EP 0 695 119 B1

EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 30.09.1998 Bulletin 1998/40

Application number: 95908374.2

Date of filing: 14.02.1995

Int Cl. 9: H05K 13/02, B65D 85/38

International application number: PCT/JP95/00201

International publication number: WO 95/22242 (17.08.1995 Gazette 1995/35)

CHIP-TYPE ELECTRONIC PART CONTAINER AND SUPPLY CASSETTE
BEHÄLTER FÜR CHIPARTIGES BAUTEIL UND ZUFUHRKASSETTE
CONTENEUR ET CASSETTE D’ALIMENTATION DE COMPOSANTS ELECTRONIQUES DE TYPE PUCE

Designated Contracting States: DE FR GB

Priority: 15.02.1994 JP 18270/94

Date of publication of application: 31.01.1996 Bulletin 1996/05

Proprietor: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., Kadoma-shi, Osaka-fu, 571 (JP)

Inventors:
- NISHIGUCHI, Takeshi
 18, Hachigatsubo Kizu-cho
 Kyoto 619-02 (JP)
- KATO, Kenji
 82-1, Kaidashin-machi
 Osaka 573 (JP)
- FUJITA, Takayuki
 Hirakata-shi Osaka 573 (JP)
- NEGISHI, Shigetoshi
 415-5-112, 4cho-me
 Suita-shi Osaka 656 (JP)
- TANAKA, Kunio
 9-3, Miyamae-cho
 Osaka 571 (JP)
- NAKANISHI, Takashi
 8-17, Kawanishi-cho
 Hyogo 659 (JP)
- MITSUSHIMA, Takatani
 527-31, 2-chome
 Nara-shi Nara 631 (JP)
- MORITA, Manabu
 10-10-907, 6cho-me
 Neyagawa-shi Osaka 572 (JP)

Representative: Sorrell, Terence Gordon et al Fitzpatricks,
Cardinal Court,
23, Thomas More Street
London E1 9YY (GB)

References cited:
JP-A-63 127 600
JP-U- 4 008 499

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
This invention relates to a chip-type electronic part storage casing for storing chip-type electronic parts in a loose condition and for supplying these electronic parts one by one, the storage casing being used in combination with an electronic part-mounting apparatus for packaging the chip-type electronic parts on a printed board. The invention also relates to a supply cassette using such a storage casing.

BACKGROUND ART

Figs. 15(a) to 15(c) are perspective views showing the configuration of chip-type electronic parts. Fig. 15(a) shows the chip-type electronic part 35 in the form of a capacitor having an electrode 35a. Fig. 15(b) shows the chip-type electronic part 36 in the form of a resistor having an electrode 36a, and Fig. 15(c) shows the chip-type electronic part 37 in the form of a resistor having an electrode 37a.

As a supply mode of supplying these chip-type electronic parts 35 to 37 (hereinafter referred to as "chip-type electronic parts 35") by a supply device, there have heretofore been used methods using taping, a magazine, a tray and so on. Among these, the taping system achieves a high reliability at the time of mounting, and therefore have been the mainstream. However, a mounting speed of a chip-type electronic part-mounting apparatus has become higher and higher, and the amount of storage of the chip-type electronic parts by the taping system is small, and therefore the frequency of tape exchanges increases. For this reason, attention has now been drawn to a loose supply mode providing a large storage capacity, and a chip-type electronic part storage casing capable of storing chip-type electronic parts 35 in a loose condition has been standardized as "EIAJ-ET-7201".

Fig. 16 shows the above standardized chip-type electronic part storage casing 40. In this chip-type electronic part storage casing 40, a leaf spring 42 is mounted through a slide structure for closing an opening 43 to seal the chip-type electronic parts 35. A knob 41 for opening and closing the leaf spring 42 is mounted on a distal end of the leaf spring 42. The chip-type electronic part storage casing 40 of this construction is attached to an electronic part supply device (not shown) through slide grooves 44, with the opening 43 directed downwardly, and the chip-type electronic parts 35 successively drop to be transferred into the electronic part supply device.

The chip-type electronic part storage casings 40 of this construction store different kinds of chip-type electronic parts 35, respectively, and are attached to respective electronic part supply devices, and in this condition the plurality of storage casings 40 are mounted parallel on the electronic part-mounting apparatus, and are used in this condition. The electronic part supply device, to which the chip-type electronic part storage casing 40 storing the selected kind of chip-type electronic parts 35 is attached, is moved laterally, so that the parts can be taken out of a predetermined supply position in the electronic part-mounting apparatus.

With the above conventional construction, however, the frequency of lateral movement of the electronic part supply device increases with the increase of the mounting speed of the electronic part-mounting apparatus, and besides since the acceleration of the movement reaches 2~3g, there occurs a conspicuous phenomenon in which each time the electronic part supply device moves laterally, upper ones of the chip-type electronic parts 35 remaining in the chip-type electronic part storage casing 40, are scattered to impinge on an inner surface of the chip-type electronic part storage casing 40, and when this occurs repeatedly, there has been encountered a problem that the electrodes 35a of the chip-type electronic parts 35 rub each other, or are rubbed by the inner surface of the chip-type electronic part storage casing 40, so that dust is produced.

If this dust deposits on other portions of the chip-type electronic part 35 than the electrode 35a, there arise problems that the resistivity or the capacitance is varied, and that recognition accuracy can not be obtained at the time of packaging.

Also, when this dust deposits on the inner surface of the chip-type electronic part storage casing 40, the chip-type electronic parts 35 are kept adhered to the inner surface of the chip-type electronic part storage casing 40 by the dust even if an anti-static resin is used as a material for the chip-type electronic part storage casing 40, and there has been encountered many problems such as a problem that when exchanging the chip-type electronic parts 35, a different kind of chip-type electronic parts are included.

The above chip-type electronic part storage casing 40 has standardized dimensions W x L x H (12mm x 36mm x 110mm), and for example, if the chip-type electronic parts 35 are ones called "2125" of 2mm x 1.25mm x 0.7mm t, this casing can store only about 10,000 of these parts. These parts, when supplied continuously, are consumed in about 20 minutes, and even when these parts are to be mounted on the necessary portion of the printed board together with other kinds of chip-type electronic parts at the same time, they are consumed in 3~4 hours, thus posing a problem that the continuous operation can not be carried out.

The present invention seeks to solve the above problems of the conventional technique, and an object of the
invention is to provide a chip-type electronic part storage casing which prevents chip-type electronic parts in the chip-type electronic part storage casing from producing dust when an electronic part supply device moves laterally, thereby achieving a stable supply, and has a greatly-increased storage capacity for chip-type electronic parts. Another object
is to provide a supply cassette using such a casing.

DISCLOSURE OF THE INVENTION

To solve these problems, the present invention provides a chip-type electronic part storage casing comprising a storage portion for storing a plurality of chip-type electronic parts in a loose condition; an opening formed in a lower surface of the storage portion for discharging the chip-type electronic parts; a shutter slidably mounted and extending from the opening along a peripheral portion of the storage portion for opening and closing the opening; and a scatter prevention member provided within the storage portion for preventing the plurality of chip-type electronic parts, stored in the storage portion, from being scattered.

Also, there is provided a supply cassette which comprises a hopper provided at a lower portion of the supply cassette, the hopper comprising a storage portion for storing chip-type electronic parts charged thereto into through an opening in an upper surface thereof, a central portion of the storage portion being recessed to provide an inclined surface for gathering the chip-type electronic parts together; an interrupting plate mounted within the storage portion in an inclined manner, a gap for allowing the passage of the chip-type electronic parts therethrough being formed between one end of the interrupting plate and the inclined surface of the storage portion; a discharge pipe for discharging the chip-type electronic parts, the discharge pipe extending from the exterior of the hopper through a lower surface of the hopper to the storage portion, and being connected to the storage portion; a slide pipe slidably fitted on an outer periphery of the discharge pipe; and engagement ribs formed on the upper surface of the storage portion; wherein a chip-type electronic part storage casing is connected to an upper portion of the hopper through the engagement ribs, formed on the upper surface of the hopper, to form the supply cassette.

With this construction, even if the chip-type electronic part storage casing is formed into a large size, the scatter prevention member, mounted within the storage portion, prevents those chip-type electronic parts, disposed at an upper position, from jumping or impinging on an inner surface of the storage portion during lateral movement of an electronic part supply device, thereby preventing electrode portions from producing dust.

The interrupting plate provided within the hopper prevents an excessive amount of chip-type electronic parts from being charged into the hopper, thereby preventing undue impact and load from being applied to the chip-type electronic parts, thus preventing the production of dust.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1(a) is a left side-elevational view showing the construction of a chip-type electronic part storage casing according to a first embodiment of the present invention;
Fig. 1(b) is a front cross-sectional view of the above casing;
Fig. 1(c) is a right side-elevational view of the above casing;
Fig. 2 is a perspective view showing the configuration of scatter prevention members in the above embodiment;
Fig. 3 is a perspective view showing the configuration of scatter prevention members according to a second embodiment of the present invention;
Fig. 4(a) is a horizontal cross-sectional view showing the construction of a chip-type electronic part storage casing of the above embodiment;
Fig. 4(b) is a front cross-sectional view of the above casing;
Fig. 5 is a perspective view showing the configuration of scatter prevention members according to a third embodiment of the present invention;
Fig. 6(a) is a horizontal cross-sectional view showing the construction of a chip-type electronic part storage casing of the above embodiment;
Fig. 6(b) is a front cross-sectional view of the above casing;
Fig. 7 is a perspective view showing the configuration of scatter prevention members according to a fourth embodiment of the present invention;
Fig. 8(a) is a horizontal cross-sectional view showing the construction of a chip-type electronic part storage casing of the above embodiment;
Fig. 8(b) is a front cross-sectional view of the above casing;
Fig. 9 is a front cross-sectional view showing the construction of a chip-type electronic part storage casing according to a fifth embodiment of the present invention;
Fig. 10 is a front cross-sectional view showing the manner of using the chip-type electronic part storage casing of the above embodiment;
Fig. 11 is a front cross-sectional view showing the manner of using the chip-type electronic part storage casing of the above embodiment;

Fig. 12(a) is a left side-elevational view showing the construction of a hopper according to a fifth embodiment of the present invention;

Fig. 12(b) is a front cross-sectional view of the above hopper;

Fig. 13 is a perspective view showing a condition in which a chip-type electronic part storage casing and the hopper according to the above embodiment are to be connected together to provide a supply cassette;

Fig. 14(a) is a left side-elevational view showing the construction of a supply cassette according to a seventh embodiment of the present invention;

Fig. 14(b) is a front cross-sectional view of the above supply cassette;

Fig. 14(c) is a plan view of the above supply cassette;

Fig. 15 is a perspective view showing chip-type electronic parts; and

Fig. 16 is a perspective view showing the construction of a conventional chip-type electronic part storage casing.

BEST MODE FOR CARRYING OUT THE INVENTION

(1st Embodiment)

A first embodiment of the present invention will now be described with reference to the drawings.

Figs. 1(a), 1(b) and 1(c) are a left side-elevational view, a front cross-sectional view and a right side-elevational view of a chip-type electronic part storage casing 1 of this embodiment, respectively. In these Figures, numeral 1 denotes the chip-type electronic part storage casing, numeral 2 a storage portion provided in the chip-type electronic part storage casing 1, numeral 3 a scatter prevention member mounted within the storage portion 2, numeral 4 slits formed in an inner side of the storage portion 2 in opposed relation to each other, numeral 5 chip-type electronic parts, numeral 6 a shutter utilizing a leaf spring, numeral 7 a knob connected to a distal end of the shutter 6, numeral 8 slide grooves used for attaching the chip-type electronic part storage casing 1, numeral 9 an opening formed in a lower surface, numeral 10 a groove formed in the inner side of the storage portion 2 along which groove the shutter 6 extends, and numeral 20 shafts formed respectively on opposite ends of the scatter prevention member 3. The shafts 20 are fitted respectively in the slits 4, so that the scatter prevention member 3 is movable upward and downward within the storage portion 2. This chip-type electronic part storage casing 1 is mounted on an electronic part supply device (not shown) with the opening 9 directed downwardly, and is used in this condition.

When the knob 7 is pulled upwardly in the above Figures, the shutter 6 connected to the knob 7 is moved along the groove 10, and therefore that portion of the shutter 6 disposed above the opening 6 is drawn, so that the chip-type electronic parts 5 within the storage portion 2 are caused to drop through this opening with the result that a space is formed at an upper portion of the storage portion 2.

The chip-type electronic part storage casing of this construction stores a number of chip-type electronic parts 5 therein, and is attached to the electronic part supply device (not shown), and in this condition this casing is reciprocally moved laterally in a direction of arrow A at a speed producing acceleration of 2~3g. At this time, if the scatter prevention member 3 is made of a material such as a resin smaller in specific gravity than the chip-type electronic parts 5, it rises to the surface of the chip-type electronic parts 5 due to vibrations and impacts, and the chip-type electronic parts 5 at the surface are interrupted by the scatter prevention member 3, and therefore can be prevented from being scattered.

Figs. 2(a), 2(b) and 2(c) show examples of configuration of the above scatter prevention member 3. Fig. 2(a) shows a cylindrical scatter prevention member 3 having shafts 20 formed respectively on opposite ends thereof, Fig. 2(b) shows a scatter prevention member 3a in the form of a flat plate, and Fig. 2(c) shows a scatter prevention member 3b having a T-shaped cross-section. End opposite portions of each of the scatter prevention members 3a and 3b are fitted respectively in the slits 4 in the storage portion 2 so that the scatter prevention member 3a, 3b can move upward and downward. Any of the configurations can prevent the scattering of the chip-type electronic parts 5 as described above, and even if a large vibration or impact is applied to the storage portion 2 in a lateral direction, the chip-type electronic parts 5 stored therein can be prevented from being scattered within the storage portion 2, thus entirely solving the problem that the electrodes of the chip-type electronic parts 5 are rubbed to produce dust, thereby enabling the stable supply. Therefore, if the storage capacity is greatly increased, this can be sufficiently dealt with.

Therefore, even if the chip-type electronic part storage casing 1 of this embodiment is formed into a large size (W x L x H: 16mm x 70mm x 108mm) as shown in Fig. 1, the above effect of the scatter prevention member 3 can be maintained, and besides the casing can store about 25,000 of chip-type electronic parts 35 of 2mm x 1.25mm x 0.7mm 1 called "2125" described in connection with the above conventional example. Thus, the storage capacity is increased 2.5 times larger, and the casing can be used for about 50 minutes in a continuous operation, and also can be used for about 10 hours in an actual packaging operation. Thus, the long-time continuous operation can be effected, and also the operation can be effected even at night, so that the quality and the productivity can be greatly enhanced at the
same time.
The scatter prevention member 3 may have any configuration in so far as it can prevent the scattering of the chip-
type electronic parts 5, and there may be used a method in which the scatter prevention member 3 is fixedly mounted
within the storage portion 2. Thus, the scatter prevention member is not to be limited to the configuration and construc-
tion shown in the above embodiment.

(2nd Embodiment)

A second embodiment of the present invention will now be described with reference to the drawings.
Figs. 3(a), 3(b) and 3(c) are perspective views respectively showing scatter prevention members used in a chip-
type electronic part storage casing 1 of this embodiment. Fig. 3(a) shows the scatter prevention member 25 of the
uniformly-spaced type comprising a plurality of flat plates which are spaced from one another at predetermined equal
intervals, and are connected together. This member is fixedly secured to an inner surface of a storage portion 2 to
partition the interior of the storage portion 2 into a plurality of small spaces, thus limiting the distance of scattering of
the chip-type electronic parts 5 to a small interval.

Fig. 3(b) shows the lattice-type scatter prevention member 26 having a lattice-like configuration, and Fig. 3(c) shows
the honeycomb-type scatter prevention member 27 of such a configuration that holes of a hexagonal shape or
the like are arranged in a staggered manner. Any of the scatter prevention members is received within the storage
portion 2, and is fixedly secured to the inner surface of the storage portion 2 to partition the interior of the storage
portion 2 into a plurality of small spaces, thus limiting the distance of scattering of the chip-type electronic parts 5 to a
very small length, so that similar effects as in the first embodiment can be obtained.

Figs. 4(a) and 4(b) are a horizontal cross-sectional view and a front cross-sectional view, respectively, of the chip-
type electronic part storage casing 1 having the honeycomb-type scatter prevention member 27 of Fig. 3(c) mounted
therein, and a plurality of small spaces are formed within the storage portion 2, as described above.

(3rd Embodiment)

A third embodiment of the present invention will now be described with reference to the drawings.
Figs. 5(a) and 5(b) are perspective views respectively showing scatter prevention members used in a chip-type
electronic part storage casing 1 of this embodiment. Fig. 5(a) shows the scatter prevention member 28 having a block-
like configuration such as a cube and a rectangular parallelepiped, and Fig. 5(b) shows the scatter prevention member
29 having a spherical configuration. The scatter prevention members 28 and 29 are made of a material such as sponge
or soft rubber which is smaller in specific gravity than the chip-type electronic parts 5 to be stored, and will not produce
an impact sound upon impingement on a wall surface of a storage portion 2. The size of these scatter prevention
members is so determined that their maximum dimension is equal to an inner dimension of the smallest portion of the
storage portion 2, and a plurality of scatter prevention members are put into the storage portion 2, and are used.

Figs. 6(a) and 6(b) are a horizontal cross-sectional view and a front cross-sectional view, respectively, showing a
condition in which a plurality of scatter prevention members 29 described above are received within the storage portion
2. Since the scatter prevention members 29 are smaller in specific gravity than the chip-type electronic parts 5, they
rise to the upper surface, and although the chip-type electronic parts 5 are scattered together with the scatter pre-
vention members 29, most of the chip-type electronic parts 5 impinge on the scatter prevention members 29, so that the
impact is relieved. Thus, similar effects as in the above first and second embodiments can be obtained. In this
case, since the scatter prevention members 28, 29 do not need to be connected to the inner side of the storage portion
2, it is not necessary to make any arrangement to the chip-type electronic part storage casing 1 and the storage portion
2, and therefore the effects can be obtained easily and inexpensively.

(4th Embodiment)

A fourth embodiment of the present invention will now be described with reference to the drawings.
Figs. 7(a) and 7(b) are perspective views respectively showing scatter prevention members used in a chip-type
electronic part storage casing 1 of this embodiment. Fig. 7(a) shows the scatter prevention member 30 in the form of
an elongated body of a square or a rectangular cross-section, and Fig. 7(b) shows the cylindrical scatter prevention
member 31 of a circular cross-section. The scatter prevention members 30 and 31 are made of a mesh material, such
as foamed styrol, sponge, paper or a resin, which is smaller in specific gravity than the chip-type electronic parts 5 to
be stored, and will not produce an impact sound upon impingement on an inner surface of a storage portion 2. The
size of these scatter prevention members is slightly smaller than an inner dimension of a storage portion 2, and each
scatter prevention member is put into the storage portion 2, and is used.

Figs. 8(a) and 8(b) are a horizontal cross-sectional view and a front cross-sectional view, showing a condition in
which the scatter prevention member 30 made of foamed styrol is received within the storage portion 2. With this construction, the scatter prevention member 30 holds those chip-type electronic parts 5 disposed at an upper position to prevent the scattering of the electronic parts, so that similar effects as in the above 1st to 3rd embodiments can be obtained.

In this case, since the scatter prevention member 30, 31 does not need to be connected to the inner side of the storage portion 2, it is not necessary to make any arrangement to the chip-type electronic part storage casing 1 and the storage portion 2, and therefore the effects can be obtained easily and inexpensively.

(5th Embodiment)

A fifth embodiment of the present invention will now be described with reference to the drawings.

Fig. 9 is a front cross-sectional view showing a chip-type electronic part storage casing of this embodiment, and Figs. 10 and 11 are front elevational views showing examples of use of this chip-type electronic part storage casing. In Figs. 9 to 11, numeral 1a denotes the chip-type electronic part storage casing within which a scatter prevention member 3a comprising flat plates is mounted. A lid 33 for allowing the charging of the chip-type electronic parts 5 into a storage portion 2 is mounted on an upper portion of the chip-type electronic part storage casing 1 for opening and closing movement. For opening and closing the lid 33, this lid can be slidingly moved easily by a knob 33a mounted on one end of the lid 33. The other construction is similar to that of the above 1st to 4th embodiments, and therefore detailed explanation thereof will be omitted.

The chip-type electronic part storage casing 1a of this embodiment having the above construction can be formed into a large size to increase its storage capacity as described above for the above embodiments, and also the quality can be enhanced. And besides, a supply of the chip-type electronic parts 5, stored in the standardized chip-type electronic part storage casing 40 as described for the conventional example, can be easily transferred into the storage casing 1a by opening the lid 33 provided at the upper portion thereof, as shown in Fig. 10. Similarly, a supply of the chip-type electronic parts 5, stored in a polyethylene bag 34 as shown in Fig. 11, can be easily transferred. Therefore, the efficiency of the operation and the productivity can be markedly enhanced.

(6th Embodiment)

A sixth embodiment of the present invention will now be described with reference to the drawings.

Fig. 12(a) and Fig. 12(b) are a left side-elevational view and a front cross-sectional view, respectively, of a hopper of this embodiment. In these Figures, numeral 15 denotes the hopper. This hopper 15 has engagement ribs 21 at its upper end for engagement with a chip-type electronic part storage casing (not shown), and an opening 19 is formed in an upper surface of the hopper 15 for causing the chip-type electronic parts 5, stored in the chip-type electronic part storage casing, to drop into the hopper 15.

Numeral 16 denotes a portion for securing the chip-type electronic parts 5, introduced into the hopper 15, into one position, numeral 11 an interrupting plate mounted above the tapered portion 16, numeral 18 a discharge pipe extending through a lower side of the hopper 15 to be connected thereto for discharging the chip-type electronic parts 5, numeral 17 a slide pipe fitted on an outer periphery of the discharge pipe 18 for upward and downward sliding movement thereof, numeral 13 a lock member for locking the chip-type electronic part storage casing (not shown) when this storage casing is engaged with the upper portion of the hopper 15, and numeral 14 a leaf spring urging the lock member 13.

Fig. 13 shows a condition in which the chip-type electronic part storage casing 1, incorporating the scatter prevention member 3 described in the first embodiment, is to be engaged with the upper surface of the hopper 15. The slide grooves 8 in the lower end of the chip-type electronic part storage casing 1 are fitted respectively on the engagement ribs 21 formed on the upper end of the hopper 15, so that the chip-type electronic part storage casing 1 can be engaged with the hopper 15. A combination of the chip-type electronic part storage casing 1 and the hopper 15 thus connected together will be called a supply cassette, and the operation of this supply cassette will be described below.

The chip-type electronic parts 5, dropping through the opening 9 in the chip-type electronic part storage casing 1, pass through the opening 19 in the hopper 15, and further pass through a gap (1~5 mm) formed between the interrupting plate 11 and the tapered portion 16, and gather in the vicinity of the slide pipe 17. In this condition, although the discharge pipe 18 is fixedly connected to the hopper 15, the slide pipe 17 is such a construction (not shown) that it is slidably upward and downward along the outer periphery of the discharge pipe 18. With this operation, the chip-type electronic parts 5 can be caused to successively drop to the discharge pipe 18.

The interrupting plate 11 is mounted at a central portion of the hopper 15 in an inclined condition, and the chip-type electronic parts 5 move progressively downward along the inclined surfaces of the interrupting plate 11 and tapered portion 16, and a space 12 is formed beneath and near the interrupting plate 11. Thus, care is taken so that an impact and a load, applied to the chip-type electronic parts 5 by the upper end of the slide pipe 17 during the upward and
downward movement of the slide pipe 17, can be reduced as much as possible.

The supply cassette of the present invention having the above construction is capable of successively discharging and supplying the chip-type electronic parts 5, stored in the chip-type electronic part storage casing 1, from the discharge pipe 18 efficiently, and besides even if this supply cassette is subjected to a large lateral vibration or impact, the influence of such vibration and impact on the chip-type electronic parts 5 can be suppressed as much as possible. Furthermore, an impact and a load to be applied to the chip-type electronic parts 5 when successively discharging the chip-type electronic parts 5 from the hopper 15 can be reduced as much as possible.

(7th Embodiment)

A seventh embodiment of the present invention will now be described with reference to the drawings.

Figs. 14(a), 14(b) and 14(c) are a left side-elevation view, a front cross-sectional view and a plan view, respectively, showing the construction of a supply cassette of this embodiment. In this embodiment, a hopper 15 as described in the above sixth embodiment and a chip-type electronic part storage casing 1 are combined together into an integral construction. A honeycomb-type scatter prevention member 27 as described in the above second embodiment is used in this supply cassette of the integral construction.

In Figs. 14(a), 14(b) and 14(c), those constituent parts identical in construction to those of the above sixth embodiment of Figs. 12(a), 12(b) and 13 will be designated by identical reference numerals, respectively, and detailed description thereof will be omitted.

In Figs. 14(a), 14(b) and 14(c), numeral 32 denotes an opening formed in an upper surface, numeral 33a a knob mounted on a lid 33 for openably closing the opening 32, and numeral 15a a body. In addition to the effects achieved by the above sixth embodiment, the supply cassette of this embodiment can reduce the cost by reducing the number of the component parts.

CAPABILITY OF EXPLOITATION IN INDUSTRY

As described above, in the chip-type electronic part storage casing of the present invention and the supply cassette of the present invention using the same, the scatter prevention member for preventing the scattering of the chip-type electronic parts is provided within the chip-type electronic part storage casing, and the interrupting plate for relieving an impact and a load applied to the chip-type electronic parts is provided within the hopper. With this construction, this is mounted on the supply portion of the electronic part-mounting apparatus for packaging the chip-type electronic parts on the printed board, and the chip-type electronic parts are protected from a lateral impact produced when selectively moving the electronic part supply device mounted on the supply portion of the electronic part-mounting apparatus, thereby eliminating the production of dust. As a result, a change in capacity value of the chip-type electronic parts can be prevented, and also the lowering of recognition accuracy at the time of packaging can be prevented, thus greatly enhancing the reliability, and besides there can be obtained the large-size design in which the storage capacity for the chip-type electronic parts is greatly increased while securing this reliability, thus achieving the excellent chip-type electronic part storage casing as well as the supply cassette using the same.

List of Reference Numerals

1, 1a chip-type electronic part storage casing
2 storage portion
3, 3a, 3b scatter prevention member
4 slit
5 chip-type electronic part
6 shutter
7 knob
8 slide groove
9 opening
10 groove
11 interrupting plate
12 space
13 lock member
14 leaf spring
15 hopper
15a body
16 tapered portion
Claims

1. A chip-type electronic part storage casing (1, 1a) comprising a storage portion (2) for storing a plurality of chip-type electronic parts (5) in a loose condition; an opening (9) formed in a lower surface of said storage portion for discharging the chip-type electronic parts; a shutter (6) slidably mounted and extending from said opening along a peripheral portion of said storage portion for opening and closing said opening; and a scatter prevention member (3) provided within said storage portion for preventing the plurality of chip-type electronic parts, stored in said storage portion, from being scattered.

2. A chip-type electronic part storage casing according to claim 1, in which said scatter prevention member is one of a uniformly-spaced type (25) comprising a plurality of flat plates connected together and spaced from one another at predetermined intervals, a lattice-type (26) having a lattice-like configuration, and a honey-comb-type (27) of such a configuration that holes of a hexagonal shape or the like are arranged in a staggered manner, said scatter prevention member being received within said casing to partition the interior of said casing into a plurality of small spaces.

3. A chip-type electronic part storage casing according to claim 1, in which said scatter prevention member has one of a block-like configuration (25), such as a cube and a rectangular parallelepiped, and a spherical configuration (29), said scatter prevention member being made of a material smaller in specific gravity than the chip-type electronic parts to be stored, and said scatter prevention member having such a size that its maximum dimension is equal to an inner dimension of the smallest portion of said storage portion storing the chip-type electronic parts.

4. A chip-type electronic part storage casing according to claim 1, in which said scatter prevention member is in the form of one of an elongated body (30) of a square or a rectangular cross-section and a cylindrical body (31), said scatter prevention member being made of a material smaller in specific gravity than the chip-type electronic parts to be stored.

5. A chip-type electronic part storage casing according to any one of claims 1 to 4, in which a lid (33) for allowing the charging of the chip-type electronic parts is provided at an upper portion of said storage portion in such a manner that said lid can be opened and closed.

6. A supply cassette comprising:

 a hopper (15) provided at a lower portion of said supply cassette, said hopper comprising a storage portion for storing chip-type electronic parts charged thereinto through an opening in an upper surface thereof, a central portion (16) of said storage portion being recessed to provide an inclined surface for gathering the chip-type electronic parts together; an interrupting plate (11) mounted within said storage portion in an inclined manner, a gap for allowing the passage of the chip-type electronic parts therethrough being formed between one end of said interrupting plate and said inclined surface of said storage portion; a discharge pipe (18) for
discharging the chip-type electronic parts, said discharge pipe extending from the exterior of said hopper through a lower surface of said hopper to said storage portion, and being connected to said storage portion; a slide pipe (17) slidably fitted on an outer periphery of said discharge pipe, and engagement ribs (21) formed on the upper surface of said storage portion; and

a chip-type electronic part storage casing according to any one of claims 1 to 5 connected to an upper portion of said hopper through said engagement ribs (21) formed on the upper surface of said hopper.

7. A supply cassette according to claim 6, in which said hopper and said chip-type electronic part storage casing are combined together into an integral construction.

Patentansprüche

1. Lagergehäuse (1, 1a) für chipartige elektronische Bauteile, enthaltend einen Lagerabschnitt (2) zum Lagern einer Vielzahl von chipartigen elektronischen Bauteilen (5) in loserem Zustand; eine in einer unteren Oberfläche des Lagerabschnitts gebildete Öffnung (9) zum Ausgeben der chipartigen elektronischen Bauteile; einen Verschluß (6), der verschieblich montiert ist und von der Öffnung entlang einem Umfangsabchnitt des Lagerabschnitts verläuft, um die Öffnung zu öffnen und zu schließen; und ein Element (3) zum Verhindern des Verstreusens, das innerhalb des Lagerabschnitts vorgesehen ist, um zu verhindern, daß die Vielzahl von chipartigen elektronischen Bauteilen, die in dem Lagerabschnitt gelagert sind, verstreut werden.

2. Lagergehäuse für chipartige elektronische Bauteile nahe Anspruch 1, bei welchem das Element zum Verhindern des Verstreusens ein Element einer Bauart mit gleichmäßigen Abständen (25), das eine Vielzahl von flachen Platten enthält, die miteinander verbunden und voneinander mit vorbestimmten Intervallen befestet sind, ein Element einer Gitterbauart (26), das eine gitterartige Konfiguration hat, oder ein Element einer Webbauart (27) ist, das eine solche Konfiguration hat, daß Löcher mit sechseckiger Form in gestaffelter Weise angeordnet sind, welches Element zum Verhindern des Verstreusens in dem Gehäuse so eingesetzt ist, daß es das Innere des Gehäuses in eine Vielzahl kleiner Räume unterteilt.

3. Lagergehäuse für chipartige elektronische Bauteile nahe Anspruch 1, bei welchem das Element zum Verhindern des Verstreusens entweder eine blockartige Konfiguration (28), wie etwa ein Würfel und ein rechteckiges Parallelepipед, oder eine sphärische Konfiguration (29) hat, wobei das Element zum Verhindern des Verstreusens aus einem Material hergestellt ist, das ein geringeres spezifisches Gewicht hat als die zu lagernden chipartigen elektronischen Bauteile, und das Element zum Verhindern des Verstreusens eine Größe hat, daß seine größte Abmessung gleich einer inneren Abmessung des kleinsten Abschnitts des Lagerabschnitts ist, in dem die chipartigen elektronischen Bauteile gelagert sind.

4. Lagergehäuse für chipartige elektronische Bauteile nahe Anspruch 1, bei welchem das Element zum Verhindern des Verstreusens entweder die Form eines länglichen Körpers (30) mit quadratischem oder rechteckigem Querschnitt oder eines zylindrischen Körpers (31) hat, wobei das Element zum Verhindern des Verstreusens aus einem Material hergestellt ist, das ein geringeres spezifisches Gewicht hat als die zu lagernden chipartigen elektronischen Bauteile.

5. Lagergehäuse für chipartige elektronische Bauteile nahe Anspruch 1, bei welchem das Element zum Verhindern des Verstreusens so vorgesehen ist, daß er geöffnet und geschlossen werden kann, um das Einfühlen der chipartigen elektronischen Bauteile zu erlauben.

6. Zufuhrkassette, enthaltend:

 einen Einfülltrichter (15), der an einem unteren Abschnitt der Zufuhrkassette vorgesehen ist, wobei der Einfülltrichter einen Lagerabschnitt zum Lagern von chipartigen elektronischen Bauteilen enthält, die in diesen durch eine Öffnung in einer oberen Oberfläche desselben eingefüllt wurden, wobei ein zentraler Abschnitt (16) des Lagerabschnitts vertieft ist, um eine geneigte Oberfläche zum Zusammenführen der chipartigen elektronischen Bauteile zu schaffen; eine Trennplatte (11), die innerhalb des Lagerabschnitts in geneigter Stellung montiert ist, wobei ein Spalt, der den Durchtritt der chipartigen elektronischen Bauteile erlaubt, zwischen einem Ende der Trennplatte und der geneigten Oberfläche des Lagerabschnitts gebildet ist; ein Ausgabehohr (18) zum Ausgeben der chipartigen elektronischen Bauteile, welches Ausgabehohr von der Außenseite des Einfülltrichters durch eine untere Oberfläche des Einfülltrichters zu dem Lagerabschnitt verläuft und mit dem
Lagerabschnitt verbunden ist; ein Gleitrohr (17), das verschieblich auf den äußeren Umfang des Ausgaberohres aufgesetzt ist; und Eingriffsrippen (21), die auf der oberen Oberfläche des Lagerabschnitts gebildet sind; und

ein Lagergehäuse für chipartige elektronische Bauteile nach einem der Ansprüche 1 bis 5, das mit einem oberen Abschnitt des Einfüllrichters durch die Eingriffsrippen (21) verbunden ist, die auf der oberen Oberflache des Einfüllrichters gebildet sind.

7. Zufuhrkassette nach Anspruch 6, bei welcher der Einfüllrichter und das Lagergehäuse für chipartige elektronische Bauteile miteinander zu einem einstückigen Aufbau kombiniert sind.

Revendications

1. Boîtier de stockage de composants électroniques de type puce (11a) comprenant une partie stockage (2) destiné à stocker une pluralité de composants électroniques de type puce (5) dans un état en vrac ; une ouverture (9) formée dans une surface inférieure de ladite partie stockage, destinée à décharger les composants électroniques de type puce ; un volet obturateur (6) monté de façon à pouvoir coulisser et s'étendre depuis ladite ouverture le long d'une partie périphérique de ladite partie stockage pour ouvrir et fermer ladite ouverture ; et un élément empêchant l'épapilllement (3), présent à l'intérieur de ladite partie stockage, pour empêcher que la pluralité de composants électroniques de type puce, stockés dans ladite partie stockage, ne soit épapillés.

2. Boîtier de stockage de composants électroniques de type puce selon la revendication 1, dans lequel ledit élément empêchant l'épapilllement est d'un type à écarter uniforme (25) comprenant une pluralité de plaques plates reliées les unes aux autres et écartées les unes des autres en formant des intervalles prédéterminés, du type treillis (26) ayant une configuration de treillis, et du type nid d'abeille (27) ayant une configuration telle que des trous ayant une forme hexagonale ou analogue sont agencés de manière à être en quinconce, ledit élément empêchant l'épapilllement étant logé à l'intérieur dudit boîtier pour partager l'intérieur dudit boîtier en une pluralité de petits espaces.

3. Boîtier de stockage de composants électroniques de type puce selon la revendication 1, dans lequel ledit élément empêchant l'épapilllement a une configuration du type bloc (28) , telle qu'une configuration de cube, de parallélépipède rectangle et de sphère (29), ledit élément empêchant l'épapilllement étant réalisé dans une matière ayant une densité inférieure aux composants électroniques de type puce devant être stockés, et ledit élément empêchant l'épapilllement ayant une taille telle que sa dimension maximale est égale à une dimension intérieure de la partie la plus petite de ladite partie de stockage stockant les composants électroniques de type puce.

4. Boîtier de stockage de composants électroniques de type puce selon la revendication 1, dans lequel ledit élément empêchant l'épapilllement se présente sous la forme d'un corps allongé (30) ayant une coupe transversale carrée ou rectangulaire et d'un corps cylindrique (31), ledit élément empêchant l'épapilllement étant réalisé dans une matière ayant une densité inférieure à celle des composants électroniques de type puce devant être stockés.

5. Boîtier de stockage de composants électroniques de type puce selon l'une quelconque des revendications 1 à 4, dans lequel un couvercle (33) destiné à permettre le chargement des composants électroniques de type puce est présent à une partie supérieure de ladite partie stockage d'une manière telle que ledit couvercle peut être ouvert et fermé.

6. Cassette d'alimentation comprenant :

une trémie (15) présente à une partie inférieure de ladite cassette d'alimentation, ladite trémie comprenant une partie stockage destinée à stocker des composants électroniques de type puce qui y sont chargés à travers une ouverture dans une surface supérieure de celle-ci, une partie centrale (16) de ladite partie stockage étant évidée pour créer une surface inclinée destinée à réunir ensemble les composants électroniques de type puce ; Une plaque d'interposition (11) montée à l'intérieur de ladite partie stockage de manière à être inclinée, un interstice destiné à permettre le passage des composants électroniques de type puce à travers celui-ci, qui est formé entre une extrémité de ladite plaque d'interposition et ladite surface inclinée de ladite partie stockage ; un tube de décharge (18) destiné à décharger les composants électroniques de type puce, ledit tube de décharge s'étendant depuis l'extérieur de ladite trémie à travers une surface inférieure de ladite
trémie vers ladite partie stockage, et qui est reliée à ladite partie stockage ; un tube coulissant (17) monté de façon à pouvoir couliser sur une périphérie extérieure dudit tube de décharge ; et des nervures de contact (21) formées sur la surface supérieure de ladite partie stockage ; et un boîtier de stockage de composants électroniques de type puce selon l'une quelconque des revendications 1 à 5 relié à une partie supérieure de ladite trémie par l'intermédiaire desdites nervures de contact (21) formées sur la surface supérieure de ladite trémie.

7. Cassette d'alimentation selon la revendication 6, dans laquelle ladite trémie et ledit boîtier de stockage de composants électroniques de type puce sont combinés ensemble pour former une structure monobloc.
FIG. 11
FIG. 12

(a)

(b)