EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 01.12.1999 Bulletin 1999/48

Application number: 94304192.1

Date of filing: 10.06.1994

Mass production method for the manufacture of solid electrolytic capacitors
Massenherstellungsverfahren von Festelektrolytkondensatoren
Procédé de fabrication en série de condensateurs à électrolyte solide

Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE


Divisional application: 96306117.7 / 0 893 808

Proprietor: AVX CORPORATION
New York, NY 10022 (US)

Inventor: Salisbury, Ian
Paington, S. Devon TO4 6JY (GB)

Representative: Smith, Norman Ian et al
fJ CLEVELAND
40-43 Chancery Lane
London WC2A 1JQ (GB)

References cited:
FR-A- 2 567 679
US-A- 3 787 961
US-A- 4 188 706

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
BACKGROUND AND FIELD OF THE INVENTION

[0001] The present invention is in the field of solid state capacitors and is directed more particularly to a mass production method for manufacturing surface mountable solid state capacitors.

DEFINITIONS

[0002] As employed herein the term solid state capacitor is intended to mean a capacitor formed by the method of providing a powdered mass of solid state capacitor forming metals (as hereinafter defined), compressing the mass to form a predetermined shape, sintering the compressed mass to integrate the mass into a unitary porous state, chemically reacting, e.g. by anodizing the porous mass to form a dielectric coating over the metallic surfaces within the mass, and thereafter forming a conductive coating over the dielectric coating (manganizing).

[0003] In the solid state capacitor the metallic components which have been anodized define the anode of the capacitor and the conductive or manganized coating over the dielectric forms the cathode or counter electrode.

[0004] The term solid state forming metals, as used herein, are defined as metals useful in the fabrication of solid state capacitors. Solid state metals include one or more of the following: tantalum, niobium, molybdenum, silicon, aluminum, titanium, tungsten, zirconium, and alloys of the above. The principal solid state metals currently in use are tantalum and to a lesser degree niobium.

[0005] Anodizing, as this term is used in the present application, is intended to mean the formation on the spongy metallic surfaces throughout the porous sintered mass of solid state metal a dielectric coating, typically by immersing the sintered metal in an electrolyte, i.e. a phosphoric acid solution, while the metal is connected to a positive source of DC current as respects a cathode immersed in the bath.

[0006] The term manganizing is intended to refer generically to the step of forming a conductive counter electrode coating over the dielectric resulting from anodizing. The manganizing step is typically performed by dipping the anodized device in a solution of manganese nitrate and heating the impregnated device in a moist atmosphere to convert the nitrate to a solid conductive manganese dioxide.

[0007] Both the anodizing and manganizing steps are well known in the art of forming solid state capacitors and may vary in accordance with the solid state metal employed, and the intended end characteristics of the capacitor.

PRIOR ART

[0008] Solid state capacitors are valued due in large measure to the fact that extremely high capacitances may be provided in a relatively limited volumetric space as a result of the large surface area of metal within the sintered porous mass. It is, for example, feasible to provide a tantalum capacitor having a value of 50 to 100 MFD at working voltages of about 10 volts in a capacitor body having a volume of .027cc.

[0009] Heretofore, much of the benefit of compactness was compromised as a result of the necessity large encapsulation methods employed. More particularly, an appreciation of the advance of the instant invention may best be derived by reference to the conventional mode of fabricating commercially available solid state capacitors.

[0010] In such manufacture, the end of a rod of tantalum metal is applied to a mass of compressed tantalum powder. The rod is bonded to the tantalum powder mass by co-sintering the rod and powder or by welding the rod to a pre-sintered mass of the powder. Thereafter, the prefabricated units are anodizing and manganized, such procedures being typically carried out by gripping the tantalum rods and utilizing such rods as a "handle" for the succeeding steps.

[0011] The capacitor implants must now be packaged in a manner enabling their use in commercial applications. Due in large measure to the fragility of the bond between the anode rod and tantalum mass, it is necessary typically to encase the capacitor in a lead frame construction having terminations permitting attachment to a PC board or the like. Typically, lead frame attachment involves effecting a cathode connection to the body of the capacitor and effecting welds between the anode rod and other portions of the lead frame, encapsulating the device while still connected to the lead frame, and thereafter severing connections between projecting portions of the lead frame and remainder thereof to provide the finished capacitor.

[0012] As is well known to those skilled in the art, the described conventional solid state capacitor manufacturing techniques are replete with manufacturing difficulties and result in a finished capacitor package, the volume of which is several times the volume of the actual capacitance generating components. As noted, the connection between anode rod and capacitor body is fragile and great care must be taken during processing of the capacitor preforms during the anodizing, manganizing, and subsequent steps.

[0013] Additionally, welding of solid state metals, as is necessary in conventional manufacture, is a difficult procedure.

[0014] In the described conventional process great care must be taken to assure that the cathode coating does not short to the anode rod and the necessity of spacing these components further increases the overall size of the component.
capacitors of the metallized plastic type made by winding individual capacitors, coating the termina-
tions by vapor deposition using a metal having a higher melt point than the solder which will be used
to attach the capacitor to a PC board, coating the capacitor with resin and then grinding away portions
of the resin to expose desired parts of the underlying metal termination material.

US-A-3787 961 discloses a method where discrete islands of a film forming metal are formed on a
layer of solderable metal by etching, followed by dielectric oxide formation, manganese oxide deposition, de-
position of a continuous conductive layer across pairs of the islands, coating with resin, etching the solderable
metal and severing the individual capacitors.

SUMMARY OF THE INVENTION

The present invention may be summarized as directed to an improved method of manufacturing simul-
taneously a multiplicity of surface mountable solid state capacitors.

According to one aspect of the present invention there is provided a method of manufacturing solid
state capacitors comprising providing a metallic substrate, mounting on said substrate a wafer of powdered
solid state capacitor forming metal having a lower surface, engaging said substrate and an upper surface par-
allel to and spaced from said substrate, sintering said substrate and wafer to bond said lower surface of said
wafer to said substrate and integrate the powder of said wafer into a porous mass, dividing said wafer into a plu-
rality of discrete units separated by channels by forming a first series of cuts through said wafer in planes per-
pendicular to said substrate, subjecting said divided wafer to an anodizing step to form a dielectric coating
throughout said porous mass, forming a counter-electrode coating over said dielectric coating, electrically
and mechanically coupling a metallic plate to said counter-electrode coating, filling said channels with insulat-
ing material, and separating individual capacitors by cuts formed through said substrate and insulating ma-
terial.

One embodiment of the invention uses a sub-
strate of metal preferably comprised of the same metal as or a metal compatible with the solid state metal from
which the capacitor will be formed. A compressed wafer of powdered solid state metal is mounted on the sub-
strate, the wafer being of a size many times larger than the size of the individual capacitors. The wafer and sub-
strate are cosintered to bond the wafer to the substrate and to integrate the powder into a porous mass.

The sintered wafer is divided into a multiplicity of sub-units by cuts formed through the wafer and per-
pendicular to the substrate. Either before or after the sub-division the wafer and/or sub-divided units are an-
odized and manganized, it being understood that if the
anodizing and manganizing procedures are carried out prior to sub-division, the anodizing and manganizing steps are again repeated after sub-division. The areas between the discrete sub-units are treated, preferably by a resin injection step, so as to isolate the interface between the substrate and wafer from other areas of the wafer so that the manganizing steps do not short circuit the substrate, which will form the anode of the device, with the cathode of the capacitor.

[0024] A metal member is applied to the upper surface of the processed wafer in mechanical and electrical contact with such upper surface which forms the counter electrode. The void areas between the discrete capacitors formed as a result of the cutting step or steps previously performed are now filled by injecting resin into the space defined between the substrate and counter electrode plate which act in the manner of components of a mold whereby the entirety of the spaces defined by the cuts are filled with insulating resin material.

[0025] Finally, the composite is cut along cutting lines which register with the previously formed cuts, i.e. through the counter electrode plate, the resin separating the individual capacitors, and the substrate, whereby there are formed finished capacitors which are already encapsulated except at the ends defined by the counter electrode plate and the substrate, which components define the terminations of the capacitor permitting attachment of the capacitor as a surface mount on the PCB board, the substrate forming the anode and the counter electrode the cathode of the capacitor.

[0026] As will be appreciated by skilled workers in the art familiar with conventional solid state capacitors and their methods of manufacture, numerous advantages flow from the manufacturing method generally described.

[0027] Firstly, by eliminating the conventional anode wire, the volumetric efficiency of the capacitor, i.e. the capacitance obtained within a particular volume of unit is increased by a factor to two to three times.

[0028] Additionally, major manufacturing difficulties such as handling the preform using an anode wire and welding of the anode wire, as well as the necessity for employing lead frames are completely eliminated. The method further eliminates the industry wide problem of a short circuiting between the anode wire and the cathode coating covering conventional solid state capacitors.

[0029] An important advantage of the invention resides in the ability of providing as a stock item a substrate with a sintered solid state metal wafer bonded thereto. This item may be tailored to form capacitors of desired capacitance by simply varying the spacing of cuts formed in the wafer and, hence, capacitor size.

[0030] Importantly, the costs of encapsulation are significantly reduced by virtue of the utilization of the counter electrode plate and substrate in effect as boundaries of a gap mold for injection of insulating resin which separates the individual capacitors and, after sawing, forms the final encapsulation of the finished capacitor.

[0031] The invention will be described now by way of example only, with particular reference to the accompanying drawings. In the drawings:

[0032] Figs. 1 through 9 are schematic sectional views illustrating the sequential steps of manufacturing a capacitor in accordance with a first embodiment of the invention.

[0033] Fig. 3a is a perspective view of a sub-assembly shown at the stage of Fig. 3.

[0034] Fig. 10 is an enlarged fragmentary perspective view of a finished capacitor in accordance with the invention made by the method of Figs. 1 through 9.

[0035] Figs. 11 through 19 are schematic sectional views depicting a variation of the method at progressive stages.

[0036] Fig. 20 is an enlarged fragmentary perspective view of a finished capacitor made in accordance with the method of Figs. 11 through 19.

DETAILED DESCRIPTION OF THE DRAWINGS

[0037] Referring now to the drawings, there is disclosed in Figs. 1 through 9 a sequential series of sectional views depicting a variation of the method at progressive stages.

[0038] Fig. 20 is an enlarged fragmentary perspective view of a finished capacitor made in accordance with the method of Figs. 11 through 19.

DETAILED DESCRIPTION OF THE DRAWINGS

[0039] Referring now to the drawings, there is disclosed in Figs. 1 through 9 a sequential series of sectional views illustrating various steps of manufacturing capacitors in accordance with the invention in accordance with a first embodiment thereof.

[0040] As will be evident to those skilled in the art the dimensions and proportions of the various elements have been exaggerated for purposes of clarity.

[0041] In Fig. 1 there is disclosed a substrate 10 of solid state metal illustratively tantalum. To the upper surface 11 of substrate 10 there is preferably applied a thin layer of tantalum grains 12, which are fused to the substrate, the grains 12 functioning to provide a roughened surface to augment bonding of the wafer 13 as will be described hereinafter. As an alternate to the grains 12 the surface 11 may be roughened.

[0042] To the upper surface 11 of substrate 10 there is applied a wafer 13 comprised of compressed tantalum powder admixed with binder to form a coherent mass. As is known in the art, the particles defining the powder forming wafer 13 may vary in size ranges and such grain size will determine the eventual characteristics of the resultant capacitors. The wafer 13 and substrate 10 are thereafter co-sintered to initially burn-off the organic binders and thereafter to convert the powder of wafer 13 into an integral porous mass. The sintering also
bonds the lower surface 14 to the upper surface 11 of substrate 10 mechanically and electrically connecting the touching surfaces.

By way of illustration and without limitation, the substrate may vary within an optimal range of 0.05 to 0.03 inches (0.127 to 0.762mm) in thickness. The seeding powder 12 employs grains larger that the wafer powder and may vary in accordance with the powder size employed in the wafer 13 and by way of illustration may optimally be in the range of from about 100 to 800 microns.

By further way of example and assuming that the substrate and powder are comprised of tantalum, a sintering at 2000 degrees C for period of from 5 to 60 minutes will be effective to create the desired bonding and porosity, the time factor being a function of particle size and mass of material forming the wafer. The processing of solid state capacitor forming metals including the formation of pellets, sintering steps and further processing steps (anodizing and manganizing) necessary to convert the porous mass into a capacitor are all well known in the art and the description thereof will be included herein only briefly, since such processing steps do not form a part of the instant invention.

The substrate 10 and sintered wafer 13, as illustrated in Fig. 2, is next subjected to sawing steps by cuts effected perpendicular to the plane of substrate 10 in a crisscross pattern (see Fig. 3a) to divide the wafer 13 into a multiplicity of discrete capacitor forming units 15. The cuts are preferably effected to a depth to expose the surface 11 of substrate 10 or slightly to penetrate the surface. Optionally, as a means for facilitating handling of the composite comprised of the substrate 10 and wafer 13, the substrate may be embedded in a block of resin (not shown) to a depth which exposes the upper surface and wafer.

The subdivided composite article of Figs. 3 and 3a is thereafter subjected to processing steps to convert the porous sintered mass of the wafer remaining after the sawing steps into capacitors. The processing steps are well known in the art and comprise an anodizing step, wherein the wafer is immersed in an electrolyte bath, i.e., a 1% phosphoric acid solution, while connecting the substrate to a positive source of DC current as respects a cathode immersed in the bath. This procedure results in the conversion of the portions of the wafer exposed to the solution, as well as the exposed portions of the substrate into a dielectric material, illustratively where the metal employed is tantalum to tantalu pentoxide.

The capacitor forming procedure includes subsequent formation of a counter electrode, the counter electrode forming step being effected, for example, by dipping the composite article in solution of manganese nitrate, thereafter heating the device in a moist atmosphere to about 325 degrees C to convert the nitrate to conductive manganese dioxide. The process of anodizing and manganizing may be repeated a multiplicity of times as is conventional to assure formation of a desired dielectric and over coating of counter electrode, it being understood that repetition is required due to ruptures or breaks in the dielectric which may be formed as a result of heating during fabrication of the counter electrode, such ruptures or breaks being necessarily re-anodized to assure non-shortening between the anode (defined by the tantalum metal) and the cathode or counter electrode (defined by the manganizing process).

The steps of treating the porous tantalum mass to form a capacitor are described in detail in U.S. patents 4,059,887 and 4,945,452.

As shown in Fig. 4 a second series of saw cuts S2 is formed in alignment with the first series of saw cuts S1, the saw cuts S2 penetrating more deeply into the substrate and defining channels 16 therein. At this point, it should be noted that the sequence of treating the material of the wafer by anodizing and manganizing is not critical to the invention. For example, it is feasible to anodize and manganize the entire wafer 13 before effecting saw cuts S1 and S2 or to effect saw cuts before treatment of the wafer. Of course, if anodizing is effected before cutting, it will be necessary to re-treat the saw cut composite by again anodizing and manganizing. The sequence of treatment is best determined by trial and error and is dependent upon such factors as the size of the individual capacitors, the nature (particle size) of the solid state material powder selected and the like as well known in the art.

As shown in Fig. 5 the channels 16 have been filled to the level of the surface 11 or slightly thereabeside with insulating composition 17. While preferably, the resin employed may be a liquid epoxy, any of a wide variety of liquid resins which subsequently harden may be employed.

Desirably, following formation of the second saw cuts S2 and in advance of filling the channels, the device is subjected to a further anodizing step to provide an anodizing insulative layer over the metal exposed by the saw cuts S2.

As will be apparent from the preceding description, the resin 17 (and the post saw cut anodizing step) have assured that the sole electrical connection between the metallic components of the sintered tantalum powder forming wafer 13 is at the surface 11 forming the interface between the discrete capacitor forming members 15 and the substrate.

As shown in Fig. 6, the upper surfaces 18 of the elements 15 have been provided, as is conventional, with a first layer 19 of conductive carbon and a covering layer 20 of silver thereby to effect electrical connection to exterior (upper) surface portions of the counter electrode formed by manganizing.

As shown in Fig. 7, a cathode plate 21 has been affixed, i.e. by a conductive adhesive, to the upper surface 22 of the silver coating 20. Following setting of the adhesive, the voids 23 defined by the initial saw cut S1 are filled with liquid insulating resin material (e.g.
epoxy) and permitted to cure. Filling of the areas is greatly facilitated by the fact that the substrate 10 and cathode plate 21 together define a cell for containing injected resin.

[0055] Finally, the composite unit illustrated in Fig. 8 is cut along saw lines S3 which register with saw lines S1 and S2, the sawing step resulting in the formation of finished capacitors C as illustrated in Fig. 10.

[0056] As will be apparent, no further processing or encapsulating are required, the saw cuts S3 defining finished encapsulated solid state capacitors. The capacitors are surface mountable, the anode 10" being comprised of a segment of substrate 10 and the cathode or counter electrode 21" being comprised of an increment of the cathode plate 21.

[0057] A significant advantage of this invention resides in the ability to fabricate preforms (Fig.2) comprised of a stock size of substrate and wafer 13. It is possible by merely varying the spacing of the saw cuts to produce capacitors of a variety of end characteristics in accordance with the requirements of a particular user.

[0058] Without limitation, and in compliance with the best mode requirements, a preferred manufacturing sequence for the practice of the method of Figs. 1 through 9 is as follows:

SEQUENCE OF MANUFACTURE

[0059]

1. Provide tantalum substrate.
2. Apply tantalum grains and heat to bond grains to substrate.
3. Apply and sinter tantalum wafer to integrate powder and bond to substrate and thereafter anodize.
4. Manganese.
5. Saw wafer (S1).
6. Form dielectric over saw cuts.
7. Add first resin barrier (17).
8. Manganese.
9. Apply carbon coat.
10. Apply silver coat.
11. Bond cathode plate using conductive adhesive.
12. Inject second resin encapsulation (24).
13. Cut wafer into discrete capacitors.

[0060] Illustrated in Figs. 11 through 19 is a modification of the method described in conjunction with Figs. 1 through 9. The primary distinction between the methods resides in the elimination of the first resin infusing step which results in the addition of resin components 17.

[0061] In the description of the procedures as illustrated in Figs. 11 through 19, like parts have been given like reference numerals to those used in respect of the description of Figs. 1-9.

[0062] In accordance with the embodiment (Figs. 11-19), following formation of the first saw cut (S1) the capacitor sub-components 15 and exposed surfaces of the substrate 10 are provided with a dielectric coating 30 to seal any exposed metallic components exposed by the saw cuts and, thus, provide an insulating barrier protecting the boundary between substrate and base of members 15. The device is thereafter manganized following which a second series of narrower saw cuts (S2) are formed in registry with saw cuts S1. Thereafter, the composite is subjected to a further dielectric forming step to assure that the edges exposed by saw cuts S2 are sealed by the dielectric coating (Fig.16). The composite is thereafter manganized to define a counter electrode and processed as before, i.e., by the application of carbon layer 19, silver layer 20 and application of cathode plate 21. The voids between the capacitor members 15 are thereafter filled with resin insulating mass 24 as before and are sawed along the saw lines S3 to define the finished capacitor 25, illustrated in Fig. 20.

[0063] As with the method as described with respect to Figs. 1 through 9 the sequence of steps may be varied to a degree. With regard to the embodiment of Figs. 11 through 19 a preferred sequence is as follows:

SEQUENCE OF MANUFACTURE (Figs. 11 through 19)

[0064]

1. Roughen or sinter metal particles to substrate.
2. Mount wafer and co-sinter wafer and substrate.
3. Form dielectric.
4. Saw to level of substrate (S1).
5. Further dielectric formation to seal metal exposed by saw.
6. Manganese.
7. Form deep cuts (S2) into substrate.
8. Re-anodize to form dielectric in grooves defined by S2 sawing step.
10. Apply carbon and silver to upper edges of capacitors.
11. Attach cathode plate to silver surfaces using conductive adhesive.
12. Inject resin.
13. Separate individual capacitors by saw cuts (S3).

[0065] As will be apparent from the preceding description, there is disclosed herein novel methods of forming solid state capacitors. Common to the methods of the invention is the provision between a cathode plate and an anode plate of a multiplicity of capacitors separated by void areas, the voids being filled with insulating-encapsulating resin, the individual capacitors being separated from the matrix only after the capacitors have been completely formed and encapsulated. The final sawing step results in the provision of surface mountable capacitors which are fully encapsulated and terminated, the severed edges of the substrate defining the anode termination and the edges of the cathode
plate defining the counter electrode or cathode terminating.

[0066] The capacitor resulting from practice of the process represents a highly efficient use of space providing a package whose volume is only about a third of the volume of conventional solid state capacitors. Unlike such conventional capacitors which are subject to failure based on dislodgement of the anode rod from the sintered pellet and also as a result of fracture of the anode rod connection to the termination, the capacitor of the present invention is virtually failure proof.

[0067] The manufacturing methods are further unique in that the resin components in addition to functioning as encapsulation of the finished capacitor function in addition as a means for facilitating the manufacturing procedure by forming isolations of the anode from the counter electrode (Method 1) and in accordance with both described variations, rigidly the matrix during the final sawing operations.

[0068] As will be apparent to those skilled in the art and familiarized with the instant disclosure numerous variations in structural details and methodology will occur without departing from the invention the scope of which is defined by the appended claims.

Claims

1. A method of manufacturing solid state capacitors comprising providing a metallic substrate (10), mounting on said substrate a wafer (13) of powdered solid state capacitor forming metal having a lower surface (14), engaging said substrate (10) and an upper surface parallel to and spaced from said substrate, sintering said substrate (10) and wafer (13) to bond said lower surface (14) of said wafer to said substrate and integrate the powder of said wafer into a porous mass, dividing said wafer (13) into a plurality of discrete units (15) separated by channels by forming a first series of cuts (S1) through said wafer in planes perpendicular to said substrate (10), subjecting said divided wafer to an amorphizing step to form a dielectric coating throughout said porous mass, forming a counter-electrode coating over said dielectric coating, electrically and mechanically coupling a metallic plate to said counter-electrode coating, filling said channels with insulating material (24), and separating individual capacitors by cuts (S3) formed through said substrate (10) and insulating material (24).

2. A method according to claim 1, wherein said first series of cuts is effected to a depth to define channels in said substrate (10), the method including filling said channels with insulating material (17) at least to the level of said surface of said substrate (10) prior to formation of said counter electrode coating.

3. A method according to claim 1, and including the step of fusing granular increments (12) of said solid state metal of larger particle size than the particle size of the powder of said wafer (13) to said substrate (10) in advance of mounting said wafer.

4. A method according to any preceding claim, wherein said solid state capacitor forming metal comprises tantalum.

5. A method of claim 4, wherein at least the uppermost surface of said substrate (10) comprises tantalum.

6. A method according to any preceding claim, wherein said first series of cuts (S1) is formed to a depth at least to the level of said upper surface, said method including the step of forming a second series of units (S2) in registry with said series (S1), said second cuts (S2) being of lesser width than said first series and extending below said upper surface to define paths in said substrate (10), and thereafter filling said paths with a first insulating resin mass (17) at least to the level of said surface prior to formation of said counter-electrode coating.

Patentansprüche

1. Verfahren zur Herstellung von Feststoffkondensatoren, gekennzeichnet durch Bereitstellen eines metallischen Substrats (10), Montieren eines Wafers (13) aus pulverförmigem, den Feststoffkondensator bildendem Metall, dessen untere Fläche (14) auf dem Substrat (10) liegt und dessen obere Fläche parallel und beabstandet zu dem Substrat verläuft, Sintern des Substrats (10) und des Wafers (13) zur Verbindung der unteren Fläche (14) des Wafers mit dem Substrat und zum Integrieren des Pulvers des Wafers in eine poröse Masse, Unterteilen des Wafers (13) in mehrere, durch Kanäle getrennte diskrete Einheiten (15) durch Ausführen einer ersten Serie von Schnitten (S1) durch das Wafer in Ebenen senkrecht zum Substrat (10), Eloxieren des unterteilten Wafers, um die poröse Masse durchgehend mit einer dielektrischen Schicht zu überziehen, Bilden einer Gegenlektrodenischicht auf der dielektrischen Schicht, elektrisches und mechanisches Verbinden einer Metallplatte mit der Gegenlektrodenischicht, Füllen der Kanäle mit Isolationsmaterial (24) und Abtrennen einzelner Kondensatoren durch Schnitte (S3) durch das Substrat (10) und das Isolationsmaterial (24).

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die erste Serie von Schnitten bis zu einer Kanäle definierenden Tiefen in das Substrat (10) durchgeführt wird, wobei das Verfahren ein Auffül-
len dieser Kanäle mit Isolationsmaterial (17) bis wenigstens zu der Oberfläche des Substrats (10) umfasst, bevor die Gegenlektrodschicht gebildet wird.


5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß wenigstens die oberste Fläche des Substrats (10) Tantal enthält.

6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine erste Serie von Schnitten (S1) bis zu einer Tiefe von mindestens der Ebene der oberen Fläche durchgeführt wird und dieses Verfahren den Schritt des Ausformens einer zweiten Serie von Einheiten (S2) in Deckung mit der ersten Serie (S1) umfasst, wobei die zweiten Einschnitte (S2) eine schmalere Breite aufweisen als die erste Serie und sich bis unterhalb der oberen Ebene erstrecken, um Bahnen in dem Substrat (10) zu definieren, und nachfolgend diese Bahnen mit einer ersten Isolationsharzmasse (17) bis wenigstens zu der Ebene der Fläche ausgefüllt werden, bevor die Gegenlektrodschicht aufgebracht wird.

Revendications

1. Un procédé de fabrication de condensateurs à solide, comprenant la fourniture d'un substrat métallique (10), le montage sur ledit substrat d'une tranche (13) constituée d’un métal en poudre formant condensateur à solide, ayant une surface inférieure (14), venant en contact avec ledit substrat (10), et une surface supérieure parallèle à et espacée dudit substrat, le frittage dudit substrat (10) et de la tranche (13) pour isole la surface inférieure (14) de ladite tranche audit substrat et intégrer la poudre se trouvant sur ladite tranche en une masse poreuse, diviser ladite tranche (13) en une pluralité d'unités discrètes (15) séparées par des canaux, par formation d'une première série de découpages (S1) dans le volume de ladite tranche, dans des plans perpendiculaires audit substrat (10), soumission de ladite tranche divisée à une étape d'ancodisation afin de former un revêtement diélectrique dans le volume de ladite masse poreuse, formation d'une contreélectrode en revêtement dudit revêtement diélectrique, couplage électrique et mécanique d'une plaque métallique audit revêtement de contre-électrode, remplissage desdits canaux par un matériau isolant (24), et séparation des condensateurs individuels par des découpages (S3) formées dans ledit substrat (10) et le matériau isolant (24).

2. Un procédé selon la revendication 1, dans lequel ladite première série de découpages est effectuée à une profondeur définissant des canaux dans ledit substrat (10), le procédé comprenant le remplissage desdits canaux avec du matériau isolant (17) au moins au niveau de ladite surface dudit substrat (10), avant la formation dudit revêtement de contre-électrode.

3. Un procédé selon la revendication 1, et comprenant l'étape de fusion d'incréments granulaires (12) dudit métal à solide, d'une taille de particule supérieure à la taille de particule de la poudre de ladite tranche (13) sur ledit substrat (10), préalablement au montage de ladite tranche.

4. Un procédé selon l'une quelconque des revendications précédentes, dans lequel ledit métal servant à former le condensateur à solide est constitué de tantale.

5. Un procédé selon la revendication 4, dans lequel au moins la surface supérieure dudit substrat (10) est constituée de tantale.

6. Un procédé selon la revendication 1, dans lequel lesdites première série de découpages (S1) sont formées à une profondeur allant au moins jusqu'au niveau de ladite surface supérieure, le dit procédé comprenant l'étape de formation d'une deuxième série d'unités (S2) en coincidence avec ladite série (S1), lesdites deuxième découpages (S2) étant d'une largeur inférieure à celle de ladite première série et s'étendant au-dessous de ladite surface supérieure pour définir des chemins dans ledit substrat (10), puis remplissage desdits chemins par une première masse de résine isolante (17), au moins jusqu'au niveau de ladite surface, avant la formation dudit revêtement de contre-électrode.