EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 19.01.2000 Bulletin 2000/03

Application number: 95116259.3

Date of filing: 17.11.1992

Air conditioning system and method for vehicles
Verfahren und Anlage zur Klimatisierung eines Fahrzeugs
Dispositif et procédé de climatisation de véhicules

Designated Contracting States:
DE FR GB IT SE

Priority: 18.11.1991 JP 9439491 U
18.11.1991 JP 9435691

Date of publication of application: 14.02.1996 Bulletin 1996/07

Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
92310459.0 / 0 543 606

Proprietor: Sanden Corporation
Iseaki-shi, Gunma 372-8502 (JP)

Inventor: Aoki, Yorikazu
Maebashi-shi, Gunma 371-01 (JP)

Representative: Jackson, Peter Arthur
GILL JENNINGS & EVERY
Broadgate House
7 Eldon Street
London EC2M 7LH (GB)

References cited:
DE-A- 4 033 551
US-A- 4 192 456
US-A- 4 728 029

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to an air conditioning system and method for vehicles, and more particularly to an air conditioning system and method suitable for use in a mobile crane vehicle.

[0002] Generally in a work vehicle such as a mobile crane, the cabin is rotatable through an angle of 360°. Consequently, the cooling water for the engine circulating below the cabin cannot be introduced into the cabin, and therefore cannot be used to heat the cabin. Nonetheless, since work vehicles typically have extensive hydraulic circuits, the cabin can utilize the heat of the hydraulic oil in the hydraulic circuit to provide heat thereto.

[0003] A typical prior art hydraulic circuit includes an oil tank and a hydraulic pump driven by an engine of the vehicle. The hydraulic pump draws oil from the oil tank and delivers the oil to a hydraulic motor which is driven by the pumped oil. The heating circuit has another hydraulic pump connected to and driven by the hydraulic motor. A valve mechanism (a relief valve) and a solenoid valve are disposed downstream of the hydraulic pump in parallel to each other in the heating circuit.

[0004] When the solenoid valve is closed, the hydraulic oil from the hydraulic pump is sent to the valve mechanism. The valve mechanism causes a pressure difference in the hydraulic oil and the hydraulic oil is heated by the pressure difference. A radiator is disposed downstream of the valve mechanism. The heat of the hydraulic oil heated by the pressure difference is radiated by the radiator. Consequently, when in the heating mode, the cabin is heated by the heat radiated from the radiator.

[0005] Additionally, the hydraulic circuit can be employed to drive an air conditioning compressor. The typical refrigerating circuit has a compressor, a condenser and an evaporator. The compressor is selectively connected to the hydraulic motor via a clutch mechanism. When the compressor is connected to the hydraulic motor, the compressor is driven and the air conditioning (cooling) is performed.

[0006] Further, when a dehumidifying and heating operation is performed, the compressor is connected to the hydraulic motor by closing the clutch mechanism and the solenoid valve in the heating circuit is closed. Thus, both the refrigerating circuit and the heating circuit are operated, and dehumidifying and heating operations are simultaneously performed.

[0007] In such a system, when the clutch to the compressor is disengaged and the operation of the heating circuit is stopped, the solenoid valve is opened. Consequently, the hydraulic oil of the heating circuit circulates between the hydraulic pump and the oil tank. Since, in such a state, the hydraulic oil is not supplied to the valve mechanism, the radiator does not radiate the heat of the hydraulic oil. Therefore, the temperature of the hydraulic oil continues to rise, often to an excessive degree.

[0008] Additionally, in conventional work vehicles, flushing the heating circuit, that is, the process for removing foreign material from the hydraulic oil is problematic and complicated. For example, in conventional systems, flushing is typically performed by detaching the valve (relief valve) and bypassing the oil path. In addition to the loss of time associated with detaching and reattaching the valve, leakage of the hydraulic oil occurs during flushing.

[0009] Accordingly, it would be desirable to provide an air conditioning system which prevents, when a refrigerating circuit is not operated, an excessive rise of the temperature of hydraulic oil flowing between the hydraulic pump and oil tank.

[0010] Further, it would be desirable to provide an air conditioning system which automatically and easily flushes the heating circuit without detaching a valve and which prevents hydraulic oil leakage during flushing.

[0012] An air conditioning system according to the invention comprises an air conditioning system for vehicles comprising a heating circuit comprising a hydraulic pump, a hydraulic motor for driving the hydraulic pump, a radiator for radiating heat of hydraulic oil flowing in the heating circuit, a first fluid pathway in the heating circuit defined between the radiator and the hydraulic pump, and a valve mechanism disposed in the first fluid pathway for generating a pressure difference in the hydraulic oil flowing therethrough; and a refrigerant circuit comprising a compressor driven by the hydraulic motor, a clutch mechanism provided between the hydraulic motor and the compressor for controlling the connection of the hydraulic motor and the compressor, a condenser, and an evaporator; characterised by: a filter provided downstream of the valve mechanism in the first fluid pathway; and a control means for controlling the operation of the valve mechanism between a fully opened state and a fully closed state, the control means maintaining the valve mechanism in the fully opened state for a predetermined amount of time when the hydraulic pump first begins operating.

[0013] With a filter disposed downstream of the valve mechanism, the pressure difference in the hydraulic oil at the valve mechanism is maintained at a minimum for a predetermined time when a heating mode or a dehumidifying and heating mode is first commenced. In other words, the valve mechanism is substantially fully opened.

[0014] Therefore, any foreign materials contained in the hydraulic oil easily pass through the valve mechanism and are caught by the filter. Thus, at each initial start up, the heating circuit is automatically flushed. Accordingly, there is no detaching and reattaching of the valves and no incidental fluid leakage associated with flushing operation.

[0015] The invention is described with reference to the accompanying drawings which are given by way of example only, and are not intended to limit the present
where,

\[H = 1.41 \times Q \times \Delta P \]

where,

- \(H \): heating value x 1.163W (kcal/h)
- \(Q \): flow rate of hydraulic oil (l/min)
- \(\Delta P \): pressure difference x 9.807 x 10^4 Pa (kgf/cm²)
- 1.41: constant
- 10

Accordingly, the heat radiated from radiator 35 is in proportion to the pressure difference (relief pressure) across relief valve 34.

Refrigerating circuit D comprises a compressor 40, a condenser 41, a receiver 42, an expansion valve 43 and an evaporator 44 disposed in series. The condenser 41 and the evaporator 44 exchange heat with the air flowing through across due to fans 41a and 44a, respectively. Compressor 40 is selectively drivingly connected to hydraulic motor 32 via a clutch mechanism 45.

Fan 44a, evaporator 44 and radiator 35 are disposed in the air conditioning air duct 52 placed in a cabin (not shown) of a vehicle (not shown, for example, a mobile crane vehicle). A damper (not shown) is provided in the air conditioning air duct 52 for switching the air path in the air duct between an air path for heating and an air path for air cooling. When heating or dehumidification and heating are performed, the air in the cabin is sucked through a suction opening (not shown) and the air is discharged into the cabin through evaporator 44 and radiator 35. When air cooling is performed, the air is discharged into the cabin after passing only through evaporator 44. One such air delivery system is disclosed in U.S.-A-5,085,269, which is hereby incorporated by reference. A first temperature sensor 55 (shown in FIG. 2) is provided downstream of evaporator 44 and a second temperature sensor 56 (shown in FIG. 2) is provided downstream of radiator 35, respectively.

At least a part of heating circuit C2 is disposed in an air path 53 in which the air forced by fan 41a flows across condenser 41. Accordingly, the hydraulic oil circulated in heating circuit C2 is cooled when fan 41a is activated.

The control of the above system will be explained with reference to FIGS. 2 and 3.

Relief valve 34 and clutch mechanism 45 are controlled by a control unit 60. Additionally, control unit 60 is connected to first and second temperature sensors 55 and 56. Control unit 60 controls clutch mechanism 45 in response to the temperature detected by first temperature sensor 55 and based on a preset temperature. Control unit 60 controls the relief pressure of relief valve 34 in response to the temperature detected by second temperature sensor 56 and based on a preset temperature.

In the operation of air cooling, a signal is outputted from control unit 60 for connecting or disconnecting clutch mechanism 45 to control the ON/OFF operation of compressor 40. In the operation of heating, the relief pressure of relief valve 34 is controlled within the
range of lower limit P_{min} to upper limit P_{max}. In the operation of dehumidification and heating, both air cooling and heating are performed. ON time T_a (for example, 20 seconds) and OFF time T_b (for example, 10 seconds) of compressor 40 and at least two upper limits with respect to the relief pressure, for example, P_{max} and 1/2 P_{max} are set in control unit 60. In the operation of dehumidification and heating, the ON/OFF operation of compressor 40 is repeated at each ON time T_a and each OFF time T_b. The relief pressure of relief valve 34 is controlled to P_{max} when compressor 40 is OFF, and the relief pressure is controlled to 1/2 P_{max} when compressor 40 is ON.

[0035] More specifically, when heating is performed, clutch mechanism 45 disconnects hydraulic motor 32 and compressor 40, solenoid valve 36 is closed, and fan 44a is driven. The hydraulic oil pumped up by second hydraulic pump 31b circulates in the order of relief valve 34, radiator 35 and second oil tank 30b, as shown by the broken line arrows in FIG. 1. When the hydraulic oil passes through the relief valve 34, a pressure difference is generated between the entrance and exit sides thereof so that the hydraulic oil is heated. The heat of the hydraulic oil is radiated by radiator 35, and the air in air conditioning air duct 52 which is forced by fan 44a is heated by the radiator 35. Thus, the cabin is heated.

[0036] When air conditioning (air cooling) is performed, hydraulic motor 32 and compressor 40 are connected by clutch mechanism 45, and fans 41a and 44a are driven. The hydraulic oil pumped by first hydraulic pump 31a circulates through hydraulic motor 32 as shown by the broken line arrows in FIG. 1, and hydraulic motor 32 is driven. Compressor 40 is driven by hydraulic motor 32, and the refrigerant discharged by compressor 40 circulates in the order of condenser 41, receiver 42, expansion valve 43, evaporator 44 and the compressor 40, as shown by the solid line arrows in FIG. 1. The air in air conditioning air duct 52 which is forced by fan 44a is cooled at evaporator 44. Thus, the air in the cabin is cooled. In this operation, solenoid valve 36 is open.

[0037] When dehumidification and heating are performed, hydraulic motor 32 and compressor 40 are intermittently connected for the predetermined time T_a and disconnected for the predetermined time T_b by clutch mechanism 45, solenoid valve 36 is closed, and fans 41a (driven only when clutch mechanism 45 is connected) and fan 44a are driven. The refrigerant discharged by compressor 40 circulates in the same way as in air cooling operation as shown by the solid line arrows in FIG. 1, and the air in air conditioning air duct 52 is dehumidified and cooled by evaporator 44. The hydraulic oil pumped by second hydraulic pump 31b is circulated in the same manner as the heating operation as shown by the broken line arrows in FIG. 1, and the air in air conditioning air duct 52 is heated by radiator 35. The heating by radiator 35 and the dehumidification and cooling by evaporator 44 thus perform the dehumidification and heating of the cabin. In this operation, the relief pressure of relief valve 34 is maintained at 1/2 P_{max} by control unit 60 when compressor 40 is ON.

[0038] The above heating circuit is disposed in air path 53 of fan 41a. A third temperature sensor 57 (shown in FIG. 2) is provided in the heating circuit for detecting the temperature of the hydraulic oil circulated in the heating circuit. The third temperature sensor 57 is disposed, for example, in second oil tank 30b, and is connected to control unit 60. Further, fan 41a is connected to control unit 60.

[0039] FIG. 3 illustrates a flow chart detailing the operation for preventing the occurrence of an excessive temperature rise of the hydraulic oil.

[0040] First, control unit 60 checks whether the refrigerant circuit is operating (step 1). If the refrigerant circuit is operating, the determination of the step 1 is repeated. If the refrigerant circuit is not operating, that is, if fan 44a is not on, it is determined whether solenoid valve 36 is opened (step 2). If the solenoid valve 36 is opened, the flow proceeds to step 3 described later. If the solenoid valve 36 is closed, it is determined whether the pressure difference of relief valve 34 is at the minimum pressure difference (step 4).

[0041] If the pressure difference of relief valve 34 is at the minimum pressure difference, namely, if the opening degree of the relief valve 34 is at the maximum opening degree, the flow proceeds to step 3. If the opening degree of relief valve 34 is not at the maximum opening degree, the flow returns to step 1.

[0042] At step 3, the temperature of the hydraulic oil (t) detected by third temperature sensor 57 is compared with a maximum temperature of the hydraulic oil (t_0) preset in control unit 60. If $t < t_0$, the flow returns to step 1. If $t \geq t_0$, fan 41a is driven by the signal from control unit 60 (step 5). Since, as described above, the heating circuit is disposed in air path 53 of fan 41a, the hydraulic oil in the heating circuit is cooled by the air forced through air path 53 by the fan 41a.

[0043] Therefore, an excessive rise of the temperature of the hydraulic oil is prevented.

[0044] Further, after fan 41a is driven, it is determined whether the relationship between the detected temperature of the hydraulic oil (t) and the preset maximum temperature of the hydraulic oil (t_0) satisfies $t < t_0 \times x$ ("x" is a safety constant) (step 6). If the relationship is not satisfied, the flow returns to step 5. If the relationship is satisfied, the drive of fan 41a is stopped (step 7), and the flow returns to step 1.

[0045] FIG. 4 illustrates a circuit of an air conditioning system according to the invention. In this embodiment, a filter 34a is provided at a position downstream of relief valve 34 in heating circuit C2. Other parts of this circuit are substantially the same as the system of FIG. 1.

[0046] FIG. 5 illustrates a block diagram for the control of this embodiment of the invention. Although the block diagram is almost the same as that in FIG. 2, a power source signal 61 from a firm power source (not shown) for control unit 60 is illustrated in FIG. 5. This firm power
source is different from a power source for actually activating the relief valve, the solenoid valve and the damper. That is, the firm power source is provided separately from a main power source, and it is used for always supplying a power to control unit 60.

[0047] In the invention, foreign materials contained in the hydraulic oil are caught by filter 34a disposed between relief valve 34 and radiator 35.

[0048] When the operation of heating or dehumidification and heating is first started after power source signal 61 from the firm power source is inputted to control unit 60, the relief pressure (pressure difference) of relief valve 34 is controlled to a minimum pressure Pmin for a predetermined time. More specifically, as shown in Fig. 6, the opening degree of relief valve 34 is controlled to a maximum opening degree, and the gap between valve body 341 and valve seat 342 is enlarged. As a result, the foreign materials contained in the hydraulic oil can easily pass through relief valve 34 and are caught by filter 34a. Thus, the heating circuit is automatically flushed without detaching relief valve 34 each time the operation mode of heating or dehumidification and heating is first started.

[0049] The firm power source is electrically connected to control unit 60 usually by connecting a power source harness to a battery, and electrically disconnected by detaching the power source harness from the battery. Since the power source harness is automatically disconnected from the battery every time the system is serviced, the signal of the firm power source is automatically turned off during system maintenance. Since the power source harness is again connected to the battery after the maintenance or checking, the signal of the firm power source is automatically inputted at every maintenance or checking. Therefore, flushing is automatically performed at every maintenance or checking of the system.

[0050] FIG. 7 illustrates a block diagram of a part of a circuit of an air conditioning system according to the invention.

[0051] In this embodiment, the valve mechanism for causing the pressure difference in the hydraulic oil of the heating circuit comprises a plurality of relief valves 71, 72, 73, ..., 7N each having a constant relief pressure. For example, relief valve 71 has a minimum relief pressure and relief valve 7N has a maximum relief pressure.

[0052] When control unit 60 receives an input signal from a firm power source, relief valve 71 having the minimum relief pressure may be selected and the relief valve 71 may be turned on for a predetermined time. In other words, a relief valve having a maximum opening degree is selected. After the predetermined time expires, another suitable relief valve is selected from the plurality of relief valves.

Claims

1. An air conditioning system for vehicles comprising a heating circuit (C2) comprising a hydraulic pump (31b), a hydraulic motor (32) for driving the hydraulic pump (31b), a radiator (35) for radiating heat of hydraulic oil flowing in the heating circuit (C2), a first fluid pathway in the hydraulic circuit (C2) defined between the radiator (35) and the hydraulic pump (31b), and a valve mechanism (34) disposed in the first fluid pathway for generating a pressure difference in the hydraulic oil flowing therethrough; and a refrigerant circuit (D) comprising a compressor (40) driven by the hydraulic motor (32), a clutch mechanism (45) provided between the hydraulic motor (32) and the compressor (40) for controlling the connection of the hydraulic motor (32) and the compressor (40), a condenser (41), and an evaporator (44); characterised by: a filter (34a) provided downstream of the valve mechanism (34) in the first fluid pathway; and a control means (60) for controlling the operation of the valve mechanism (34) between a fully opened state and a fully closed state, the control means (60) maintaining the valve mechanism (34) in the fully opened state for a predetermined amount of time when the hydraulic pump (31b) first begins operating.

2. An air conditioning system according to claim 1, wherein the valve mechanism (34) comprises a variable relief valve.

3. An air conditioning system according to claim 2, wherein the variable relief valve (34) comprises an electromagnetic proportional type relief valve.

4. An air conditioning system according to any one of the preceding claims, further comprising a second fluid pathway in parallel to the first fluid pathway and another relief valve (72, 73, ..., 7N) disposed in the second fluid pathway.

5. A work vehicle to which an air conditioning system according to any one of the preceding claims is mounted.

6. A work vehicle according to claim 5, wherein the work vehicle is a mobile crane.

Patentansprüche

1. Anlage zum Klimatisieren für Fahrzeuge mit einem Heizkreislauf (C2) mit einer Hydraulikpumpe (31b), einem Hydraulikmotor (32) zum Antrieben der Hydraulikpumpe (31b), einem Radiator (35) zum Abstrahlen von Wärme von Hydrauliköl, das in dem Heizkreislauf (C2) fließt, einem ersten Fluidpfad-
weg in dem Hydraulikkreislauf (C2), der zwischen dem Radiator (35) und der Hydraulikpumpe (31b) definiert ist, und einem in dem ersten Fluidpfadweg vorgesehenen Ventilmechanismus (34) zum Erzeugen einer Druckdifferenz in dem dadurch fließenden Öl; und einem Kühlmittelkreislauf (D) mit einem von dem Hydraulikmotor (32) angetriebenen Kompressor (40), einem zwischen dem Hydraulikmotor (32) und dem Kompressor (40) vorgesehenen Kupplungsmechanismus (45) zum Steuern der Verbindung des Hydraulikmotors (32) und des Kompressors (40), einem Kondensator (41) und einem Verdampfer (44); gekennzeichnet durch:

- einen stromabwärts von dem Ventilmechanismus (34) in dem ersten Fluidpfadweg vorgesehenen Filter (34a); und
- ein Steuermittel (60) zum Steuern des Betriebes des Ventilmechanismus (34) zwischen einem voll geöffneten Zustand und einem voll geschlossenen Zustand, wobei das Steuermittel (60) den Ventilmechanismus (34) in dem voll geöffneten Zustand während einer vorbestimmten Zeitdauer hält, wenn die Hydraulikpumpe (31b) beginnt tätig zu werden.

2. Anlage zum Klimatisieren nach Anspruch 1, bei der der Ventilmechanismus (34) ein variables Überdruckventil aufweist.

3. Anlage zum Klimatisieren nach Anspruch 2, bei der das variable Überdruckventil 34 ein Überdruckventil vom elektromagnetischen Proportionaltyp aufweist.

4. Anlage zum Klimatisieren nach einem der vorhergehenden Ansprüche, weiter mit einem zweiten Fluidpfadweg parallel zu dem ersten Fluidpfadweg und einem anderen Überdruckventil (72, 73, ... 7N), das in dem Fluidpfadweg vorgesehen ist.

5. Arbeitsfahrzeug, an dem eine Anlage zum Klimatisieren nach einem der vorhergehenden Ansprüche angebracht ist.

6. Arbeitsfahrzeug nach Anspruch 5, wobei das Arbeitsfahrzeug ein fahrbasierer Kran ist.

Revendications

1. Dispositif de climatisation de véhicules, comportant un circuit de chauffage (C2) comprenant un pompe hydraulique (31b), un moteur hydraulique (32) pour entraîner la pompe hydraulique (31b), un radiateur (35) pour rayonner la chaleur de l’huile hydraulique s’écoulant dans le circuit de chauffage (C2), un pre-

mier chemin de fluide défini, dans le circuit hydrau-

lique (C2), entre le radiateur (35) et la pompe hy-

draulique (31b), et un mécanisme de soupape (34) placé dans le premier chemin de fluide pour générer une différence de pression dans l’huile hydraulique s’écoulant à travers celui-ci ; et un circuit de réfrigé-

rant (D) comprenant un compresseur (40) entraîné par le moteur hydraulique (32), un mécanisme d’embrayage (45) monté entre le moteur hydrauli-

que (32) et le compresseur (40) pour commander la liaison du moteur hydraulique (32) avec le com-

presseur (40), un condenseur (41) et un évapora-

teur (44).

caractérisé par :

- un filtre (34a) placé en aval du mécanisme de soupape (34) dans le premier chemin de fluide, et
- un moyen de commande (60) pour commander le fonctionnement du mécanisme de soupape (34) entre un état complètement ouvert et un état complètement fermé, le moyen de com-

mande (60) maintenant le mécanisme de sou-

pape (34) dans l’état complètement ouvert pen-

dant une période de temps prédéterminée lors-

que la pompe hydraulique (31b) commence à fonctionner pour la première fois.

2. Dispositif de climatisation selon la revendication 1, dans lequel le mécanisme de soupape (34) comprend une sou-

pape de sûreté variable.

3. Dispositif de climatisation selon la revendication 2, dans lequel la soupape de sûreté variable (34) comprend une soupape de sûreté électromagnétique de type pro-

portionnel.

4. Dispositif de climatisation selon l’une quelconque des revendications précédentes, comprenant en outre un second chemin de fluide parallèle au premier chemin de fluide, et une autre soupape de sûreté (72, 73, .., 7N) disposée dans le second chemin de fluide.

5. Véhicule de chantier sur lequel est monté un dispo-

sitif de climatisation selon l’une quelconque des re-

vendications précédentes.

6. Véhicule de chantier selon la revendication 5, dans lequel le véhicule de chantier est une grue mobile.
FIG. 7

FROM HYDRAULIC PUMP 31b

RELIEF VALVE

RELIEF VALVE

RELIEF VALVE

CONTROL UNIT

TO FILTER 34a