(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

(21) Application number: 93918233.3

(22) Date of filing: 19.07.1993

(51) Int Cl.: H04N 1/411, H04N 1/00

(86) International application number: PCT/US93/06741

(87) International publication number: WO 94/06241 (17.03.1994 Gazette 1994/07)

(54) APPARATUS FOR TRANSMITTING AND RECEIVING ENCODED DATA
GERÄT ZUM ÜBERTRAGEN UND EMPFANGEN VON KODIERTEN DATEN
APPAREIL DE TRANSMISSION ET DE RECEPTION DE DONNEES CODEES

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 31.08.1992 US 937085

(43) Date of publication of application:
22.11.1995 Bulletin 1995/47

(73) Proprietor: MOTOROLA, INC.
Schaumburg, IL 60196 (US)

(72) Inventor: JASINSKI, Leon
Ft. Lauderdale, FL 33301 (US)

(74) Representative: Gibson, Sarah Jane et al
Motorola
European Intellectual Property Operations
Midpoint
Alencon Link
Basingstoke, Hampshire RG21 7PL (GB)

(56) References cited:
WO-A-92/11615
US-A-4 091 424
US-A-4 977 602

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
Description

Field of the Invention

This invention relates in general to communication systems, and more specifically to communication systems for transmitting and receiving encoded data generated from readable text characters.

Background of the Invention

Communication systems for receiving alphanumeric input from a keyboard device and transmitting the received text to a portable receiver such as a selective call receiver are well-known in the art. A drawback to such systems is that a suitable keyboard device may not always be conveniently available to a person desiring to send a text message. One way around this drawback is to provide one or more facsimile inputs for the communication system, the facsimile inputs being compatible with a standard protocol used for communications between facsimile machines. Then, the person desiring to send the text message may print the message on a sheet of paper and send it from a facsimile machine to the communication system.

Because the message comprises scanned text characters, to save transmission time the communication system typically uses conventional optical character recognition (OCR) techniques to convert the characters into character codes, e.g., ASCII codes. The use of OCR causes a new problem, because OCR may not be able to recognize 100% of the human-readable characters in a message. This is particularly true when the message comprises hand printed or handwritten characters.

Published International Application WO-A-92/11615 discloses a facsimile paging system which encodes and decodes both graphic and alphanumeric symbol data. U.S. Patent No. US-A-4,091,424 discloses a facsimile compression system which determines character blocks and then sends data corresponding to the location, size, and contents of each character block. U.S. Patent No. US-A-4,566,039 discloses a facsimile system in which a facsimile signal is received and converted into document character pattern data. The character pattern data is subjected to a character recognition process. A character which cannot be recognized is processed as it is intact, while a recognized character is converted into a standard character.

Conventional OCR systems use various algorithms to determine a confidence level for the recognition of each character. When the confidence level is below a pre-determined level, some conventional OCR systems substitute a special character, e.g., "?", for the unrecognizable character. If a message contains too many such unrecognizable character substitutions, the message may become indecipherable when it arrives at the portable receiver. This can occur even for a message that would have been human readable if received as a facsimile and printed on a sheet of paper by a facsimile machine.

Thus, what is needed is a better method and apparatus for encoding, transmitting, and receiving text messages sent from facsimile machines and accepted by facsimile inputs in a communication system.

Summary of the Invention

An aspect of the present invention is an apparatus in a wireless communication system which transmits and receives by wireless communication signals encoded data derived from input data generated by a user. The input data comprises substantially readable text characters. The apparatus comprises, in a wireless communication system controller, an input element for accepting the input data, and a memory coupled to a processor for storing encoded data generated by an optical character recognition element and a graphic encoder. The apparatus further comprises, in a wireless communication system controller, a wireless communication transmitter controller coupled to the processor for controlling wireless communication transmissions of the encoded data, and the processor coupled to the input element for processing the input data. The processor comprises the optical character recognition element, the graphic encoder, and position description element for describing original positions relative to one another of the substantially readable text characters. The apparatus is characterized in that the optical character recognition element is arranged to encode a first portion of the substantially readable text characters of the input data into character code format data, the first portion comprising characters that are recognizable by the optical character recognition element and that have not been specially identified by the user as ineligible for encoding as character code format data. The apparatus is further characterized in that the graphic encoder is arranged to encode a second portion of the substantially readable text characters of the input data into graphic code format data, the second portion comprising characters that are not recognizable by the optical character recognition element and characters that have been specially identified by the user as ineligible for encoding as character code format data, even though the specially identified characters may be recognizable by the optical character recognition element.

Brief Description of the Drawings

FIG. 1 is an electrical block diagram of a communication system in accordance with the preferred embodiment of the present invention.

FIG. 2 is an electrical block diagram of a paging control center in accordance with the preferred embodiment of the present invention.

FIG. 3 is an electrical block diagram of a selective call receiver in accordance with the preferred embodi-
ment of the present invention.

FIG. 4 depicts a text message received at a facsimile input, shown as the message would appear if printed by a facsimile machine receiving the same input signals present at the facsimile input, in accordance with the preferred embodiment of the present invention.

FIG. 5 depicts a reproduction of the text message as reproduced in the selective call receiver in accordance with the preferred embodiment of the present invention.

FIG. 6 is a flow chart of a method of transmitting encoded data in accordance with the preferred embodiment of the present invention.

FIG. 7 is a flow chart of a method of receiving the encoded data in accordance with the preferred embodiment of the present invention.

Description of the Preferred Embodiment

With reference to FIG. 1, an electrical block diagram of a communication system in accordance with the preferred embodiment of the present invention depicts a facsimile machine 104. A text message 102 comprising handwritten or printed text on a sheet of paper is loaded into the facsimile machine 104 for transmission to a selective call receiver 116. The facsimile machine 104 is coupled to the public switched telephone network 108 by a first telephone line 106. By dialing a telephone access number for a second telephone line 110 coupled to a facsimile input 202 (FIG. 2) of a paging control center 112, a user of the facsimile machine 104 can couple the facsimile machine 104 with the paging control center 112 for transmitting the text message 102 to the paging control center 112. The facsimile machine 104 and the facsimile input 202 are compatible with, for example, the well-known Group Three facsimile standard of the CCITT. The paging control center 112 processes and encodes the text message 102, which is then coupled to a paging transmitter 114 by a control line 113 for transmitting the text message 102 in encoded format to the selective call receiver 116 capable of receiving and displaying both ASCII encoded characters and graphically encoded images.

With reference to FIG. 2, an electrical block diagram of the paging control center 112 in accordance with the preferred embodiment of the present invention depicts the facsimile input 202 coupled to a processor 204 for processing the text message 102 (FIG. 1) received from the second telephone line 110. The processor 204 is coupled to a random access memory (RAM) 212 for storing data both before and after processing by the processor 204, and to a read-only memory (ROM) comprising software processing elements for processing the data received by the facsimile input 202. The software processing elements comprise a conventional facsimile imager 205 for creating a picture element (pel) map of the text message 102 and storing the pel map in the RAM 212.

The software processing elements further comprise a conventional optical character recognition (OCR) element 206 that parses the pel map to convert recognizable characters of the text message 102 into corresponding ASCII symbols and character size information for reducing transmission time between the paging control center 112 and the selective call receiver 116. The software processing elements additionally comprise a conventional graphic encoding element 208 that encodes graphic images and size information for characters that the OCR element 206 is unable to recognize with a confidence level higher than a pre-determined level. The software processing elements still further comprise a position describing element 210 that provides X-Y coordinate data for describing the relative positions of the characters of the text message 102 in accordance with the present invention.

The paging control center 112 also includes a transmitter controller 214 coupled to the paging transmitter 114 (FIG. 1) by the control line 113 for controlling the transmission of the text message 102 (FIG. 1) after encoding of the text message 102 for transmission. The transmitter controller 214 is coupled to the processor 204 by a management line 216 for managing the transmitter controller 214 and by a data line 218 for providing the text message 102 to the transmitter controller 214 after encoding by the processor 204.

One of ordinary skill in the art will appreciate that an alternate embodiment of the present invention would replace the facsimile input 202 with a page scanner for creating the pel map of the text message 102 (FIG. 1) when the sheet of paper comprising the text message 102 is scanned locally by the page scanner. One will also appreciate that the facsimile imager 205 will not be required when a page scanner is used for local input, because the page scanner provides the pel map to the processor 204 in a format ready to be stored in the RAM 212 for later parsing by the OCR element 206.

With reference to FIG. 3, an electrical block diagram of the selective call receiver 116 in accordance with the preferred embodiment of the present invention depicts an antenna 302 for intercepting radio signals comprising address and encoded text messages. A receiver 304 is coupled to the antenna 302 for demodulating the received radio signals to derive the address and encoded text messages. A decoder 306 is coupled to the receiver 304 for decoding the derived address messages. A microprocessor 308 is coupled to the receiver 304 for further processing the derived encoded text messages in accordance with the present invention.

The microprocessor 308 is coupled to a RAM 330 for storing received data both before and after processing by the processor 308. The microprocessor 308 is also coupled to a ROM 316, which comprises software processing elements that include a conventional character generation element 320 for generating characters in response to received character codes and a conventional scaler 322 for scaling the size of the generated

3
characters in response to received character size information in conjunction with display capabilities of a display 314. The software processing elements also include a graphics generator 324 for generating graphic images in response to received graphic codes, and a sizing element 326 for sizing the graphic images relative to in response to received graphic image size information in conjunction with the display capabilities of the display 314. In addition, the software processing elements include a positioning element 328 for positioning the characters and graphic images generated so that the relative positions of the corresponding characters in the text message 102 (FIG. 1) are substantially reproduced.

The microprocessor 308 is also coupled to the display 314 for displaying received messages. Because the display 314 must be capable of displaying graphic characters in finely adjustable vertical and horizontal positions, the display is of a type that contains a continuous array of pixels in both the horizontal and vertical directions. A display of this type, for example, is used in portable LCD television receivers. The microprocessor 308 is also coupled to an alert device 312 comprising either an audible or tactile alert for alerting a user in response to receiving a message, and to a control section 310 comprising user interfaces, e.g., switches and indicators, for controlling the selective call receiver in a manner well-known to one of ordinary skill in the art.

With reference to FIG. 4, a text message 400 received at the facsimile input 202 (FIG. 2), shown as the message would appear if printed by a facsimile machine receiving the same input signals present at the facsimile input 202, in accordance with the preferred embodiment of the present invention comprises characters 402, 404, 406 that are unrecognizable by the OCR element 206 (FIG. 2) after receipt. The OCR-unrecognizable characters 402, 404, 406 have relative positions with respect to adjacent OCR-recognizable characters 412, 414, 416, respectively. In addition, the text message 400 contains a specially marked area 408 that is intended to be transmitted in a graphic format without conversion to character codes.

With reference to FIG. 5, a reproduced message 500 of the text message 400 as reproduced in the selective call receiver 116 (FIG. 1) in accordance with the preferred embodiment of the present invention comprises graphic images 502, 504, 506 of the OCR-unrecognizable characters 402, 404, 406 (FIG. 4), respectively. In addition, the reproduced message 500 includes a graphic image 508 of the specially marked area 408 (FIG. 4). The graphic images 502, 504, 506, 508 are generated by the graphics generator 324 and sizing element 326 (FIG. 3) in response to received graphic codes and size information. The remainder of the reproduced message 500 comprises characters generated by the character generation element 320 and scaler 322 (FIG. 3) in response to received ASCII codes and size information.

In response to received X-Y coordinate data, the graphic images 502, 504, 506 are positioned relative to adjacent characters 512, 514, 516, respectively, by the positioning element 328 (FIG. 3). The positioning is done in a manner that substantially matches the relative positions between the corresponding OCR-unrecognizable characters 402, 404, 406 (FIG. 4) and the adjacent OCR-recognizable characters 412, 414, 416 (FIG. 4), respectively, to substantially reproduce and preserve the relative positions between the characters of the message 400 (FIG. 4). By preserving the relative positions between the characters as in the message 400, the present invention advantageously increases the probability that a human reader of the reproduced message 500 will be able to successfully recognize the OCR-unrecognizable characters 402, 404, 406 depicted by the graphic images 502, 504, 506, respectively.

With reference to FIG. 6, a flow chart of a method of transmitting encoded data in accordance with the preferred embodiment of the present invention begins with the facsimile input 202 (FIG. 2) receiving 602 a facsimile transmission comprising a text message. In response to receiving the message, the processor 204 (FIG. 2) accesses the facsimile image 205 from the ROM 203 (FIG. 2) and creates in the RAM 212 (FIG. 2) a pel map of the received facsimile transmission. Next, the processor 204 accesses the OCR element 206 (FIG. 2) and does a conventional scan of the received data to eliminate white space and to find 604 a first character of the message.

Next, the processor 204 (FIG. 2) checks 606 the scanned received data to determine whether the character is inside a specially marked area, i.e., an area that is fully enclosed by a circle or box surrounding the area. If so, the processor 204 skips directly to step 612 to access the graphic encoding element 208 and begin graphic encoding of the contents of the specially marked area. Graphically encoding the specially marked area allows a message sender to force the paging control center 112 (FIG. 1) to transmit whatever is contained in the specially marked area without conversion to ASCII codes for reproduction by the character generator 320 (FIG. 3). This feature allows the contents of the specially marked area, for example, a signature, to be reproduced by the selective call receiver 116 (FIG. 1) as a graphic image. The feature advantageously enables, for example, signature verification.

If, on the other hand, in step 608 the processor 204 (FIG. 2) determines that the character is not in a specially marked area, then the processor 204 accesses the OCR element 206 (FIG. 2) and attempts to recognize the character. If in step 608 the OCR element 206 has recognized the character, then the OCR element 206 next determines 620 the size of the character, followed by determining 622 the ASCII code for the character. Next, the processor 204 (FIG. 2) stores 624 the ASCII code and size information in the RAM 212 (FIG. 2). The size information will be used as described herein below for reproducing scales of generated text characters and
graphic images relative to one another to match the corresponding scales of characters in the received text message. Then, in step 628 the processor 204 checks whether the character is the last character of the text message. If not, the processor 204 returns to step 604 to find and to process the next character. If in step 628 the character is determined to be the last character of the text message, then the processor waits 630 for a pre-determined transmission time for sending the message to the selective call receiver 116 (FIG. 1).

If, on the other hand, in step 608 the OCR element 206 (FIG. 2) cannot recognize the character, then the processor 204 (FIG. 2) uses the position describing element 210 (FIG. 2) to determine 610 the boundaries and position of the character area. Next, the processor 204 accesses the graphic encoding element 208 (FIG. 2) to scan 612 the character area, followed by compressing 614 the scanned data into a graphic code format, e.g., the run-length coded compression of the CCITT Group Three facsimile standard. Next, the processor 204 stores 616 the graphic codes along with size and position information in the RAM 212 (FIG. 2), after which the processor 204 checks 618 whether the character is the last character of the text message. If not, the processor 204 returns to step 604 to find and process the next character. If in step 618 the character is determined to be the last character of the text message, then the processor, as before, waits 630 for the pre-determined transmission time for sending the message to the selective call receiver 116 (FIG. 1).

When in step 630 the pre-determined transmission time arrives, the processor 204 (FIG. 2) accesses 632 the RAM 212 (FIG. 2) to retrieve and assemble the ASCII and graphic codes and the size and position information stored earlier during processing of the text message. Following this, the processor 204 sends 634 the assembled ASCII and graphic codes and the size and position information to the transmitter controller 214 (FIG. 2) for transmission to the selective call receiver 116 (FIG. 1).

With reference to FIG. 7, a flow chart of a method of receiving the encoded data in accordance with the preferred embodiment of the present invention begins with the decoder 306 (FIG. 3) decoding 702 an address assigned to receiving a facsimile page in the selective call receiver 116 (FIG. 1). Next, the microprocessor 308 (FIG. 3) receives the ASCII and graphic codes and the size and position information for the facsimile page comprising a text message from the receiver 304 (FIG. 3). In response, the microprocessor 308 stores 704 the ASCII and graphic codes and the size and position information received in the facsimile page in the RAM 330 (FIG. 3), and enables the alert device 312 (FIG. 3) to generate an alert to inform a user that a page has been received. Next the user requests 706 display of the received text message on the display 314 (FIG. 3) by depressing a key of the control section 310 (FIG. 3). In response, the microprocessor 308 accesses 708 the RAM 330 to retrieve the first ASCII or graphic code and the corresponding size and position information.

If in step 710 the microprocessor 308 (FIG. 3) determines that the code format is ASCII, then the microprocessor 308 accesses software of the character generation element 320 (FIG. 3) and generates 712 a character corresponding to the ASCII code, and then accesses software of the scaler 322 (FIG. 3) preferably to scale 714 the character according to the corresponding size information. Scaling allows locally generated characters to be reproduced with the same relative sizes as in the message originally received by the facsimile input 202 (FIG. 2). Alternatively, the scaling may be omitted and all locally generated characters displayed in a single size. Next, the microprocessor 308 uses software comprising the positioning element 328 (FIG. 3) to position 716 the character relative to the preceding character or graphic image according to the corresponding position information for the character. (In the case of the very first character of the text message the position used instead is the upper left corner of the display 314.) In step 718 the microprocessor 308 checks whether the code just processed is the last code of the text message. If so, the process of displaying the text message is done, and the microprocessor 308 returns to step 702 to wait for another facsimile page.

If, on the other hand, the microprocessor 308 (FIG. 3) determines in step 718 that the code just processed is not the last code of the text message, then the microprocessor 308 returns to step 708 to retrieve the next code for processing. If in step 710 the next code is a graphic code, the processor accesses software comprising the graphics generator 324 (FIG. 3) to generate 720 a graphic image from the graphic code. Next, the processor uses software of the sizing element 326 to size 722 the graphic image according to corresponding size information received, and software of the positioning element 328 to position 724 the graphic image relative to the preceding character or graphic image according to corresponding position information received. (In the case of the very first character of the text message the positioning element 328 positions 724 the graphic image relative to the upper left corner of the display 314 according to corresponding position information received.)

As before, the processor 308 (FIG. 3) checks 718 whether the code just processed is the last code of the text message. If so, the process of displaying the text message is done, and the microprocessor 308 returns to step 702 to wait for another facsimile page. If, on the other hand, the microprocessor 308 (FIG. 3) determines in step 718 that the code just processed is not the last code of the text message, then the microprocessor 308 returns to step 708 to retrieve the next code for processing.

Thus, the present invention provides a better method and apparatus for encoding and receiving text messages input by facsimile input.
are provided that dynamically switch between character code transmission and graphic code transmission depending on the quality of input characters. When required by the presence of poorly formed characters, the method and apparatus send graphic codes to use the superior ability of humans to recognize characters compared to the ability of conventional optical character recognition (OCR) techniques. When the confidence level is high that OCR techniques are correctly recognizing a character, the method and apparatus send ASCII codes to use the ability of OCR-generated character codes to save transmission time. In this manner the number of characters that can be sent by a transmission system having a pre-determined data rate is advantageously maximized, while OCR error rate is advantageously minimized. Also, by maintaining the relative size and position of all the characters reproduced, the method and apparatus deliver text messages that are optimally readable by humans.

Claims

1. An apparatus for a wireless communication system which transmits and receives by wireless communication signals encoded data derived from input data generated by a user, the input data comprising substantially readable text characters, the apparatus comprising a wireless communication system controller (112) which comprises:

 [Details of components and operations not specified, but implying a system that handles input data in a specific manner for wireless communication purposes.]

2. The apparatus in accordance with claim 1, further comprising in a wireless communication receiver (116):

 [Details of additional components or functionality that enhance the wireless communication receiver's ability to process the input data.]
termination means for scanning within the boundaries determined to form graphic images of the substantially readable text characters,
data compression means coupled to the scanning means for performing data compression on the graphic images scanned to produce compressed graphic images; and
size specification means coupled to the data compression means for adding size information to the compressed graphic images.

6. The apparatus in accordance with claim 2, wherein the conversion means (306, 308, 316, 330) comprises:

- character generation means (320);
- scaling means (322) coupled to the character generation means for scaling characters generated by the character generation means;
- graphic image generation means (324) coupled to the character generation means for generating graphic images;
- sizing means (326) coupled to the graphic image generation means for sizing graphic images generated by the graphic image generation means; and
- positioning means (328) coupled to the scaling means and to the sizing means for substantially preserving the original positions relative to one another of the substantially readable text characters in response to received position description information.

Patentansprüche

1. Gerät für ein drahtloses Kommunikationssystem, das drahtlose Signale sendet und empfängt, welche kodierte Daten enthalten, die aus nutzergenerierten Eingangsdaten abgeleitet sind, die Eingangsdaten im wesentlichen lesbare Textzeichen umfassend, das Gerät mit einer Steuereinheit (112) für ein drahtloses Kommunikationssystem, die umfaßt:

- einen Eingang (202) zum Aufnehmen der Eingangsdaten;
- einen Speicher (212), der an einen Prozessor (204) gekoppelt ist, und der kodierte Daten speichert, die mit einem optischen Zeichenerkennern (206) und einem Grafiikkodierer (208) erzeugt worden sind;
- ein Sendesteuerer (214) zur drahtlosen Kommunikation, der an den Prozessor gekoppelt ist, zum Steuern von drahtlosen Kommunikationsübertragungen der kodierten Daten, wobei der Prozessor (204) an den Eingang zum Verarbeiten der Eingangsdaten gekoppelt ist und aufweist:

- einen Aufnehmer (302) für drahtlose Kommunikation zum Aufnehmen der drahtlosen Kommunikationsübertragungen;

2. Gerät nach Anspruch 1 im weiteren in einem drahtlosen Kommunikationsempfänger (116) umfassend:

- den optischen Zeichenerkennern (206); den Grafiikkodierer (208); und einen Positionsbeschreiber (210) zum Beschreiben von Originalpositionen im Verhältnis zu den anderen im wesentlichen lesbaren Textzeichen,

das Gerät dadurch gekennzeichnet, daß der optische Zeichenerkennern (206) angeordnet ist zum Kodieren (620, 622) eines ersten Teils der im wesentlichen lesbaren Textzeichen der Eingangsdaten in Daten im Zeichenkodiformat, wobei der erste Teil der Zeichen umfaßt, die mit dem optischen Zeichenerkennern erkennbar sind, und die durch den Benutzer nicht besonders als unlesbar zum Kodieren im Zeichenkodiformat identifiziert worden sind; und der Grafikodierer (208) angeordnet ist zum Kodieren (612, 614) eines zweiten Teils der im wesentlichen lesbaren Textzeichen der Eingangsdaten in Daten im Grafiikkodiformat, wobei der zweite Teil der Zeichen umfaßt, die von dem optischen Zeichenerkennern nicht erkennbar sind, und Zeichen, die von dem Benutzer als unlesbar zum Kodieren im Zeichenkodiformat identifiziert worden sind, selbst wenn die extra identifizierten Zeichen von dem optischen Zeichenerkennern erkennbar sein könnten.

4. Gerät nach Anspruch 1, in dem der optische Zeichenerkennern (206) einen Maßstabsteller umfaßt, das den Maßstab der im wesentlichen lesbaren Textzeichen des ersten Teiles der Eingangsda-
ten einstellt.

5. Gerät nach Anspruch 1, in dem der Grafikkodierer (206) umfaßt: einen Grenzbestimmer zum Bestimmen der Grenzen des zweiten Teils der im wesentlichen lesbaren Textzeichen der Eingangsdaten;

- einen Abtastr gekoppelt an den Grenzbestimmer zum Abtastr innerhalb der bestimmten Grenzen um Grafikbilder der im wesentlichen lesbaren Textzeichen zu erzeugen;
- einen Datenkompressor gekoppelt an den Abtastr zum Durchführen einer Datenkompression der abgetasteten Grafikbilder um komprimierte Grafikbilder zu erzeugen; und
- einen Größenbestimmer gekoppelt an den Datenkompressor zum Hinzufügen von Größeninformationen an die komprimierten Grafikbilder.

6. Das Gerät nach Anspruch 2, in dem der Umwandler (306, 308, 316, 330) umfaßt:

- einen Zeichenerzeuger (320);
- einen Skalierer (322) gekoppelt an den Zeichenerzeuger zum Skalieren der Zeichen, die von dem Zeichenerzeuger erzeugt werden;
- einen Grafikbilderdetektor (324) gekoppelt an den Zeichenerzeuger zum Erzeugen von Grafikbildern;
- einen Größeneinsteller (326) gekoppelt an den Grafikbilderdetektor zum Einstellen der Größe der Grafikbilder, die von dem Grafikbilderdetektor erzeugt werden; und
- ein Positionierer (328) gekoppelt an den Skaliere und den Größeneinsteller zum im wesentlichen Bewahren der Originalpositionen im Verhältnis zu anderen der im wesentlichen lesbaren Zeichen entsprechend einer empfange nen Positionsbeschreibungsinformation.

Revendications

1. Dispositif pour un système de radiocommunication qui transmet et reçoit, sous forme de signaux radio, les données codées dérivées des données d’entrée générées par un utilisateur, les données d’entrée comprenant des caractères de texte sensiblement lisibles, l’appareil comprenant un contrôle de système de radiocommunication (112) qui comprend:

- un moyen formant entrée (202) pour accepter les données d’entrée;
- un moyen formant mémoire (212) coupé à un moyen processeur (204) pour stocker les données codées générées par un moyen de reconnaissance optique de caractères (206) et un moyen de codage graphique (208);

2. Dispositif selon la revendication 1, comprenant en outre un récepteur de radiocommunications (116):

- un moyen d’interception de radiocommunications (302) pour intercepter les radiotransmissions;
- un moyen récepteur de radiocommunications (304) coupé au moyen d’interception de radiocommunications pour recevoir les radiotransmissions et décoder les données codées;
- des moyens de conversion (306, 308, 316, 330) coupés au moyen récepteur de radiocommunications pour convertir les données codées en des caractères de texte et des images graphiques affichables; et
un moyen d'affichage (314) couplé aux moyens de conversion pour afficher les caractères de texte et images graphiques affichables avec une présentation sensiblement lisible.

3. Dispositif selon la revendication 1, le moyen formant entrée (202) comprenant un récepteur de té lécopie compatible avec un protocole standard de transmission de té lécopie.

4. Dispositif selon la revendication 1, le moyen de reconnaissance optique de caractères (208) comprenant un moyen de spécification d'échelle pour spécifier l'échelle des caractères de texte sensiblement lisibles de la première partie des données d'entrée.

5. Dispositif selon la revendication 1, le moyen de codage graphique (208) comprenant :

un moyen de détermination de limites pour déterminer les limites de la deuxième partie des caractères de texte sensiblement lisibles des données d'entrée ;
un moyen de scannage couplé au moyen de détermination de limites pour scanner à l'intérieur des limites déterminées afin de former des images graphiques des caractères de texte sensiblement lisibles ;
un moyen de compression de données couplé au moyen de scannage pour exécuter la compression des données correspondant aux images graphiques scannées afin de produire des images graphiques compressées ; et
un moyen de spécification de taille couplé au moyen de compression de données pour ajouter des informations de taille aux images graphiques compressées.

6. Dispositif selon la revendication 2, les moyens de conversion (306, 308, 316, 330) comprenant :

un moyen de génération de caractères (320) ;
un moyen de mise à l'échelle (322) couplé au moyen de génération de caractères pour exécuter la mise à l'échelle des caractères générés par le moyen de génération de caractères ;
un moyen de génération d'images graphiques (324) couplé au moyen de génération de caractères pour générer des images graphiques ;
un moyen de dimensionnement (326) couplé au moyen de génération d'images graphiques pour dimensionner les images graphiques générées par le moyen de génération d'images graphiques ; et
un moyen de positionnement (328) couplé au moyen de mise à l'échelle et au moyen de dimensionnement pour préserver sensiblement les positions d'origine, les unes par rapport aux autres, des caractères de texte sensiblement lisibles en réponse aux informations de description de position reçues.
FIG. 3
Toro reported higher sales and earnings for the third quarter of 1989 compared with a year ago.

FIG. 4

FIG. 5
602 FAX TEXT RECEIVED
603 FAX IMAGER CREATES MAP OF FAX TEXT AND STORES IT IN RAM
604 PROCESSOR FINDS NEXT CHARACTER

- 606 IN SPECIALLY MARKED AREA?
 - YES
 - 608 OCR RECOGNIZE CHARACTER?
 - YES
 - 620 OCR DETERMINES CHARACTER SIZE
 - NO
 - 610 POSITION DESCRIBER DETERMINES BOUNDARIES AND POSITION OF CHARACTER AREA
 - 612 GRAPHICS ENCODER SCANS AREA
 - 614 G.E. COMPRESSES DATA INTO GRAPHIC CODE FORMAT
 - 616 PROCESSOR STORES DATA IN RAM
 - NO
 - 618 LAST CHARACTER?

- NO
 - 608 OCR RECOGNIZE CHARACTER?
 - NO
 - 622 OCR DETERMINES ASCII CODE
 - 624 PROC. STORES ASCII CODE AND SIZE INFORMATION IN RAM
 - 628 LAST CHARACTER?
 - NO
 - 628 TRANSMISSION TIME NOW?
 - NO
 - 630 LAST CHARACTER?
 - YES
 - 632 PROC. CONTROL\n - 634 PROC. SENDS OUTPUT STREAM TO TRANSMITTER CONTROLLER FOR TRANSMISSION

FIG. 6
HAS DECODER DECODED A FAX PAGE?

MICROPROCESSOR STORES PAGE CODES IN RAM AND GENERATES USER ALERT

USER REQUESTS DISPLAY OF MESSAGE BY KEY PUSH

MICROPROCESSOR ACCESSES RAM TO READ NEXT PAGE CODE

CODE FORMAT?

GRAPHIC

ASCII

CHARACTER GENERATOR GENERATES CHARACTER

SCALER SCALES CHARACTER

POSITIONER POSITIONS CHARACTER RELATIVE TO PRECEDING CHARACTER OR GRAPHIC IMAGE

NO

LAST CODE?

YES

FIG. 7