folge umfasst.

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei beide Punktfolgen dreidimensionale Werte umfassen.

7. Verfahren nach Anspruch 6, wobei die dreidimensionalen Werte Werte in einem Rot-, Grün und Blau-Farbraum sind und die Ausgangswerte aus der Gruppe Cyan, Magenta, Gelb oder Schwarz stammen.

8. Verfahren nach Anspruch 2, wobei die negative Exponentialfunktion im wesentlichen die Form
 \[\frac{1}{d} \left(\sum d^\sigma \right) \]
 hat, wobei \(dx, dy \) und \(dz \) Distanzmaße zwischen dem Eingangspunkt der zweiten Folge und dem Eingangspunkt der ersten Folge sind und \(\sigma \) ein konstanter Skalierungsfaktor ist.

9. Verfahren nach Anspruch 1 oder 2, wobei der Schritt zur Bestimmung der Fehlermaßfunktion das Bestimmen der Summation aus einer zuvor berechneten Summation, die einen Teil der Fehlermaßfunktionen für angrenzende
Eingangspunkte eines aktuellen Eingangspunkts der ersten Folge bildet, und aus den Eingangspunkten der zweiten Folge umfasst, die zwischen den angrenzenden Eingangspunkten und dem aktuellen Eingangspunkt der ersten Folge liegen.

10. Verfahren nach Anspruch 9, wobei der Schritt zur Bestimmung der Fehlermaßfunktion ferner ein Multiplizieren der zuvor berechneten Summation mit einer Konstanten umfasst.

11. Verfahren nach Anspruch 1, wobei die erste Eingangspunkte folge beabstandete Eingangspunkte und die zweite Eingangspunkfolge Abtastpunkte umfasst, wobei die Summation eine Summation der beabstandeten Eingangspunkte umfasst, und wobei das Verfahren für jeden beabstandeten Eingangspunkt ferner das Bilden einer Summation der beabstandeten Eingangspunkte mit den Schritten umfasst:

(A) Berechnen einer Folge endgültiger Oktantsummen mit den Schritten

(1) Verwenden jedes beabstandeten Eingangspunkts durch Durchführung der Schritte

(i) Bilden einer ersten Folge von Volumina mit acht Ecken, wobei jede Ecke einen angrenzenden beabstandeten Eingangspunkt aufweist,

(ii) Bilden einer Folge von als gsum-Werte bezeichneten Werten, die bezüglich ihrer Anzahl der ersten Folge entsprechen und jeweils anfangs Null sind,

(2) Bestimmen einer endgültigen Oktantsummation für jeden der acht Volumenoktanten um einen gegebenen Abtastpunkt mit den Schritten

(i) Durchführen der folgenden Schritte für jeden Abtastpunkt:

(a) Bestimmen eines entsprechenden Volumens der Volumenfolge für den Abtastpunkt,

(b) Addieren eines gewichteten Werts mal dem Ausgangswert des Abtastpunkts zu dem entsprechenden gsum-Wert, wobei die Gewichtung bezüglich eines Distanzmaßes von einer bestimmten Ecke des entsprechenden Volumens vorgenommen wird, und wobei die Bestimmung bezüglich eines aktuellen Volumenoktanten für jeden der acht Volumenoktanten durchgeführt wird,

(ii) Durchführen der folgenden Schritte für jeden gleich beabstandeten Eingangspunkt:

(a) Bilden einer aktuellen Summe der endgültigen Oktantsummen aus den gsum-Werten und gewichteten endgültigen Oktantsummen zuvor berechneter endgültiger Oktantsummen in einer vorbestimmten Reihenfolge,

(B) Bilden der Summation der beabstandeten Eingangspunkte aus den Teilsummen des aktuellen gleich beabstandeten Eingangspunkts.

12. Verfahren nach Anspruch 11, wobei die beabstandeten Eingangspunkte in einem Eingangsraum gleich beabstandet sind.

13. Verfahren nach Anspruch 12, wobei die Summation O(1) Durchläufe über die zweite Eingangspunkfolge erfordert.

15. Verfahren zur Kalibrierung einer Farbdruckvorrichtung, das das in einem der Ansprüche 1 bis 14 definierte Verfahren umfasst.

16. Vorrichtung zur Erzeugung eines Ausgangssignals, das anzeigbare Ausgangswerte einer ersten Folge von Eingangspunkten in einem ersten Farbraum darstellt, wobei die Ausgangswerte einer zweiten Folge von Eingangspunkten in einem zweiten Farbraum gegeben sind, mit

einer Einrichtung zum Bilden eines gewichteten Distanzmaßes für jeden Eingangspunkt der zweiten Folge, das aus der absoluten Distanz zwischen dem Eingangspunkt der ersten Folge und dem Eingangspunkt der
zweiten Folge hergeleitet wird,
einer Einrichtung zum Bestimmen einer Fehlerfunktion, was eine Summation über jeden mit dem gewichteten Distanzmaß gewichteten Eingangspunkt der zweiten Folge einschließt,
einer Einrichtung zum wesentlichen Minimieren der Fehlermaßfunktion zur Erzeugung einer endgültigen Linie oder Kurve und
einer Einrichtung zum Verwenden der endgültigen Linie oder Kurve zum Herleiten eines Ausgangswerts an dem Punkt der ersten Folge, wobei der Ausgangswert zur Erzeugung des Ausgangssignals verwendet wird.

17. Vorrichtung nach Anspruch 16, wobei die Einrichtung zum Bilden der gewichteten Distanzfunktion eine negative Exponentialfunktion eines absoluten Maßes zwischen dem Punkt der ersten Folge und dem Punkt der zweiten Folge verwendet.

18. Vorrichtung nach Anspruch 17, wobei das gewichtete Distanzmaß die Form

\[e^{-\frac{d}{\alpha}} \]

hat, wobei \(d \) die absolute Distanz und \(\alpha \) ein konstanter Skalierungsfaktor ist.

19. Vorrichtung nach Anspruch 18, wobei \(\alpha \) den Wert 0,06 hat.

20. Vorrichtung nach einem der Ansprüche 16 bis 19, wobei die Einrichtung zum Bestimmen der Fehlermaßfunktion eine Einrichtung zum Erzeugen des Quadrats des absoluten Fehlers zwischen der vorgeschlagenen Linie oder Kurve und den Ausgangswerten der Punkte der zweiten Folge umfasst.

21. Vorrichtung nach einem der Ansprüche 16 bis 20, wobei beide Punktfolgen dreidimensionale Werte umfassen.

22. Vorrichtung nach Anspruch 17, wobei die negative Exponentialfunktion im wesentlichen die Form

\[e^{-\left(\sqrt{dx^2 + dy^2 + dz^2}\right)} \]

hat, wobei \(dx, dy \) und \(dz \) Distanzmaße zwischen dem Eingangspunkt der zweiten Folge und dem Eingangspunkt der ersten Folge sind und \(\alpha \) ein konstanter Skalierungsfaktor ist.

23. Vorrichtung nach Anspruch 16 oder 17, wobei die Einrichtung zum Bestimmen der Fehlermaßfunktion ferner eine Einrichtung zum Bestimmen der Summation aus einer zuvor berechneten Summation, die einen Teil der Fehlermaßfunktionen für angrenzende Eingangspunkte eines aktuellen Eingangspunkts der ersten Folge bildet, und aus den Eingangspunkten der zweiten Folge umfasst, die zwischen den angrenzenden Eingangspunkten und dem aktuellen Eingangspunkt der ersten Folge liegen.

24. Vorrichtung nach Anspruch 16, wobei die erste Eingangspunktfolge beabstandete Eingangspunkte und die zweite Eingangspunktfolge Abtastpunkte umfasst, ferner mit
einer Einrichtung zum Bilden einer Summation der beabstandeten Eingangspunkte für jeden beabstandeten Eingangspunkt, wobei die Einrichtung zum Bilden umfasst:
eine Einrichtung zum Berechnen einer Folge endgültiger Oktantsummen, wobei die Berechnungseinrichtung angepasst ist

(i) zum Verwenden jedes beabstandeten Eingangspunkts zur Bildung einer ersten Folge von Volumina mit acht Ecken, wobei jede Ecke einen angrenzenden beabstandeten Eingangspunkt aufweist,
(ii) zum Bilden einer Folge von als gsum-Werte bezeichneten Werten, die bezüglich ihrer Anzahl der ersten Folge entsprechen und jeweils anfangs Null sind, und
(iii) zum Bestimmen einer endgültigen Oktantsummation für jeden der acht Volumenoktanten um einen gegebenen Abtastpunkt.
25. Vorrichtung nach Anspruch 24, wobei die Berechnungseinrichtung zum Bestimmen eines entsprechenden Volumens der Volumenfolge für jeden Abtastpunkt angepasst ist.

 Bilden eines gewichteten Distanzmaßes für jeden Eingangspunkt der zweiten Folge, das aus der absoluten Distanz zwischen dem Eingangspunkt der ersten Folge und dem Eingangspunkt der zweiten Folge hergeleitet wird,

 Bestimmen einer Fehlermaßfunktion, was eine Summation eines absoluten Fehlers zwischen einer vorge- schlagenen Linie oder Kurve und dem Ausgangswert der durch das gewichtete Distanzmaß gewichteten Punkte der zweiten Folge über jeden Eingangspunkt der zweiten Folge einschließt, wesentliches Minimieren der Fehlermaßfunktion zur Erzeugung einer endgültigen Linie oder Kurve und Verwenden der endgültigen Linie oder Kurve zum Herleiten eines Ausgangswerts an dem Punkt der ersten Folge, wobei der Ausgangswert zur Erzeugung des Ausgangssignals verwendet wird.

Revidenctions

1. Procédé pour produire un signal de sortie représentant des valeurs de sortie affichables d'une première série de points d'entrée dans un premier espace de couleurs, une fois données les valeurs de sortie d'une seconde série de points d'entrée dans un second espace de couleurs, ledit procédé comprenant, pour chaque point d'entrée de ladite première série les étapes consistant à :

 former une mesure de distance pondérée pour chaque point de ladite seconde série de points d'entrée à partir de la distance absolue entre ledit point d'entrée de la première série et ledit point d'entrée de la seconde série; déterminer une fonction de mesure d'erreur incluant une sommation, sur chaque point de ladite seconde série de points d'entrée, d'une erreur absolue entre une ligne ou courbe proposée et la valeur de sortie de ladite seconde série de points pondérée par ladite mesure de distance pondérée; réduire de façon substantielle ladite fonction de mesure d'erreur pour produire une ligne ou courbe finalisée; et utiliser ladite ligne ou courbe finalisée pour obtenir une valeur de sortie au niveau dudit point de la première série, ladite valeur de sortie étant utilisée pour produire ledit signal de sortie.

2. Procédé selon la revendication 1, dans lequel ladite mesure de distance pondérée inclut une fonction exponentielle négative d'une mesure de distance absolue entre ledit point de la première série et ledit point de la seconde série.

3. Procédé selon la revendication 2, dans lequel ladite mesure de distance pondérée se présente sous la forme :

\[e^{-d/\sigma} \]

 dans laquelle d est ladite distance absolue et \(\sigma \) est un facteur de cadrage d'échelle constant.

4. Procédé selon la revendication 3, dans lequel \(\sigma \) possède la valeur 0,06.

5. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite fonction de mesure d'erreur inclut le carré de l'erreur absolue entre ladite ligne ou courbe proposée et les valeurs de sortie de ladite seconde série de points.

6. Procédé selon l'une quelconque des revendications précédentes, dans lequel lesdites deux séries de points comprennent des valeurs tridimensionnelles.

7. Procédé selon la revendication 6, dans lequel lesdites valeurs tridimensionnelles sont des valeurs dans un espace de couleurs rouge, verte et bleue et ladite valeur de sortie est tirée du groupe du cyan, magenta, jaune ou noir.

8. Procédé selon la revendication 2, dans lequel ladite fonction exponentielle négative possède essentiellement la forme :
dans laquelle dx, dy et dz sont des mesures de distance entre ledit point d'entrée de la seconde série et ledit point d'entrée de la première série, et σ est un facteur de cadrage d'échelle constant.

9. Procédé selon la revendication 1 ou 2, dans lequel ladite étape de détermination de la fonction de mesure d'erreur comprend la détermination de ladite sommation à partir d'une partie de formation de la sommation déjà calculée desdites fonctions de mesure d'erreur pour des points d'entrée adjacents d'un point actuel de ladite première série de points d'entrée et à partir de ladite seconde série de points d'entrée, qui sont situés entre lesdits points d'entrée adjacents et ledit point actuel de ladite première série de points d'entrée.

10. Procédé selon la revendication 9, dans lequel ladite étape de détermination de ladite fonction de mesure d'erreur comprend en outre la multiplication de ladite sommation calculée précédemment, par une constante.

11. Procédé selon la revendication 1, dans lequel ladite première série de points d'entrée comprend des points d'entrée espacés et ladite seconde série de points d'entrée comprend des points échantillons, ladite sommation comprenant une sommation de points d'entrée espacés, ledit procédé comprenant en outre, pour chacun desdits points d'entrée espacés, la formation d'une sommation de points d'entrée espacés comprenant les étapes consistant à :

(A) calculer une série de sommes finales d'octants, comprenant les étapes consistant à :

(1) utiliser chaque point d'entrée espacé pour exécuter les étapes consistant à :

(i) former une première série de volumes possédant huit coins, chaque coin comprenant un point d'entrée espacé adjacent;
(ii) former une série de valeurs, appelées valeurs gsum, dont le nombre correspond à ladite première série, chaque valeur étant initialement nulle;

(2) pour chacun des huit octants de volumes entourant un point échantillon donné, déterminer une sommation finale d'octants comprenant les étapes consistant à :

(i) pour chaque point échantillon, exécuter les étapes consistant à :

(a) déterminer un volume correspondant de ladite série de volumes, pour ledit point échantillon;
(b) additionner une valeur pondérée multipliée par la valeur de sortie dudit point échantillon à la valeur gsum correspondante, ladite pondération s'effectuant en rapport avec une mesure de distance à partir d'un coin déterminé dudit volume correspondant; ladite détermination étant faite par rapport à un octant actuel de volume pour chacun des huit octants de volumes;

(ii) pour chaque point d'entrée également espacé, exécuter les étapes consistant à :

(a) dans un ordre prédéterminé, former une somme actuelle parmi lesdites sommes finales d'octants à partir desdites valeurs gsum et lesdites sommes finales pondérées d'octants de sommes finales précédemment calculées d'octants;

(B) former ladite sommation de points d'entrée espacés à partir desdites sommes partielles du point d'entrée actuel également espacé.

12. Procédé selon la revendication 11, selon lequel lesdits points d'entrée espacés sont également espacés dans un espace d'entrée.

13. Procédé selon la revendication 12, dans lequel ladite sommation requiert O(1) passages par ladite seconde série de points d'entrée.

14. Procédé pour convertir, au niveau des couleurs, un signal d'entrée situé dans un premier espace de couleurs en un signal de sortie situé dans un second espace de couleurs, incluant la dérivation d'une table de couleurs conformément au procédé indiqué dans l'une quelconque des revendications 1 à 13.
15. Procédé pour étalonner un dispositif d'impression en couleurs incluant le procédé selon l'une quelconque des revendications 1 à 14.

16. Appareil pour produire un signal de sortie représentant des valeurs de sortie affichables d'une première série de points d'entrée dans un premier espace de couleurs, une fois données les valeurs de sortie d'une seconde série de points d'entrée dans un second espace de couleurs, ledit appareil comprenant :

- des moyens pour former une mesure de distance pondérée pour chaque point de ladite seconde série de points d'entrée à partir de la distance absolue entre ledit point d'entrée de la première série et ledit point d'entrée de la seconde série ;
- des moyens pour déterminer une fonction d'erreur incluant une sommation sur chaque point de ladite seconde série de points d'entrée pondérée par ladite mesure de distance pondérée ;
- des moyens pour réduire de façon substantielle ladite fonction de mesure d'erreur pour produire une ligne ou courbe finalisée, et des moyens pour utiliser ladite ligne ou courbe finalisée pour obtenir une valeur de sortie au niveau dudit point de la première série, ladite valeur de sortie étant utilisée pour produire ledit signal de sortie.

17. Appareil selon la revendication 16, dans lequel lesdits moyens pour former la fonction de distance pondérée utilisent une fonction exponentielle négative d'une mesure absolue entre ledit point de la première série et ledit point de la seconde série.

18. Appareil selon la revendication 17, dans lequel ladite mesure de distance pondérée se présente sous la forme :

\[e^{-\frac{d}{\sigma}} \]

dans laquelle d est ladite distance absolue et \(\sigma \) est un facteur de cadrage d'échelle constant.

19. Appareil selon la revendication 18, dans lequel on a \(\sigma = 0.06 \).

20. Appareil selon l'une quelconque des revendications 16 à 19, dans lequel lesdits moyens de détermination de ladite fonction de mesure d'erreur incluent des moyens pour produire le carré de l'erreur absolue entre ladite courbe ou ligne proposée et les valeurs de sortie de ladite seconde série de points.

21. Appareil selon l'une quelconque des revendications 16 à 20, dans lequel lesdites deux séries de points comprennent des valeurs tridimensionnelles.

22. Appareil selon la revendication 17, ladite fonction exponentielle négative possédant essentiellement la forme :

\[e^{-\frac{(\|dx\|+\|dy\|+\|dz\|)}{\sigma}} \]

dans laquelle dx, dy et dz sont des mesures de distance entre ledit point d'entrée de la seconde série et ledit point d'entrée de la première série, et \(\sigma \) est un facteur de cadrage d'échelle constant.

23. Appareil selon la revendication 16 ou la revendication 17, dans lequel lesdits moyens de détermination de la fonction de mesure d'erreur comprennent en outre des moyens pour déterminer ladite sommation à partir d'une partie de formation de la sommation déjà calculée desdites fonctions de mesure d'erreur pour des points d'entrée adjacents d'un point actuel de ladite première série de points d'entrée et à partir de ladite seconde série de points d'entrée, qui sont situés entre lesdits points d'entrée adjacents et ledit point actuel de ladite première série de points d'entrée.

24. Appareil selon la revendication 16, dans lequel ladite première série de points d'entrée comprend des points d'entrée espacés et ladite seconde série de points d'entrée comprend des points échantillons, ledit appareil comprenant en outre :

- des moyens pour former une sommation de points d'entrée espacés pour chacun desdits points d'entrée...
espacés, lesdits moyens de formation comprenant :
des moyens pour calculer une série de sommes octales finales, lesdits moyens de calcul étant adaptés :

(i) pour utiliser chaque point d'entrée espacé pour former une première série de volumes comportant huit
coins, chaque coin comprenant un point d'entrée espacé adjacent;
(ii) pour former une série de valeurs, désignées par valeurs gsum, dont le nombre correspond à ladite
première série, et dont chacune est initialement nulle; et
(iii) pour déterminer une sommation finale d'octants pour chacun des huit octants de volumes autour d'un
point échantillon donné.

25. Appareil selon la revendication 24, dans lequel lesdits moyens de calcul sont adaptés pour déterminer, pour chaque
point échantillon, un volume correspondant de ladite série de volumes.

26. Support d'enregistrement mémorisant des instructions lisibles en machine pour amener un processeur à produire
un signal de sortie représentant des valeurs de sortie affichables d'une première série de points d'entrée dans un
premier espace de couleurs au moyen des étapes consistant à :

former une mesure de distance pondérée pour chaque point de ladite seconde série de points d'entrée dérivée
de la distance absolue entre ledit point d'entrée de la première série et ledit point d'entrée de la seconde série;
déterminer une fonction de mesure d'erreur incluant une sommation, effectuée sur chaque point de ladite seconde série de points d'entrée, d'une erreur absolue entre une ligne ou courbe proposée et la valeur de
sortie de ladite seconde série de points, pondérée par ladite mesure de distance pondérée;
réduire de façon substantielle ladite fonction de mesure d'erreur pour produire une ligne ou courbe finalisée; et
utiliser ladite ligne ou courbe finalisée pour obtenir une valeur de sortie dudit point de la première série, ladite
valeur de sortie étant utilisée pour produire ledit signal de sortie.
Fig. 1

Scanner → Colour Space Conversion → Printer

1 → 2
Multiply the sum by a constant to simulate moving of the curve.

We have calculated the sum of these points.

Sums already calculated.
First series of input points

Output values of a second series of input points

Get an input point from the first series

Form a weighted distance measure, for each of the second series of input points, derived from the absolute distance between the first series input point and the second series input point

Determine an error measure function including a summation over each of the second series of input points, of an absolute error between a proposed line or curve and the output value of the second series of points, weighted by the weighted distance measure

Substantially minimize the error measure function to produce a finalized line or curve

Utilize the finalized line or curve to derive an output value at the first series input point.

Output value of first series input point

Fig. 16