EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 06.03.2002 Bulletin 2002/10

Application number: 95109245.1

Date of filing: 14.06.1995

Multistandard decoder for video signals and video signal decoding method
Mehrmormendekodieren für Videosignale und Verfahren zur Dekodierung von Videosignalen
Décodeur multistandard pour signaux vidéo et méthode de décodage de signal vidéo

Designated Contracting States: CH DE FR GB LI NL

Priority: 01.07.1994 DE 4423214

Date of publication of application: 03.01.1996 Bulletin 1996/01

Proprietor: HARRIS CORPORATION
Melbourne, FL 32919 (US)

Inventor: Demmer, Walter
D-90411 Nürnberg (DE)

Representative: Liesegang, Roland, Dr.-Ing.
FORRESTER & BOEHMERT Pettenkoferstrasse
20-22
80336 München (DE)

References cited:

- DESOR H J: “SINGLE-CHIP VIDEO PROCESSING SYSTEM” PROCEEDINGS OF
THE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE),
OF ELECTRICAL AND ELECTRONICS ENGINEERS

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The invention relates to a digital multistandard decoder for video signals and to a method for decoding video signals.

[0002] Colour video signals, so-called composite video, blanking and sync signals (CVBS) are essentially composed of a brightness signal or luminance component (Y), two colour difference signals or chrominance components (U, V or I, Q), vertical and horizontal sync signals (VS, HS) and a blanking signal (BL). The structure of a composite video signal (CVBS) and the corresponding Y, U and V signals is shown in Fig. 1.

[0003] Fig. 1a shows a composite video signal for an EBU (European Broadcasting Union) colour bar test signal, in which on the luminance component Y are additively superimposed the six hue (tint) values belonging to the vertical colour bar in "carrier packets" with colour carrier frequency. For the colour carrier generation a colour subcarrier frequency sync signal, the burst, is transmitted directly behind the line sync pulse, SYNC. The burst phase and the burst amplitude are used as reference values for determining the hue and the colour saturation of the demodulated signal, which is represented by the individual carrier packets.

[0004] The different coding processes, e.g. NTSC, PAL and SECAM, introduced into the known colour television standards, differ in the nature of the chrominance transmission and in particular the different systems make use of different colour subcarrier frequencies and different line frequencies.

[0005] The following explanations relate to the PAL and NTSC systems, but correspondingly apply to video signals of other standards and non-standardized signals.

[0006] The colour subcarrier frequency (fsc) of a PAL system and a NTSC system is

\[f_{sc\,(NTSC)} = 3.58 \text{ MHz} \]

or

\[f_{sc\,(PAL)} = 4.43 \text{ MHz}. \]

[0007] In addition, in PAL and NTSC systems the relationships of the colour subcarrier frequency (fsc) to the line frequency (fh) are given by

\[f_{sc\,(NTSC)} = 227.50 \cdot fh \text{ or } 4 \cdot f_{sc\,(NTSC)} = 910 \cdot fh \]

\[f_{sc\,(PAL)} = 283.75 \cdot fh \text{ or } 4 \cdot f_{sc\,(PAL)} = 1135 \cdot fh \]

so that the phase of the colour subcarrier in the case of NTSC is changed by 180°/line and in PAL by 270°/line.

[0008] In the case of digital video signal processing and decoding the prior art fundamentally distinguishes between two system architectures. These are the burst-locked architecture and the line-locked architecture, i.e. systems which operate with sampling frequencies for the video signal, which are produced in phase-locked manner to the colour subcarrier frequency transmitted with the burst pulse or in phase-locked manner with the line frequency, respectively.

[0009] In the case of decoders with a burst-locked architecture the sampling frequency is chosen in such a way that on the one hand it is not too high so as to keep the power loss low and on the other hand so that the Nyquist theorem is fulfilled, i.e. \(f_s > 2 \cdot f_{sc} \). For problem free processing of the modulated colour carrier in the decoder it is appropriate to use a sampling frequency which corresponds to the even multiple of the colour subcarrier. Four times the colour subcarrier frequency is best suited for this.

[0010] In the case of line-locked architectures the clock of the digital system is derived from the line frequency and is an integer multiple of the line frequency, so that an integer number of pixels per line are produced.

[0011] Although the burst-locked system has advantages with respect to the minimum effort and expenditure for colour decoding, from other standpoints it also has important disadvantages, e.g. in the case of horizontal and vertical synchronization, as well as in multistandard and "non-standard" uses. As the sampling process is essentially non-orthogonal, the burst-locked system is only suitable for the direct representation of images on a screen, but not for producing data for fixed raster applications, e.g. for field or frame stores or for frame grabbers in a PC environment.

[0012] However, although the line-locked systems solve the problems of burst-locked architectures in a satisfactory manner, they still lead to new problems. In particular, much more complex colour decoders are required, the analog clock generation requires a high circuitry expenditure and the requirements for the maximum acceptable dynamic non-
linearities of the A/D converters and preceding analog signal processing stages are very high.

[0013] Both systems suffer from the disadvantages that the clock frequencies for digitizing the video signal are derived from the video system, namely from the colour subcarrier frequency or from the line frequency, whereas e.g. in a PC environment working takes place with completely different clock frequencies, so that due to the different clock frequencies in the overall system intermodulation products and crosstalk of signals can have a disturbing effect on the overall operation and the image quality. As the clock frequencies of PC’s are not generally suitable for sampling video signals, because they do not satisfy the above-explained conditions, the prior art decoders in each case have their own oscillators for producing the sampling frequency suitable for a particular television standard.

[0014] In summarizing, Table I gives different sampling frequencies and their advantages/disadvantages for digital video processing:

<table>
<thead>
<tr>
<th>Sampling Frequency</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst-locked (4•f_sc)</td>
<td>Simple colour decoder. No distortion due to non-linearities.</td>
<td>Complicated line synchronization. A sample rate conversion is necessary for field/frame storages. For multi-standard operation multiple crystals are necessary.</td>
</tr>
<tr>
<td>Line-locked (n•f_H)</td>
<td>Simple field/frame storage. Only one crystal for multistandard operation.</td>
<td>Complicated colour decoder. Sensitive to non-linearities in composite video signal.</td>
</tr>
</tbody>
</table>

[0015] The best choice with respect to these factors is dependent on the sought market, the function and intended use of the decoder. A rough survey is given in Table II.

<table>
<thead>
<tr>
<th>Market</th>
<th>Use</th>
<th>Preferred Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV set</td>
<td>Replacement of analog circuit.</td>
<td>Burst-locked</td>
</tr>
<tr>
<td>TV set</td>
<td>Additional features (field/frame store).</td>
<td>Line-locked</td>
</tr>
<tr>
<td>Desk top video (PC)</td>
<td>Fixed video image size in a window.</td>
<td>Burst-locked</td>
</tr>
<tr>
<td>Desk top video (PC)</td>
<td>Scalable video image size in a window.</td>
<td>Line-locked</td>
</tr>
</tbody>
</table>

[0016] The problem of the invention is to provide a decoder for digital video signals and a composite video signal decoding method, which can process video signals according to different standards on the basis of a random, predetermined clock frequency of a host system, e.g. a PC.

[0017] This problem is solved by a digital multistandard decoder having the features of claim 1 and by a method for decoding composite video signals having the features of claim 7.

[0018] The invention provides a digital multistandard decoder for composite video signals, according to claim 1.

[0019] Preferably, the decoder according to the invention is so designed that the sync detector comprises a coarse sync detector and a fine sync detector, the coarse sync detector determining the line sync pulse of the video signal, in order to set the virtual sampling frequency to an integer multiple of the line frequency of the video signal (coarse phase control) and the fine sync detector determining an edge of the line sync pulse in order to set the phase of the virtual sampling frequency synchronously with the line frequency (fine phase control), the burst detector determining the phase of the colour subcarrier signal active during the burst pulse, in order to set the phase of the virtual sampling frequency synchronously with the phase of the colour subcarrier frequency (lock-in).

[0020] According to an embodiment of the invention the phase-locked loop has a threshold/hysteresis means, which either activates the coarse sync detector or the fine sync detector or the burst detector, said device gives different switching levels for the transition from the coarse phase control to the fine phase control to lock-in than for the transition in the opposite direction.

[0021] The given clock frequency can e.g. be the operating clock frequency of a host system for the detector.

[0022] It is particularly advantageous if the virtual sampling frequency is four times the colour subcarrier frequency.

[0023] The decoder according to the invention preferably has a chroma gain control means, which evaluates the chrominance information of the burst pulse and generates a signal (coki), which indicates whether the virtual sampling frequency has the desired ratio to the colour subcarrier frequency.

[0024] The invention also relates to a method for decoding composite video signals, according to claim 7.
In addition, in the method according to the invention following the coarse phase control and before synchronizing the virtual sampling frequency with the phase of the colour subcarrier signal a flank of the line sync pulse is determined and the phase of the virtual sampling frequency is set synchronously with the line frequency (fine phase control).

Finally, in the method according to the invention, the fine phase control is only enabled when the coarse phase control has been completed and the lock-in is only enabled when the fine phase control has been completed.

Preferably, in the method according to the invention, there are different switching levels for the transition from coarse phase control to fine phase control and to lock-in than for the transition in the opposite direction.

According to an embodiment of the method according to the invention the first predetermined clock frequency can be the operating clock frequency of a host system for the decoder.

In the method according to the invention the virtual sampling frequency is particularly advantageously set as an integer multiple of the line frequency, which corresponds to four times the expected colour subcarrier frequency.

According to the invention it can be provided that the chrominance information of the burst pulse is evaluated and, as a function of the evaluation result, it is determined whether the virtual sampling frequency was produced in the correct relationship to the colour subcarrier signal.

It is also possible to provide for the virtual sampling frequency to be set as 910 or 1135 times the line frequency of the video signal.

The multistandard decoder essentially comprises an input sample rate converter, a phase-locked loop for controlling the sample rate converter and a decoding - demodulating device, which can be a standard digital video signal decoder.

The function of the sample rate converter is to produce from an existing clock of a host system a "virtual" clock frequency of four times the colour subcarrier frequency for NTSC and PAL input signals (4•fsc). The difficulty in the aforementioned architectures is that they must be able to operate for a wide range of host clock frequencies, approximately from 20 to 40 MHz, without there being a reliable reference frequency, e.g. provided by a crystal oscillator.

The side-locking problems will now be briefly explained. As the phase detector of a colour subcarrier phase-locked loop only produces a reliable output signal if the burst pulse occurs, it is "blind" for the main part of each horizontal line. This blindness leads to an ambiguous result for each frequency, which is repeated with the same phase in each line. This means that the phase detector cannot detect a difference if a frequency is an integer multiple of the line frequency, i.e. at 909•fh, 910•fh, 911•fh, ... or 1134•fh, 1135•fh, 1136•fh In conventional systems this problem is solved in that a crystal oscillator with limited tolerances is set to the desired centre frequency. Therefore multistandard decoders always require multiple crystals.

However, the hierarchic structure for controlling the sample rate converter according to the invention requires no reference crystal.

The video signal processing system according to the invention can operate with a random clock frequency (predetermined clock frequency) of a host system, if it satisfies the following conditions:

- Frequency: ≥ 12 MHz (Nyquist - Shannon theorem) Precision,
- Long-term stability: ≤ 4 kHz (to prevent side-locking) Fluctuations,
- Short-term stability: ≤400 Hz (for a demodulation error < 2°)

Virtually any PC clock produced by a crystal fulfils these conditions, so that the invention can be realized with a predetermined PC clock.

The multistandard decoder according to the invention uses the sample rate conversion in order to reinterpret the individual sample values of a data stream digitized with the predetermined clock frequency as if they corresponded to another "virtual" sampling frequency. In the case of a multistandard decoder the virtual sampling frequency can be adapted to the corresponding standard of the incoming video signal of a NTSC or PAL system or some other video system.

An important feature of the multistandard decoder according to the invention is consequently the sample rate
The invention is described in greater detail hereinafter with respect to a preferred, non-limitative embodiment and with reference to the attached drawings, wherein show:

Fig. 1 A composite EBU colour bar video signal (CVBS) and the corresponding Y, U and V signals, Fig. 1b being a detail enlargement of Fig. 1a.

Fig. 2 A block circuit diagram of a preferred embodiment of the digital multistandard decoder according to the invention.

Fig. 3 A circuit diagram for realizing the control and setting of the decoder of Fig. 2.

Fig. 4 A circuit diagram for realizing the line/burst phase-locked loop of the decoder of Fig. 2.

Fig. 5 A circuit diagram for realizing the coarse synchronous detector of the phase-locked loop of Fig. 4.

Fig. 6 A circuit diagram for realizing the fine synchronous detector of the phase-locked loop of Fig. 4.

Fig. 7 A circuit diagram for realizing the burst phase detector of the phase-locked loop of Fig. 4.

Fig. 8 A curve for explaining the discriminator characteristics of the burst phase detector of Fig. 7.

Fig. 9 A circuit diagram for realizing the automatic gain control for the chrominance signal.

Fig. 10 A circuit diagram for realizing a threshold/hysteresis circuit of the phase-locked loop of Fig. 4.

Fig. 11 A circuit diagram for realizing a phase incrementing circuit of the phase-locked loop of Fig. 4.

Fig. 12 A circuit diagram for realizing a phase integration in the phase-locked loop of Fig. 4.

The composite signal (CVBS) e.g. digitized with the clock frequency of a host system, such as a computer, is inputted into the input sample rate converter 32. The line and burst phase-locked loop 33 controls the input sample rate converter 32, in the manner described hereinafter, so that the input video signal digitized with the predetermined clock frequency is converted into a signal with the sample values of a second virtual sampling frequency, which is four times the colour subcarrier frequency. By choosing the "virtual" sampling frequency as four times the colour subcarrier frequency on the one hand the Shannon-Nyquist theorem \((f_s > 2f_{sc})\) is fulfilled and on the other an integer number of sample values per video image signal is obtained, namely 910 sample values per line for a NTSC signal and 1135 sample values per line for a PAL signal, so that it is possible to combine the advantages of a phase-locked architecture, in which the sampling signal is an even multiple of the colour subcarrier frequency, with the advantages of the line-locked architecture, in which the sampling frequency is an integer multiple of the line frequency.

The sample values of the video signal (CVBS) at the virtual sampling frequency are then passed onto the vertical WHT circuit 34, whose output supplies the input signals for the following horizontal WHT circuit 35.

In the vertical and horizontal WHT circuit 34 and 35 the input sample values of the video signal are transformed by means of a 2x4 Walsh-Hadamard transformation (WHT) from the pixel domain into the WHT domain, in which they can be processed by means of the central control and setting circuit 36.

Each individual output coefficient of the Walsh-Hadamard transformation represents a linear combination of all the input sample values (pixels) for said WHT, so that a single WHT output coefficient cannot be associated with a specific input sample value. In fact a set of WHT output coefficients reproduces the two-dimensional spectrum of all
The transformation of the digitized video signal by means of a Walsh - Hadamard transformation into the WHT domain and the processing of the signal in the WHT domain has proved particularly advantageous for bringing about a cost-optimized digital multistandard decoder for video signals. Such a decoder and a corresponding digital video signal decoding process, which makes use of the advantages of the Walsh - Hadamard transformation, form the subject matter of the parallel patent application of the same applicant and the same application date entitled "Digital Decoder for Video Signals and Video Signal Digital Decoding Method" (EP 95 109 241.0).

The vertical WHT circuit essentially forms a vertical low-pass filter and a vertical high-pass filter, in which two corresponding sample values of two video image lines are added and subtracted, respectively. In the horizontal WHT circuit in alternating manner the high and low-pass-filtered sample values of in each case one line are transformed by means of the Walsh - Hadamard transformation into the WHT domain. The resulting WHT matrix is inputted into the control and setting circuit 36, in which on the one hand the chrominance signal components U and V are separated from the luminance signal component Y and on the other all the controls and settings of the video signal can be centrally performed in said circuit, in the manner described hereinafter.

The WHT matrix from which the chrominance signal components were separated is then transformed back into the pixel domain by means of the horizontal IWHT circuit 39 and the vertical IWHT circuit 40 and the decoded video signal components U, V and Y can, optionally following an output sample rate conversion by the output sample rate converter 41, be outputted by the digital decoder.

The line sync pulse and the burst pulse of the video signal are, according to the preferred embodiment of the invention, derived from the control and setting circuit 36, shown in detail in Fig. 3. However, they could also be produced in some other way, known to the expert, from the input video signal.

The setting and control circuit shown in Fig. 3 has four multipliers 50 to 53, which are connected to a controller 54 and via an IC bus 55 to a user interface in the indicated manner.

Into the control and setting circuit of Fig. 3 are inputted the transformation coefficients of the WHT matrix WHT\textsubscript{0,0} to WHT\textsubscript{0,3} and WHT\textsubscript{1,0} to WHT\textsubscript{1,3}, which are formed by a 2x4 Walsh - Hadamard transformation of the input sample values.

As a result of the characteristics of the Walsh - Hadamard transformation, whose transformation coefficients appear as sampled values of a set of filters, the colour difference signals U and V can be directly derived as specific WHT coefficients from the control and setting circuit 36. They form the basis for the determination of the burst pulse and for synchronizing the virtual sampling frequency with the colour subcarrier frequency transmitted with the burst pulse.

In the case of a 2x4 WHT of the input sample values corresponding to the preferred embodiment of the invention the colour difference signals U and V can be read out directly as WHT coefficients WHT\textsubscript{1,1} and WHT\textsubscript{1,2}. They are tapped at the outputs of the multipliers 51 and 52 and supplied to the burst phase detector of the phase-locked loop 33, optionally together with the control signal from the output f of the controller 54.

Unlike in known system architectures for digital decoders, in the case of the multistandard decoder according to the invention all the control and setting functions are combined in a single hardware stage. By means of the controller outputs a to f the WHT coefficients and consequently the video signal to be decoded can be controlled and set.

The WHT coefficient WHT\textsubscript{0,0} corresponds to a horizontally and vertically low-pass-filtered version of the input signal and therefore is highly suitable for the processing of the line sync pulse of the video signal. Therefore the WHT
The line and burst PLL 33 for controlling the input sample rate converter 32 is shown in Fig. 4 and in detail in the following drawings. The line and burst PLL of Fig. 4 comprises a coarse sync detector 60, a fine sync detector 61 and a burst phase detector 62. There are also a burst gate circuit 63, a threshold/hysteresis circuit 64 and a phase increment circuit 65, as well as a phase integrator circuit 66 and a divider 67. The connections of the individual circuit components of the line and burst PLL can be gathered from the circuit diagram of Fig. 4, which also shows the chroma automatic gain control circuit 37 (Chroma AGC).

The control of the sample rate converter via the line and burst PLL generally takes place as follows. The virtual sampling frequency is determined in that initially the coarse sync detector 60 separates the sync pulse from the digitized video signal and establishes its time position in order to determine the line frequency. It is then assumed that it is either a NTSC or a PAL signal. For this purpose the user or manufacturer of the decoder can set default values for the sample rate factor, depending on the particular country in which the equipment will be operated, namely at 910 or 1135.

Synchronously with the sync pulse an integral multiple of the line frequency (910•fh or 1135•fh) is produced as a first approximation of the virtual sampling frequency, the coarse sync detector being set with such a wide search window that it always finds a sync pulse.

If the operation of the coarse sync detector 60 is sufficiently stable, there is a switchover to the fine sync detector 61, which determines in a relatively narrow search window on the basis of the approximate position of the sync pulse determined by the coarse sync detector the leading edge of the sync pulse, i.e. the precise time position of the sync pulse and locks the virtual sampling frequency precisely in the edge of the sync pulse. This prevents side-locking, which could occur in the case of only a phase-locked control of the virtual sampling frequency relative to the phase of the colour subcarrier signal during the burst pulse.

Following stable fine phase control the phase of the colour subcarrier frequency can be determined by the burst phase detector 62 and the sampling frequency can be set synchronously to this phase, the burst pulse representing a time window during which the colour subcarrier reference signal is transmitted. The thus determined, virtual sampling frequency and phase are outputted as a control signal to the sampling rate converter 32.

The individual circuit components of the line and burst PLL of Fig. 4 and their operation are described hereinafter relative to Figs. 5 to 12.

Fig. 5 shows a circuit diagram of the coarse sync detector, which determines the line sync pulse of the video signal. Upstream of the coarse sync detector are five series-connected delay stages 70 to 74, through which passes the WHT0,0 coefficient and which is then further processed in the coarse sync detector. The circuit of Fig. 5 also comprises two comparators 75, 76, an AND gate 78, a comparator 79 and a series connection of an adder 80, a binary divider 81 and a delay element 82, which are interconnected as shown in Fig. 5.

The WHT coefficient WHT0,0 outputted by the horizontal WHT circuit 35 corresponds to a horizontally low-pass-filtered version of the CVBS input signal of the digital decoder. At the end of setting and synchronization of the virtual sampling frequency the WHT coefficient WHT0,0 corresponds to a horizontally and vertically low-pass-filtered version of the CVBS signal. In each case WHT0,0 is used for suppressing the high frequency colour subcarrier, which would otherwise possibly disturb the detection of the line sync pulse. The limited bandwidth of the WHT coefficient WHT0,0 which is determined by the order of the upstream Walsh - Hadamard transformation, also determines a nominal edge slope of the line sync pulse and prevents possible peaks in the input signal.

The coefficient WHT0,0 forms the input signal for the line sync pulse processing. A leading, falling sync edge is determined if the comparators 75 and 76 indicate that at least two successive values of WHT0,0 are higher or equal to a sync switching level (< 2•bl), a following value of WHT0,0 has a random value and at least two further following values of WHT0,0 are smaller than the sync switching level (< 2•bl). The sync switching level is defined as the value between the black level and the peak value of the sync pulse, as shown in Fig. 1b.

In order to reduce the susceptibility to possible signal peaks and to fade out equalizing pulses, the coarse sync detector of Fig. 5 is only active if the phase integrator exceeds a value of "640". In this case the comparator 79 emits a "1" signal. If the above conditions for a falling sync edge are fulfilled, then a sync trigger signal (csd%) is outputted. In addition, the difference (csd0) of the phase integrator value with respect to the nominal number of sample values per line (910 or 1135), as shown in Fig. 5, is stored and transferred, in order to indicate the instantaneous phase relationship between the line sync pulse and the phase integrator for controlling the sample rate converter. The loop gain is set by means of the binary divider 31 by a 12 bit offset to 1/4096.

If the coarse sync detector of Fig. 5 has determined a line sync pulse and outputted a sync trigger signal, the fine sync detector of Fig. 6 is activated in order to synchronize the virtual sampling frequency precisely with the leading edge of the sync pulse. It forms a PI controller for controlling the virtual sampling frequency synchronously to the line frequency of the video signal.

The fine sync detector shown in Fig. 6 comprises five adders 83 to 87, two delay elements 88, 89 and two
binary dividers 90, 91, shown in interconnected form in Fig. 6.

[0075] From the sum of the WHT_{0,0} values delayed by three and four clock pulses is subtracted the sum of the undelayed WHT_{0,0} value and its counterpart delayed by five clock pulses, as shown in Fig. 6. As the phase increments are accumulated before being inputted into the phase integrator, the proportional value must be produced by means of a differentiation 86, 88, whereas the integral value is directly accessible.

[0076] The proportional value is divided by four by a two bit shift in the binary divider 90 and the integral value is divided by 16 by a four bit shift in the binary divider 91. By switching on the values controlled by the sync trigger signal (csd%), which is derived from the coarse sync detector, the output signal (fsd1) of the fine sync detector is generated once per horizontal line.

[0077] When the synchronization of the sampling frequency to the line sync pulse of the video signal is terminated, the line and burst phase-locked loop is switched to the burst detector, which forms a PI controller for the virtual sampling frequency relative to the colour subcarrier frequency.

[0078] By means of the burst gate circuit shown in Fig. 7 and which comprises a comparator 92 and a counter 93 is determined a burst gate pulse. The burst gate is opened when the integer part of the output signal (phint) of the phase integrator exceeds a predetermined value of “82”. The burst gate duration is fixed on 8 clock pulses.

[0079] For the duration of the opening of the burst gate phase the phase of the colour subcarrier signal transmitted with the burst pulse is determined in the burst phase detector shown in Fig. 7. The burst phase detector of Fig. 7 comprises four adders 94 to 97, two delay elements 98, 99 and two binary dividers 100, 101, which are interconnected in the manner shown in Fig. 7. The input signal is constituted by the colour difference signals U and V or, in the represented embodiment of the digital decoder, the WHT coefficients WHT_{1,1} and WHT_{1,2}.

[0080] The sum of the colour difference signals is formed in the adder 94 and accumulated in a register 95, which is reset at the start of the burst gate and is activated for its duration. For the nominal burst phase of 135° the accumulated sum, as expected and necessary, passes to zero. This value is divided by 512 by means of a nine bit shift or offset in the binary divider 101 and subtracted from the differentiated, corresponding value, which has previously been divided by 64 by a six bit shift or offset in the binary divider 100. The result is outputted as a burst phase difference (bupsd) together with the burst gate signal (bg).

[0081] Fig. 8 shows the discriminator characteristics of the burst phase detector of Fig. 7 if, for the control of the chromaticity, constant values are added to the colour difference signals U and V. This addition is performed in the adders 56, 57 of the control and setting circuit of Fig. 3, which brings about a phase shift of the virtual burst phase.

[0082] The chroma automatic gain control circuit 37 (Chroma AGC), shown in Fig. 9, operates in parallel with the burst phase detector 62. The Chroma AGC of Fig. 9 comprises two absolute value elements 101, 102, two adders 104, 105, as well as two delay elements 106, 107, shown in interconnected form in Fig. 9. Instead of adding the colour difference signals U and V with their particular signs, like the burst phase detector, the Chroma AGC of Fig. 9 accumulates the absolute values of U and V while the burst gate signal is active and passes said accumulated value to the controller. In accordance with the accumulated value the controller corrects the multiplication factors for WHT_{1,1} and WHT_{1,2} outputted at its outputs c and d (Fig. 3), so that the output of the Chroma AGC circuit is the same as a user setting for colour saturation. In addition, a colour killer signal (coki) is set under one of the three following conditions:

1) if the phase-locked loop 33 (Fig. 2) is unloaded,
2) if U has the incorrect sign and
3) if the colour subcarrier amplitude is too small.

[0083] This ensures that in the case of significant interference, e.g. if the incorrect video signal standard is assumed, the chrominance components in the video signal are compressed and only a luminance signal for a black and white image is outputted. The colour killer signal (coki) is used for checking whether the correct video standard has been assumed.

[0084] If coki=1, the coarse sync detector can be reactivated in order to determine the line sync signal but then the in each case other video standard is assumed, i.e. a sampling frequency of 1135•fh is selected if previously a sampling frequency of 910•fh was selected and vice versa.

[0085] In order to avoid undesired interference and reciprocal influencing of the individual stages of the hierarchically arranged phase-locked loop, precisely one and only one stage can be active at a single time. The selection is made by the threshold and hysteresis circuit shown in Fig. 10. The output signals of the coarse sync detector 60 and the fine sync detector 61 are inputted into the threshold and hysteresis circuit 64. As shown in Fig. 10, the threshold and hysteresis circuit determines different thresholds for the transition from coarse to fine phase control and for the opposite transition from fine to coarse phase control. This ensures that once the frequency for the virtual sampling clock has been set, the fine sync phase-locked loop can so finely tune this frequency that a clearly defined phase coincides with a threshold level of the leading edge of the sync pulse. When this synchronous phase relationship has been set up, then the burst phase-locked loop may take over the further control. In order to avoid deadlocking, unstable or chaotic
As the phase increment indicates the relationship of the host clock frequency to $4\cdot f_{sc}$, it is necessary to divide the non-
time at which a given sample value for a sampling frequency of $4\cdot f_{sc}$ is to be calculated by the input sample rate
[0090] the accumulator, but the non-integer bits remain unaffected.

and 17 for the non-integer integrator output values.

requires in the represented embodiment an overall resolution (precision) of 29 bits, 12 bits being required for the integer
embodiment of the invention is 1/32 (5 bits), a non-integer output of the phase integrator. The phase integrator circuit
Additionally the intermediate pixel resolution of the sample rate converter 32 (Fig. 2), which according to a preferred
locked loop is already locked in, the phase integrator accumulates increments up to an integer value of 910 or 1135.

timed by the burst gate pulse and accumulates the phase increments determined in the preceding stage. If the phase-
locked loop is already locked in, the phase integrator accumulates increments up to an integer value of 910 or 1135.
Additionally the intermediate pixel resolution of the sample rate converter 32 (Fig. 2), which according to a preferred
embodiment of the invention is 1/32 (5 bits), a non-integer output of the phase integrator. The phase integrator circuit
requires in the represented embodiment an overall resolution (precision) of 29 bits, 12 bits being required for the integer
and 17 for the non-integer integrator output values.

As shown in Fig. 12 the sync trigger signal outputted by the coarse sync detector resets the integer bits of
the accumulator, but the non-integer bits remain unaffected.

The carry of the phase integrator, i.e. the carry from the non-integer to the integer components, determines
a time at which a given sample value for a sampling frequency of $4\cdot f_{sc}$ is to be calculated by the input sample rate
converter. The non-integer component of the output signal of the phase integrator specifies the intermediate pixel
distance of the "virtual" sample value from an actual sample value as fractions of the host clock frequency.

However, the sample rate converter requires a control input value, relative to the output sampling rate ($4\cdot f_{sc}$).
As the phase increment indicates the relationship of the host clock frequency to $4\cdot f_{sc}$, it is necessary to divide the non-
integer component of the output value of the phase integrator by the value of the phase increment. This division is
performed by the divider 67. The accuracy of this division must enable the sample rate converter to produce interme-
diate pixel increments of 1/32 (5 bits). In order to form an output signal with a precision of 5 bits, the input precision of
the divider must be 7 bits for the numerator and 8 bits for the denominator.

The input sample rate converter 32 can be in accordance with the prior art. A particularly simple and advan-
tageous sample rate converter suitable for digital multistandard video decoders is described in the parallel application
of the same applicant and having the same application date entitled "Sample rate converter and sample rate conversion
process" (EP 95 109 246.0). Such a sample rate converter performs an equally weighted interpolation between each of
two neighbouring sample values and subjects to an amplitude correction the interpolation result obtained. Then a
further equally weighted interpolation of the corrected, first interpolation result is performed with its neighbouring values
and these can be neighbouring sample values or neighbouring interpolation results and the interpolation result obtained
then again is subject to an amplitude correction. The equally weighted interpolation is then repeated until the desired
resolution necessary for the virtual sampling frequency is reached, e.g. 1/32 of the host clock frequency. The control
signal for the sample rate converter outputted by the phase-locked loop then determines the direction and magnitude
of an offset for in each case one virtual sample value relative to an actual sample value.

At the output of the digital multistandard decoder according to the invention can once again be provided a
sample rate converter controlled by a line and burst PLL, if the decoded video signal is to be further processed at a
clock frequency other than $4\cdot f_{sc}$.

However, it is also possible to provide a simplified output sample rate converter 41 controlled by a line phase-
locked loop 42 (Fig. 2). In the line PLL corresponding parts of the described line and burst PLL, namely the coarse
and fine sync detectors are repeated, said parts being copied for the line PLL, but cannot be directly reused, because
they must continuously monitor the burst PLL. For the output sample rate converter it is possible to use a simple linear
interpolation between adjacent pixels, because only baseband signals Y, U and V and not composite video signals
(CVBS) have to be processed, which with the colour carrier frequency contain information with a high spectral com-
ponent, which occurs after demodulation as a d.c. voltage. The requirements made concerning the linearity of the
frequency-dependent gain function of the sample rate converter are therefore much less.
Claims

1. Digital multistandard decoder for composite video signals, comprising a sample rate converter (32), which converts the sample values of the video signal digitized at a first predetermined clock frequency into video signal sample values at a second virtual sampling frequency, a phase-locked loop (33) for controlling the sample rate converter and which has a sync detector in order to determine the line sync pulse and set the virtual sampling frequency to an integer multiple of the line frequency of the video signal, and which has a burst detector in order to subsequently set the virtual sampling frequency synchronously with the phase of the colour subcarrier signal of the video signal, and a decoding-demodulating device (34-40) for the recovery of the luminance and chrominance signal components from the video signal sample values at the virtual sampling frequency.

2. Decoder according to claim 1, characterized in that the sync detector comprises a coarse sync detector (60) and a fine sync detector (61), the coarse sync detector (60) determining the line sync pulse of the video signal, in order to set the virtual sampling frequency to an integer multiple of the line frequency of the video signal (coarse phase control) and the fine sync detector (61) determining an edge of the line sync pulse in order to set the phase of the virtual sampling frequency synchronously with the line frequency (fine phase control), the burst detector (62) determining the phase of the colour subcarrier signal active during the burst pulse, in order to set the phase of the virtual sampling frequency synchronously with the phase of the colour subcarrier frequency (lock-in).

3. Decoder according to any one of the preceding claims, characterized in that the phase-locked loop (33) has a threshold and hysteresis means (64), which activates either the coarse sync detector (60) or the fine sync detector (61) or the burst detector (62) and which gives different switching levels for the transition from the coarse phase control to the fine phase control to the lock-in than for the transition in the reverse direction.

4. Decoder according to any one of the preceding claims, characterized in that the predetermined clock frequency is the operating clock frequency of a host system for the decoder.

5. Decoder according to any one of the preceding claims, characterized in that the virtual sampling frequency is four times the colour subcarrier frequency.

6. Decoder according to claim 5, characterized by a chroma gain control means (37), which evaluates the colour information of the burst pulse and generates a signal (coki) indicating whether the virtual sampling frequency has the desired relationship with respect to the colour subcarrier frequency.

7. Method for decoding composite video signals, wherein sample values of the video signal digitized at a first predetermined clock frequency are converted into video signal sample values at a second virtual sampling frequency, by determining the time position of the line sync pulse and producing the virtual sampling frequency in phase-locked manner as an integer multiple of the line frequency (coarse phase control), determining the phase of the colour subcarrier signal active during the burst pulse and setting the phase of the virtual sampling frequency synchronously with the phase of the colour subcarrier signal (lock-in), producing the sample values at the virtual sampling frequency by interpolation from the sample values at the first predetermined clock frequency and wherein from the video signal sample values at the virtual sampling frequency are recovered the luminance and colour signal components of the video signal.

8. Method according to claim 7, characterized in that following the coarse phase control and prior to the synchronization of the virtual sampling frequency with the phase of the subcarrier signal an edge of the line sync pulse is determined and the phase of the virtual sampling frequency is set synchronously with the phase of the colour subcarrier frequency (fine phase control).

9. Method according to claim 7 or 8, characterized in that the fine phase control is only enabled when the coarse phase control has been completed and the lock-in is only enabled when the fine phase control has been completed.

10. Method according to claim 9, characterized in that for the transition from the coarse phase control to the fine phase control to the lock-in other switching levels are provided than for the transition in the reverse direction.

11. Method according to any one of the preceding claims 7 to 10, characterized in that the first predetermined clock frequency is the operating clock frequency of a host system for the detector.
12. Method according to any one of the claims 7 to 11, characterized in that the virtual sampling frequency is set as an integer multiple of the line frequency corresponding to four times the expected colour subcarrier frequency.

13. Method according to any one of the claims 7 to 12, characterized in that the chrominance information of the burst pulse is evaluated and as a function of the evaluation result it is determined whether the virtual sampling frequency was produced with the correct relationship to the colour subcarrier signal.

14. Method according to any one of the claims 7 to 13, characterized in that the virtual sampling frequency is set as 910 or 1135 times the line frequency of the video signal.

Patentansprüche

1. Digitaler Multinorm-Dekoder für zusammengesetzte Videosignale, mit

 einem Abtastratenumsetzer (32), welcher die mit einer ersten vorgegebenen Taktfrequenz digitalisierten Abtastwerte des Videosignals in Videosignal-Abtastwerte einer zweiten virtuellen Abtastfrequenz umsetzt, einer Phasenregelschleife (33) zur Ansteuerung des Abtastratenumsetzers, welche einen Sync-Detektor aufweist, um den Zeilensynchronimpuls zu erfassen und die virtuelle Abtastfrequenz auf ein ganzzahliges Vielfaches der Zeilenfrequenz des Videosignals einzustellen, und einen Burst-Detektor aufweist, um nachfolgend die virtuelle Abtastfrequenz synchron zur Phase des Farbhilfsträgersignales des Videosignals einzustellen, und einer Dekodierer-Demodulator-Vorrichtung (34-40) zur Rückgewinnung der Luminanz- und Chrominanz-Signalbestandteile aus den Videosignal-Abtastwerten der virtuellen Abtastfrequenz.

2. Dekoder nach Anspruch 1, dadurch gekennzeichnet, daß

 der Sync-Detektor einen Grob-Sync-Detektor (60) und einen Fein-Sync-Detektor (61) umfaßt, wobei der Grob-Sync-Detektor (60) den Zeilen-Synchronimpuls des Videosignals erfaßt, um die virtuelle Abtastfrequenz auf ein ganzzahliges Vielfaches der Zeilenfrequenz des Videosignals einzustellen (Grobphasenregelung), und der Fein-Sync-Detektor (61) eine Flanke des Zeilen-Synchronimpulses erfaßt, um die Phase der virtuellen Abtastfrequenz synchron zur Zeilenfrequenz einzustellen (Feinphasenregelung), und der Burst-Detektor (62) die Phase des während des Burstimpulses aktiven Farbhilfsträgersignals erfaßt, um die Phase der virtuellen Abtastfrequenz synchron zur Phase der Farbhilfsträgerfrequenz einzustellen (Lock-in).

3. Dekoder nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Phasenregelschleife (33) eine Schwellwert/Hysterese-Vorrichtung (64) aufweist, welche entweder den Grob-Sync-Detektor (60) oder den Fein-Sync-Detektor (61) oder den Burst-Detektor (62) aktiviert, wobei sie für den Übergang von der Grobphasenregelung zur Feinphasenregelung zum Lock-in andere Schaltpegel vorgibt als für den Übergang in umgekehrter Richtung.

4. Dekoder nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die vorgegebene Taktfrequenz die Arbeitstaktfrequenz eines Host-Systems für den Dekoder ist.

5. Dekoder nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die virtuelle Abtastfrequenz das Vierfache der Farbhilfsträgerfrequenz beträgt.

6. Dekoder nach Anspruch 5, gekennzeichnet durch eine Farbverstärkungs-Kontrollvorrichtung (37), welche die Farbinformation des Burstimpulses auswertet und ein Signal (coki) erzeugt, das angibt, ob die virtuelle Abtastfrequenz das gewünschte Verhältnis zur Farbhilfsträgerfrequenz aufweist.

7. Verfahren zum Dekodieren von zusammengesetzten Videosignalen, bei dem

 mit einer ersten vorgegebenen Taktfrequenz digitalisierte Abtastwerte des Videosignals in Videosignal-Abtastwerte bei einer zweiten virtuellen Abtastfrequenz umsetzt werden, indem die zeitliche Lage des Zeilen-Synchronimpulses ermittelt wird und die virtuelle Abtastfrequenz phasenstarr
als ein ganzzahliges Vielfaches der Zeilenfrequenz erzeugt wird (Grobphasenregelung),
die Phase des während des Burstimpulses aktiven Farbhilfsträgersignales ermittelt wird und die Phase der
virtuellen Abtastfrequenz synchron zur Phase des Farbhilfsträgersignales eingestellt wird (Lock-in), und
die Abtastwerte bei der virtuellen Abtastfrequenz durch Interpolation aus den Abtastwerten bei der ersten
vorgegebenen Taktfrequenz erzeugt werden, und
aus den Videosignal-Abtastwerten bei der virtuellen Abtastfrequenz die Luminanz- und Chrominanz-Signal-
bestandteile des Videosignals zurückgewonnen werden.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß
nach der Grobphasenregelung und vor der Synchronisierung der virtuellen Abtastfrequenz zur Phase des Farb-
hilfsträgersignales eine Flanke des Zeilen-Synchronimpulses erfaßt und die Phase der virtuellen Abtastfrequenz
synchron zur Zeilenfrequenz eingestellt wird (Feinphasenregelung).

9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß
wenn die Grobphasenregelung abgeschlossen ist, und der Lock-in erst aktiviert wird, wenn die Feinphasenrege-
lung abgeschlossen ist.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß
für den Übergang von der Grobphasenregelung zur Feinphasenregelung zum Lock-in andere Schaltpegel vorgesehen werden als für den Übergang in umgekehrter
Richtung.

11. Verfahren nach einem der vorangehenden Ansprüche 7 bis 10, dadurch gekennzeichnet, daß
die erste vorge-
gebene Taktfrequenz die Arbeitstaktfrequenz eines Host-Systems für den Detektor ist.

12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß
die virtuelle Abtastfrequenz als
ganzzahliges Vielfaches der Zeilenfrequenz eingestellt wird, das dem Vierfachen der zu erwartenden Farbhilfs-
trägerfrequenz entspricht.

13. Verfahren nach einem der vorangehenden Ansprüche 7 bis 12, dadurch gekennzeichnet, daß
die Farbinforma-
tion des Burstimpulses ausgewertet wird und abhängig von dem Ergebnis der Auswertung bestimmt wird, ob die
virtuelle Abtastfrequenz im richtigen Verhältnis zum Farbhilfsträgersignal erzeugt wurde.

14. Verfahren nach einem der vorangehenden Ansprüche 7 bis 13, dadurch gekennzeichnet, daß
die virtuelle Ab-
tastfrequenz als das 910-fache oder das 1 135-fache der Zeilenfrequenz des Videosignales eingestellt wird.

Revendications

1. Décodeur multistandard numérique pour des signaux vidéo composites, comprenant un convertisseur de cadence
d'échantillonnage (32), qui convertit les valeurs d'échantillonnage du signal vidéo numérisé à une première fré-
quence d'horloge prédéterminée en des valeurs d'échantillonnage de signal vidéo à une seconde fréquence
d'échantillonnage virtuelle, une boucle à phase asservie (33) pour commander le convertisseur de cadence
d'échantillonnage et qui a un détecteur de synchronisation de manière à déterminer l'impulsion de synchronisation
de ligne et à régler la fréquence d'échantillonnage virtuelle à un multiple entier de la fréquence des lignes du signal
vidéo, et qui a un détecteur de salves de façon à régler ultérieurement la fréquence d'échantillonnage virtuelle de
manière synchron avec la phase du signal de sous-porteuse de couleur du signal vidéo, et un dispositif de dé-
modulation - décodage (34 - 40) pour la récupération des composantes du signal de chrominance et de luminance
dans les valeurs d'échantillonnage du signal vidéo à la fréquence d'échantillonnage virtuelle.

2. Décodeur selon la revendication 1, caractérisé en ce que le détecteur de synchronisation comprend un détecteur de
synchronisation grossière (60) et un détecteur de synchronisation fine (61), le détecteur de synchronisation
grossière (60) déterminant l'impulsion de synchronisation de ligne du signal vidéo, de manière à régler la fréquence
de synchronisation grossière à un multiple entier de la fréquence des lignes du signal vidéo (commande de la phase
grossière) et le détecteur de synchronisation fine (61) déterminant un flanc de l'impulsion de synchronisation de
ligne, de manière à régler la phase de la fréquence d'échantillonnage virtuelle de manière synchrone avec la
fréquence des lignes (commande de la phase fine), le détecteur de salves (62) déterminant la phase du signal de
sous-porteuse de couleur actif pendant l'impulsion de salves, de façon à régler la phase de la fréquence d'échan-
tillonnage virtuelle de manière synchrone avec la phase de la fréquence sous-porteuse de couleur (synchronisa-
3. Décodeur selon l'une quelconque des revendications précédentes, caractérisé en ce que la boucle à phase asservie (33) a un moyen de seuil/hystérésis (64) qui active soit le détecteur de synchronisation grossière (60) soit le détecteur de synchronisation fine (61) soit le détecteur de salves (62), et qui donne des niveaux de commutation différents pour la transition de la commande de la phase grossière à la commande de la phase fine jusqu'à la synchronisation que pour la transition dans le sens inverse.

4. Décodeur selon l'une quelconque des revendications précédentes, caractérisé en ce que la fréquence d'horloge prédéterminée est la fréquence d'horloge de fonctionnement d'un système hôte pour le décodeur.

5. Décodeur selon l'une quelconque des revendications précédentes, caractérisé en ce que la fréquence d'échantillonnage virtuelle est quatre fois la fréquence sous-porteuse de couleur.

6. Décodeur selon la revendication 5, caractérisé par un moyen de commande de gain de saturation (37), qui évalue les informations de couleur de l'impulsion de salves et génère un signal (coki), indiquant si la fréquence d'échantillonnage virtuelle a la relation désirée par rapport à la fréquence sous-porteuse de couleur.

7. Procédé de décodage de signaux vidéo composites, dans lequel des valeurs d'échantillonnage du signal vidéo numérisé à une première fréquence d'horloge prédéterminée sont converties en valeurs d'échantillonnage de signal vidéo à une seconde fréquence d'échantillonnage virtuelle, en déterminant la position temporelle de l'impulsion de synchronisation de ligne et en produisant la fréquence d'échantillonnage virtuelle de manière asservie en phase comme un multiple entier de la fréquence des lignes (commande de la phase grossière), en déterminant la phase du signal de sous-porteuse de couleur actif pendant l'impulsion de salves et en réglant la phase de la fréquence d'échantillonnage virtuelle de manière synchronie avec la phase du signal de sous-porteuse de couleur (synchronisation), en produisant les valeurs d'échantillonnage à la fréquence d'échantillonnage virtuelle par interpolation à partir des valeurs d'échantillonnage à la première fréquence d'horloge prédéterminée, et dans lequel à partir des valeurs d'échantillonnage du signal vidéo à la fréquence d'échantillonnage virtuelle sont récupérées les composantes des signaux de couleur et de luminance du signal vidéo.

8. Procédé selon la revendication 7, caractérisé en ce qu'aprés la commande de la phase grossière et avant la synchronisation de la fréquence d'échantillonnage virtuelle avec la phase du signal de sous-porteuse de couleur, un flanc de l'impulsion de synchronisation de ligne est déterminé et la phase de la fréquence d'échantillonnage virtuelle est réglée de manière synchronie avec la fréquence des lignes (commande de la phase fine).

9. Procédé selon la revendication 7 ou 8, caractérisé en ce que la commande de la phase fine n'est activée que lorsque la commande de la phase grossière a été achevée et la synchronisation n'est activée que lorsque la commande de la phase fine a été achevée.

10. Procédé selon la revendication 9, caractérisé en ce que pour la transition de la commande de la phase grossière à la commande de la phase fine jusqu'à la synchronisation, d'autres niveaux de commutation sont fournis que pour la transition dans le sens inverse.

11. Procédé selon l'une quelconque des revendications 7 à 10, caractérisé en ce que la première fréquence d'horloge prédéterminée est la fréquence d'horloge de fonctionnement d'un système hôte pour le décodeur.

12. Procédé selon l'une quelconque des revendications 7 à 11, caractérisé en ce que la fréquence d'échantillonnage virtuelle est réglée comme un multiple entier de la fréquence des lignes correspondant à quatre fois la fréquence sous-porteuse de couleur prévue.

13. Procédé selon l'une quelconque des revendications 7 à 12, caractérisé en ce que les informations de chrominance de l'impulsion de salves sont évaluées et en fonction du résultat d'évaluation, il est déterminé si la fréquence d'échantillonnage virtuelle a été produite avec la relation correcte au signal de sous-porteuse de couleur.

14. Procédé selon l'une quelconque des revendications 7 à 13, caractérisé en ce que la fréquence d'échantillonnage virtuelle est réglée comme 910 ou 1135 fois la fréquence des lignes du signal vidéo.
EP 0 690 631 B1

![Diagram of a signal processing system](image)

Fig. 2
Sync processing

Fig. 3
Fig. 4
Fig. 5

Fig. 6

Fig. 7
Fig. 8

Chroma AGC

Fig. 9

Threshold-Hysteresis

Fig. 10