Apparatus for calipering a collated assemblage of printed products

Vorrichtung zum Nachmessen von einem Stapel von aufeinanderliegenden Druckprodukten
Dispositif pour contrôler un assemblage collationné de produits imprimés

Designated Contracting States:
CH DE GB LI

Priority: 08.07.1994 US 272415

Date of publication of application: 10.01.1996 Bulletin 1996/02

Proprietor:
Heidelberg Finishing Systems, Inc.
Dayton, Ohio 45414 (US)

Inventors:
• Buschhaus, Michael C.
 Springboro, Ohio 45066 (US)
• Wamsley, Richard D.
 Dayton, Ohio 45415 (US)
• Curtis, Thomas
 Centerville, Ohio 45459 (US)

Representative:
Hörischl, Wolfram Johannes, Dipl.-Ing. et al
Heidelberger Druckmaschinen AG,
Patentabteilung,
Kurfürstenanlage 52-60
69115 Heidelberg (DE)

References cited:
EP-A- 0 650 100
US-A- 4 170 346
US-A- 4 778 167

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Technical Field

The present invention relates to a collator for forming collated assemblages on a collating conveyor, and particularly relates to an apparatus for caliper a collated assemblage on a collating conveyor.

Background Art

A known caliper device is disclosed in Patent US-A-4,170,346. In US-A 4,170,346, the caliper device is in the form of a non-contacting capacitive change measuring device which determines the page count of books as the books move along a bindery assembly line. The caliper device includes a capacitive detector head having a pair of spaced capacitor plates. The pages of each book pass through the space between the plates as the book is conveyed along the bindery assembly line. An oscillator produces a variable frequency of oscillation proportional to the number of pages of the book passing between the plates. The frequency of oscillation is sampled for a predetermined time period. The sampled pulses are counted and compared to a standard within tolerances. The comparison determines whether the page count of the book being measured is acceptable.

A problem associated with some known caliper devices is their relatively poor resolution resulting from the use of some type of magnification arrangement, such as the use of mechanical levers, to magnify a relatively small distance value which is being measured. The magnification arrangement is required to convert the relatively small distance value to a value large enough to be processed by a sensor or a processing unit. The use of such magnification arrangement introduces error into the measured value and thereby limits the resolution of the caliper device.

Summary of the Invention

In accordance with the present invention, an apparatus is provided for use along a collating conveyor having collated assemblages thereon. The apparatus comprises a movable member having an outer circumferential surface which engages a collated assemblage when the member is moved toward the collated assemblage. A light source directs light toward the outer circumferential surface of the member. The outer circumferential surface of the member includes a light reflective surface portion against which light is directed from a light source and then reflected. The reflected light has a characteristic which varies as a function of the thickness of the collated assemblage. Means is also provided for sensing the reflected light from the light reflective surface portion of the outer circumferential surface of the member. Means is provided for providing a signal which varies as a function of the characteristic of the reflected light and thus as a function of the thickness of the collated assemblage.

In the preferred embodiment of the present application, the movable member comprises a rotatable wheel. The outer circumferential surface of the wheel comprises the light reflective surface portion and an engaging surface portion which engages the collated assemblage. The light reflective surface portion has a diameter which is smaller than the diameter of the engaging surface portion. Also, the light reflective surface portion includes a coating which reduces spurious light reflections. Preferably, the light source includes means for providing a laser beam, and the means for receiving the reflected light includes a laser beam sensor.

Brief Description of the Drawings

The foregoing and other features of the present invention will become apparent to one skilled in the art to which the present invention relates upon consideration of the following description of the invention with reference to the accompanying drawings, wherein:

Fig. 1 is a schematic diagram of a collating line incorporating a caliperizing assembly constructed in accordance with the present invention;

Fig. 2 is a schematic diagram of the caliperizing assembly of Fig. 1; and

Fig. 3 is an elevational view of wheel members used in the caliperizing assembly of Fig. 2.

Description of Preferred Embodiment

The present invention is directed to a caliperizing assembly for use along a collating line. The specific construction and use of the caliperizing assembly may vary. By way of example, a caliperizing assembly constructed in accordance with the present invention is embodied in a saddle binding line which forms collated assemblages along a collating conveyor chain.

Referring to Fig. 1, a typical saddle binding line 10 includes a plurality of hoppers 12 which store signatures and a collating conveyor chain 14 which is movable past the hoppers 12. A plurality of feeders 16 are operatively connected to the hoppers 12 to feed signatures from the hoppers 12 onto the conveyor chain 14 to form collated assemblages 20 on the conveyor chain 14. The number of feeders is equal to the number of hoppers. Each feeder is associated with a respective hopper. The conveyor chain 14 carries the collated assemblages 20 in a sequence at regularly spaced intervals to a stitcher 22. An ejector 24 is located downstream of the stitcher 22. The direction of flow of the collated assemblages 20 is indicated by the arrow A.

In accordance with the present invention, a caliperizing assembly 40 is disposed along the conveyor chain
14 for caliper ing each of the collided assemblages 20 to
determine whether the page count of each collided
assemblage is acceptable. The caliper ing assembly 40
provides a signal on line 42 which is indicative of the
thickness of a collided assemblage passing through the
caliper ing assembly 40. A control unit 44 receives the
thickness signal on line 42 and processes the signal on
line 42 to determine whether the page count of the col-
lated assemblage passing through the caliper ing
assembly 40 is acceptable.

Specifically, the control unit 44 determines whether
the page count of the collided assemblage passing
through the caliper ing assembly 40 is acceptable by
comparing the value of the signal on line 42 with a
known thickness value stored in a memory of the control
unit 44. If the value of the signal on line 42 is within an
acceptable range of the thickness value stored in the
memory of the control unit 44, the collided assemblage
being measured is deemed to have the correct number
of pages and, therefore, a good product. If the value of
the signal on line 42 is not within the acceptable range
of the thickness value stored in the memory of the con-
trol unit 44, the collided assemblage being measured is
deeded to have an incorrect number of pages and,
therefore, a bad product. The range of acceptability is
manually adjustable and can be displayed in the form of
a bar graph display in the plus and/or negative direc-
tions.

When a collided assemblage passing through the
caliper ing assembly 40 is found to have less than the
required number of pages, or an excess number of
pages, or other measured abnormality, on the basis of
the thickness signal on line 42, the control unit 44 iden-
tifies the collided assemblage as unacceptable and
generates a stitcher inhibit signal on line 46 which is
applied to the stitcher 22. The control unit 44 includes a
suitable memory device, such as a shift register, which
delays the generation of the stitch inhibit signal on line
46 subsequent to detection of the unacceptable collided
assemblage until that particular collided assemblage is
positioned along the collating line 10 opposite the
stitcher 22. Accordingly, the stitch inhibit signal on line
46 prevents the operation of the stitcher 22 for that par-
ticular collided assemblage.

After the control unit 44 generates the stitch inhibit
signal on line 46, the control unit 44 generates a reject
signal on line 48 which is applied to the ejector 20. The
memory device of the control unit 44 delays the genera-
tion of the reject signal on line 48 for a predetermined
time period subsequent to the generation of the stitch
inhibit signal on line 46. The generation of the reject sig-

nal on line 48 is delayed until the unacceptable collided
assemblage is positioned along the collating line 10

opposite the ejector 24. Accordingly, the reject signal on
line 48 actuates the ejector 24 to eject the unacceptable
collated assemblage from the conveyor chain 14.

Referring to Fig. 2, the structure of the caliper ing
assembly 40 is schematically illustrated. The caliper ing
assembly 40 comprises a frame 50 having a first bear-
ing point 51, a second bearing point 52, a third bearing
point 53, and a fourth bearing point 54. A wheel 56 is
mounted for rotation about its own center axis and
about a pivot pin at the first bearing point 51 on the
frame 50. The center axis of the wheel 56 is fixed. A vari-
able speed gear box 58 is drivingly connected to the
wheel 56 to rotate the wheel 56 about its own center
axis in a known manner. As shown in Fig. 2, the wheel
56 is driven to rotate in the clockwise direction. The
structure and operation of variable speed gear boxes
are known and, therefore, will not be described herein.

A movable wheel 60 in the form of a solid steel shaft
is spaced apart from the wheel 56. The movable wheel
60 is free to rotate about its own center axis and is mov-
able toward and away from the wheel 56. The movable
wheel 60 is mounted for rotation about its own center
axis and is mechanically coupled through a link
arrangement 62 to a pivot pin at the second bearing
point 52. One end of a tie bar 65 is attached by a pivot
pin to the link arrangement 62, as schematically shown
in Fig. 2. The opposite end of the tie bar 65 is attached
by a pivot pin to one end of a link member 66. The other
end of the link member 66 is clamped to a pivot shaft at
the third bearing point 53 such that the link member 66
can pivot about the axis of the pivot shaft at the third
bearing point 53 upon rotation of the pivot shaft.

One end of a cam lever arm 68 is also clamped to
the pivot shaft at the third bearing point 53. The cam
lever arm 68 is thus also pivotable about the axis of
the pivot shaft at the third bearing point 53. The position
of the cam lever arm 68 and the position of the link mem-
ber 66 may be adjusted relative to each other by adjust-
ing the clamps (not shown) which clamp the cam lever
arm 68 and the link member 66 to the pivot shaft at the
third bearing point 53.

When the cam lever arm 68 and the link member 66
are clamped to the pivot shaft at the third bearing point
53, the cam lever arm 68, the link member 66, and the
pivot shaft are pivotable as a unit about the axis of the
pivot shaft at the third bearing point 53. The movable
wheel 60 moves either toward or away from the fixed
wheel 56 depending upon the direction of the pivotal
movement of the cam lever arm 68 and the link member
66 about the axis of the pivot shaft at the third bearing
point 53.

The other end of the cam lever arm 68 is connected
to a cam follower 70 which comprises a roller which
rotates relative to the cam lever arm 68. A cam 72 is
mounted for rotation about the axis of a shaft at the
fourth bearing point 54 on the frame 50 in a clockwise
direction, as illustrated in Fig. 2. The cam 72 has high
and low spots about its periphery. The cam 72 controls
the position of the cam follower 70 in accordance with
the high and low spots on the cam 72.

When a high spot on the cam 72 engages the cam
follower 70, the cam lever arm 68 pivots about the axis
of the pivot shaft at the third bearing point 53 in a direc-
tion which, in turn, causes the link member 66 to pivot about the axis of the pivot shaft at the third bearing point 53. This pivoting of the link member 66 causes the tie bar 65 and the link arrangement 62 to pivot as a unit about the axis of the pivot pin at the second bearing point 52 in one direction. The unit pivots about the axis of the pivot pin at the second bearing point 52 in a direction such that the movable wheel 60 moves away from the wheel 56.

When the low spot on the cam 72 engages the cam follower 70, the cam lever arm 68 pivots about the axis of the pivot shaft at the third bearing point 53 in a direction which, in turn, causes the link member 66 to pivot about the axis of the pivot shaft at the third bearing point 53. The tie bar 65 and the link arrangement 62 then pivot as a unit about the pivot pin at the second bearing point 52 in a direction such that the movable wheel 60 moves toward the wheel 56.

Referring to Fig. 3, the structure of the wheel 56 and the structure of the movable wheel 60 are schematically illustrated. The wheel 56 has a wheel portion 58 and a shaft portion 59. The movable wheel 60 comprises a larger diameter wheel portion 80 interconnecting a smaller diameter wheel portion 82 and a shaft portion 84. The smaller diameter wheel portion 82 has a smaller diameter than the larger diameter wheel portion 80 and, therefore, does not contact a collated assemblage being measured when the movable wheel 60 is moved into engagement with the collated assemblage being measured. Since the smaller diameter wheel portion 82 does not contact a collated assemblage being measured, ink from the collated assemblage will not build up on the smaller diameter wheel portion 82.

The smaller diameter wheel portion 82 serves as a light target for a source of light and is coated on its outer surface with a coating 83 to minimize spurious light reflections. The coating 83 comprises a ceramic material which is applied to the outer surface of the smaller diameter wheel portion 82 via a plasma spraying process. The ceramic material may be a powder which is melted and then sprayed onto the outer surface of the smaller diameter wheel portion 82. Preferably, the powder is APS 1001 alumina manufactured by APS Materials, Inc. of Dayton, Ohio.

After the sprayed material dries, the rough surface of the dried material is ground to a smooth finish to provide the coating 83. Preferably, the smooth finish of the coating 83 has a roughness average of no greater than 32 microinches as governed by the standard ANSI B46.1-1978. The outer surface of the coating 83 is axially adjacent the outer surface of the larger diameter wheel portion 80, as shown in Fig. 3.

An air spring 30 is located adjacent the movable wheel 60. The air spring 30 is controlled to apply a force to the movable wheel 60. The force is applied to urge the movable wheel 60 in a direction which presses the movable wheel 60 against the collated assemblage being measured to remove air from the collated assemblage and to press the pages of the collated assemblage together before a measurement is made.

A high speed self-relieving regulator 32 and air reservoir 34 controls the air supply to the air spring 30. The regulator 32 and air reservoir 34 maintain a constant pressure in the air spring 30, thereby maintaining a consistent force applied to a collated assemblage passing between the wheel 56 and the movable wheel 60. By applying a consistent force to a collated assemblage being measured, consistent measurements are obtainable. The force applied against a collated assemblage being measured can be adjusted on the fly by simply increasing or decreasing the pressure in the air spring 30 by operating the regulator 32 accordingly.

Further, the air spring 30 provides vibration damping characteristics which take effect at operating speeds above 250 cycles per minute. This eliminates the need for additional mechanical hardware to counter vibration when the caliper assembly 40 operates at such higher speeds.

Referring to Figs. 2 and 3, a source of light 36 in the form of a laser beam source provides a laser beam 37 which is directed at the coated surface 83 of the smaller diameter wheel portion 82 of the movable wheel 60. The laser beam 37 is preferably continuously on. The laser beam 37 is reflected from the coated surface 83 of the smaller diameter wheel portion 82 of the movable wheel 60. The reflected laser beam is designated with reference numeral 38. As mentioned hereinabove, the coated surface 83 of the smaller diameter wheel portion 82 serves to minimize spurious light reflections.

A sensor 39 in the form of a laser beam sensor receives the reflected laser beam 38. The laser beam sensor 39 includes a sample and hold circuit (not shown) which is triggered in response to a trigger signal on line 45 from a proximity switch 44 located in the vicinity of the cam 72. The proximity switch 44 is operatively coupled with the cam 72 such that the proximity switch 44 provides the trigger signal on line 45 when the low spot on the cam 72 engages the cam follower 70. Thus, the trigger signal on line 45 is provided when the movable wheel 60 is moved toward the wheel 56 to engage a collated assemblage passing between the movable wheel 60 and the wheel 56.

When the trigger signal on line 45 is applied to the sample and hold circuit of the laser beam sensor 39, a characteristic of the reflected laser beam 38 is measured. This characteristic of the reflected laser beam 38 varies as a function of the thickness of the collated assemblage being measured and is, preferably, proportional to the thickness of the collated assemblage measured. The characteristic of the reflected laser beam 38 may be, for example, the elapsed time from when the laser beam 37 left the laser beam source 36 to when the laser beam sensor 39 received the reflected laser beam 38. This time lapse would be a function of the thickness of the collated assemblage being measured. The laser beam sensor 39 further includes
processing circuitry (not shown) which generates and provides the thickness signal on line 42 in response to the characteristic of the reflected laser beam 38 being measured. The thickness signal on line 42 is directed to the control unit 44 for further processing as described hereinabove.

A number of advantages result by providing the caliper assembly 40 including the laser beam source 36 and the laser beam sensor 39 according to the present invention. One advantage is that a high resolution of a measured distance value corresponding to the thickness of a collated assemblage being measured is obtained. A high resolution is obtained because the laser beam sensor 39 is able to read and process the measured distance value without any magnification. Since no magnification of the measured distance value is required, no error due to magnification is introduced. Another advantage is that only minimal mechanical set up of the sensor portion of the caliper assembly 40 is required.

From the above description of the invention, those skilled in the art to which the present invention relates will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art to which the present invention relates are intended to be covered by the appended claims.

Claims

1. An apparatus for caliper a collated assemblage (20) to be used along a collating conveyor (14) having collated assemblages (20) thereon, characterized in that said apparatus comprises:

 a movable member (60) comprising a rotatable wheel having a first circumferential surface (80) which engages a collated assemblage (20) when said movable member (60) is moved towards the collated assemblage (20);

 a laser source (36) for directing a light beam (37) toward said movable member (60);

 said movable member (60) further including a second circumferential surface (82), said second circumferential surface (82) being a light reflective surface portion against which said laser beam (37) is directed and then reflected, said light reflective surface portion (83) having a different diameter than the diameter of said collated assemblage engaging surface portion (80);

 means (39) for sensing said reflected light beam (38) from said light reflective surface portion (83) of said movable member (60); and

 means for providing a signal (42) which varies as a function of the characteristic of reflected light and thus as a function of the thickness of the collated assemblages (20).

2. An apparatus according to claim 1, further comprising an air spring means (30) for biasing said collated assemblage engaging surface portion (80) against a collated assemblage (20).

3. An apparatus according to claim 2, further comprising means (40) for regulating the biasing force of said air spring means (30) to maintain a constant pressure to maintain a constant force on a collated assemblage (20).

4. An apparatus according to claim 1 wherein said means (39) for sensing the reflected light includes a laser beam sensor.

5. An apparatus according to one or more of the preceding claims, comprising a plurality of hoppers (12) for storing signatures, a collating conveyor (14) movable past said plurality of hoppers (12), means (16) for feeding signatures from said plurality of hoppers (12) onto said collating conveyor (14) to form a collated assemblage (20) on said collating conveyor (14), and caliper means (40) for sensing the thickness of a collated assemblage (20) on said collating conveyor (14) and for providing a thickness signal indicative thereof, said caliper means including:

 a first wheel member (56) and a second wheel member (60) having a first surface portion (80) for engaging the collated assemblage (20); means (62) for supporting said second wheel member (60) for movement toward said first wheel member (56) to engage a collated assemblage (20) between said first and second wheel members (56, 60) as said collating conveyor (14) moves a collated assemblage (20) between said first and second wheel members (56, 60);

 said light reflective surface portion (82) of said second wheel member (60) having a diameter which is different than the diameter of said first surface portion (80), said first surface portion (80) and said light reflective surface portion (82) being axially adjacent to each other;

 means (36) for providing a light beam (37) which is directed onto said light reflective surface portion (82) of said second wheel member (60) when a collated assemblage (20) is engaged between said first and second wheel members (56, 60); and

 means (39) for receiving a reflected light beam (38) from said light reflective surface portion (82) of said second wheel member (60).

6. An apparatus according to claim 1 or 5 wherein said reflective surface portion (82) of said second wheel member (60) includes a coating (83) for minimizing
spurious light reflections.

7. An apparatus according to claim 5, further comprising air spring means (30) for biasing said first surface portion (80) of said second wheel member (60) against a collated assemblage (20) to press the collated assemblage (20) between said first and second wheel members (56, 60).

8. An apparatus according to claim 7, further comprising means (40) for regulating the biasing force of said air spring means (30) to maintain a constant pressure to maintain a constant force on a collated assemblage (20) between said first and second wheel members (56, 60).

9. An apparatus according to claim 1 or 5 wherein said light source (36) and said means (36) for providing light, respectively, includes means for providing a laser beam (37).

10. An apparatus according to claim 9 wherein said means (39) for receiving the reflected light (38) includes a laser beam sensor.

11. An apparatus according to claim 1 or 5 wherein said different diameter of said light reflecting portion (82) is smaller than the diameter of said collated assemblage engaging surface portion (80).

Patentansprüche

1. Vorrichtung zum Nachmessen einer Materialzusammenstellung (20), welche entlang eines Transportbandes (14) benutzbar ist, auf dem die Materialzusammenstellungen (20) transportiert werden, dadurch gekennzeichnet, daß die Vorrichtung folgendes beinhaltet:

 ein bewegliches Teil (60), welches ein rotierbares Rad mit einer ersten Umfangsfläche (80) aufweist, die die Materialzusammenstellung (20) kontaktiert, wenn das bewegbare Teil (60) in Richtung der Materialzusammenstellung (20) bewegt wird;

 eine Laserquelle (36) zum Richten eines Laserstrahls (37) auf das bewegbare Teil (60); das bewegbare Teil (60) ferner eine zweite Oberfläche (82) aufweist, die eine lichtreflektierende Oberfläche umfaßt, gegen die der Laserstrahl (37) gerichtet wird und dann reflektiert wird; diese lichtreflektierende Oberfläche (83) einen unterschiedlichen Durchmesser verglichen mit dem Durchmesser der die Materialzusammenstellung kontaktierenden Oberfläche (80).

2. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, daß luftgefederte Mittel (30), welche die Materialzusammenstellung (20) kontaktierende Oberflächen (80) an diese anstellen.

3. Vorrichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß ferner Mittel (40) die Kraft der luftgefederten Mittel (30) regeln, um einen konstanten Druck und eine konstante Kraft auf die Materialzusammenstellung (20) beizubehalten.

4. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, daß die Mittel (39) zur Erfassung des reflektierten Lichts einen Laserstrahlsensor aufweisen.

5. Vorrichtung gemäß einem oder mehreren der vorhergehenden Ansprüche, mit einer Vielzahl von Behältern (12) zur Lagerung von Signaturen, ein Transportband (14) bewegbar entlang der Vielzahl von Behältern (12), Zuführmittel (16) für die Signaturen der Vielzahl von Behältern (12) auf das Transportband (14), um auf diesem eine Materialzusammenstellung (20) zu bilden, und Meßmittel (40) zur Erfassung der Dicke der Materialzusammenstellung (20) auf dem Transportband (14), mit einem Meßmittel (40) mit nachfolgenden Merkmalen:

 ein erstes Radteil (56) und ein zweites Radteil (60) mit einer ersten Oberfläche (80), die die Materialzusammenstellungen (20) kontaktiert; Mittel (62) des zweiten Radteils (60), um dieses gegen die Bewegung des ersten Radteils (56) zu unterstützen, eine Materialzusammenstellung (20) zwischen dem ersten und zweiten Radteil (56 und 60) zu kontaktieren, während das Transportband (14) eine Materialzusammenstellung (20) bewegt zwischen dem ersten und dem zweiten Radteilen (56, 60):
die lichtreflektierende Oberfläche (82) des zweiten Radteils (60) einen Durchmesser
unterschiedlich zu dem der ersten Oberfläche (80) aufweist, und die erste Oberfläche (80)
und die zweite lichtreflektierende Oberfläche (82) axial nebeneinander liegen;
Mittel (36) zur Erzeugung des Laserstrahls (37), der auf die lichtreflektierende Oberfläche
(82) des zweiten Radteils (80) gerichtet ist, wenn eine Materialzusammenstellung (20) zwi-
schen einem ersten und zweiten Radteil (56, 60) erfaßt wird; und
Mittel (39) zur Aufnahme eines reflektierten
Laserstrahls (38) von der lichtreflektierenden
Oberfläche (82) des zweiten Radteils (80).

6. Vorrichtung gemäß Anspruch 1 oder 5,
dadurch gekennzeichnet,
daß die reflektierende Oberfläche (82) des
dritten Radteils (60) eine Beschichtung (83)
zur Minimierung von Streulichtreflexionen.

7. Vorrichtung gemäß Anspruch 5,
dadurch gekennzeichnet,
daß Luftfedermittel (30) vorgesehen sind, um
die Oberfläche (80) des zweiten Radteils (60) gegen eine Materialzusammenstellung
(20) zu bewegen, um diese zwischen der
ersten und zweiten Radteil (56, 60) zu ergrei-
fen.

8. Vorrichtung gemäß Anspruch 7,
dadurch gekennzeichnet,
daß Mittel (40) die Regelung der Anstellkraft
der Luftfedermittel (30) aufrechterhalten, um
einen konstanten Druck und eine konstante
Kraft auf die Materialzusammenstellung (20) zwischen dem ersten und zweiten Radteil (56, 60)
zu erhalten.

9. Vorrichtung gemäß Anspruch 1 oder 5,
dadurch gekennzeichnet,
daß die Lichtquelle (36) Mittel beinhaltet, um
einen Laserstrahl (37) zu erzeugen.

10. Vorrichtung gemäß Anspruch 9,
dadurch gekennzeichnet,
daß die Mittel (39) einen Laserstrahlsensor zur
Aufnahme des reflektierten Lichts (38) aufwei-
en.

11. Vorrichtung nach Anspruch 1 oder 5,
dadurch gekennzeichnet,
daß der unterschiedliche Durchmesser der
Lichtreflektionsportion (82) geringer ist als der
Durchmesser des die Materialzusammenstel-
lung (20) erfassenden Oberfläche (80).

Reivendications
1. Dispositif pour mesurer un assemblage formé (20)
devant être utilisé le long d'un convoyeur de ras-
semblement (14) portant des assemblages formés
(20), caractérisé en ce que ledit dispositif comprend :
un élément mobile (60) comportant une roue
rotative possèdant une première surface cir-
conférentielle (80) qui s'applique contre un
assemblage formé (20) lorsque ledit ensemble
mobile (60) est déplacé vers l'assemblage
formé (20);
une source laser (36) pour diriger un faisceau
de lumière (37) vers ledit élément mobile (60);
ledit élément mobile (60) comprenant en outre
une seconde surface circonférentielle (82),
ladite seconde surface circonférentielle (82)
etant une partie de surface réfléchissant la
lumière, sur laquelle ledit faisceau laser (37)
est dirigé et est ensuite réfléchi, ladite partie de
surface (83) réfléchissant la lumière possédant
un diamètre différent du diamètre de ladite par-
tie de surface (80) s'appliquant contre l'assem-
blage formé;
des moyens (39) pour détecter ledit faisceau
de lumière réfléchi (38) à partir de ladite partie
de surface réfléchissante (83) dudit élément
mobile (60); et
des moyens pour délivrer un signal (42), qui
varie en fonction de la caractéristique de la
lumière réfléchie et par conséquent en fonction
de l'épaisseur des assemblages formés (20).

2. Dispositif selon la revendication 1, comprenant en
outre des moyens formant ressort pneumatique
(30) pour repousser ladite partie de surface (80)
s'appliquant contre ledit assemblage formé, contre
un assemblage formé (20).

3. Dispositif selon la revendication 2, comprenant en
outre des moyens (40) pour régler la force de solli-
citation desdits moyens formant ressort pneumati-
que (30) servant à maintenir une pression
constante pour maintenir l'application d'une force
constante à un assemblage formé (20).

4. Dispositif selon la revendication 1, dans lequel les-
dits moyens (39) servant à détecter la lumière réflé-
5. Dispositif selon une ou plusieurs des revendications précédentes, comprenant une pluralité de magasins (12) servant à stocker des formulaires, un convoyeur de rassemblement (14) pouvant se déplacer devant ladite pluralité de magasins (12), des moyens (16) pour envoyer des formulaires depuis ladite pluralité de magasins (12) sur ledit convoyeur de rassemblement (14), et des moyens de mesure (40) pour détecter l’épaisseur d’un assemblage formé (20) sur ledit convoyeur de rassemblement (14) et délivrer un signal d’épaisseur indicatif de cette épaisseur, ledits moyens de mesure comprenant :

un premier élément en forme de roue (56) et un second élément en forme de roue (60) possédant une première partie de surface (80) destinée à venir en contact avec l’assemblage formé (20);

des moyens (62) pour supporter ledit second élément en forme de roue (60) pour se déplacer vers ledit premier élément en forme de roue (56) pour s’appliquer contre un assemblage formé (20) entre ledits premiers et second éléments en forme de roues (56, 60) lorsque ledit convoyeur de rassemblement (14) déplace un assemblage formé (20) entre ledits premiers et second éléments en forme de roue (56, 60);

ladite partie de surface (82) qui réfléchit la lumière, dudit second élément en forme de roue (60) possédant un diamètre qui est différent du diamètre de la première partie de surface (80), ladite première partie de surface (80) et ladite partie de surface (82) qui réfléchit la lumière, étant adjacentes axialement l’une à l’autre;

des moyens (36) pour produire un faisceau de lumière (37) qui est dirigé vers l’élément de surface (82), qui réfléchit la lumière, dudit second élément en forme de roue (80) lorsqu’un assemblage formé (20) est inséré entre ledits premiers et seconds éléments en forme de roues (56, 60); et

des moyens (39) pour recevoir un faisceau de lumière réfléchie (38) délivré par ladite partie de surface (82), qui réfléchit la lumière, dudit second élément en forme de roue (80).

6. Dispositif selon la revendication 1 ou 5, dans lequel ladite partie de surface réfléchissante (82) dudit second élément en forme de roue (60) comprend un revêtement (83) servant à réduire des réflexions de lumière parasites.

7. Dispositif selon la revendication 5, comprenant en outre des moyens formant ressort pneumatique (30) pour soliciter ladite première partie de surface (80) dudit second élément en forme de roue (60) contre un assemblage formé (20) pour repousser l’assemblage formé (20) entre ledits premier et second éléments en forme de roues (50, 56, 60).

8. Dispositif selon la revendication 7, comprenant en outre des moyens (40) pour régler la force de sollicitation desdits premiers moyens formant ressort pneumatique (30) servant à maintenir une pression constante pour maintenir l’application d’une force constante à un assemblage formé (20) entre ledits premiers et seconds éléments en forme de roues (56, 60).

9. Dispositif selon la revendication 1 ou 5, dans lequel ladite source de lumière (36) et ledits moyens (36) servant à délivrer une lumière incluent respectivement des moyens pour produire un faisceau laser (37).

10. Dispositif selon la revendication 9, dans lequel ledits moyens (39) servant à recevoir la lumière réfléchie (38) comprennent un détecteur de faisceau laser.

11. Appareil selon la revendication 1 ou 5, dans lequel ledit diamètre différent de ladite partie (82), qui réfléchit la lumière, est inférieur au diamètre de ladite partie de surface (80) s’appliquant contre l’assemblage formé.