(54) Verfahren zur Hemmung thermophiler Mikroorganismen in Gegenwart zuckerhaltiger wässriger Medien

Process to stop the growth of thermophilic microorganism in an aqueous sugar containing medium

Procédé pour déloquer la croissance des microorganismes thermophiles, en milieux aqueux sucrés

(51) Int.Cl.: C13D 1/00

Anmeldenummer: 95890071.4
Anmeldetag: 06.04.1995

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung:
30.07.1997 Patentblatt 1997/31

(30) Priorität: 06.05.1994 AT 951/94

(43) Veröffentlichungstag der Anmeldung: 08.11.1995 Patentblatt 1995/45

(73) Patentinhaber: ZUCKERFORSCHUNG TULLN GESELLSCHAFT M.B.H.
A-3430 Tulln (AT)

(72) Erfinder: Pollach, Günter, Dipl.-Ing. Dr. A-2301 Gross-Enzersdorf (AT)

(74) Vertreter: Atzwanger, Richard, Dipl.-Ing. Patentanwalt Mariahilfer Strasse 1c 1060 Wien (AT)

(56) Entgegennahmen:
- CHEMICAL ABSTRACTS, vol. 87, no. 16, 17.Oktober 1977 Columbus, Ohio, US; abstract no. 119606p, D.MATTEZZI ET AL. 'Inhibition of the microbial activity in extraction juices of beet sugar factories by some antiseptic substances' Seite 109; Spalte 1;

Beschreibung

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Hemmung thermophiler Mikroorganismen in Gegenwart zuckerhaltiger wässriger Medien.

Unter zuckerhaltigen wässrigen Medien im Sinne der vorliegenden Erfindung werden einerseits Extrakte und Säfte von zuckerhaltigen Pflanzen, wie insbesondere Zuckerrüben und Zuckerrohr, und andererseits Lösungen von Zuckern verschiedenster Art, insbesondere Saccharose, Glucose und dergl., die im Zuge verschiedener Verfahren entstehen oder eigens hergestellt werden, verstanden.

Unter Zucker im Sinne der vorliegenden Erfindung sind Mono-, Di- und Oligosaccharide, wie die erwähnte Saccharose und Glucose, sowie Fructose und dergl. zu verstehen.

Ein besonderes Ziel des erfindungsgemäßen Verfahrens ist die Konservierung von Produkten der thermischen Extraktion von Zuckerrüben und Zuckerrohr.

Daher werden thermophile Bakterien in Extraktionsanlagen meist dadurch bekämpft, daß dem Saftstrom periodisch oder kontinuierlich chemische Hilfsmittel, wie Formalin oder Dithiocarbamate, zugegeben werden. Sofern eine Zugabe solcher Mittel nicht erwünscht oder gesetzlich verboten ist, muß mit erhöhten Saccharoseverlusten gerechnet werden.

Beim Auftreten von Bakterienstämmen, die Exo-Invertase produzieren, kann sich ein besonders hoher Saccharoseverlust ergeben, da Saccharose unkontrolliert in Glucose und Fructose gespalten wird. Es ist praktisch unmöglich, derartige Stämme nur durch Anwendung hoher Temperaturen wieder zu eliminieren, da das Rübenkernblatt mit Rückblick auf die Abholzbarkeit der extrahierten Schnitzel thermisch nur begrenzt belastet werden darf.

Ziel der vorliegenden Erfindung ist die Unterdrückung der Entwicklung unerwünschter thermophiler Bakterienstämme in zuckerhaltigen Pflanzenextrakten bzw. -säften ohne Verwendung chemischer Hilfsmittel.

Dieses Ziel wird erfindungsgemäß dadurch erreicht, daß auf die zuckerhaltigen wässrigen Medien ein Zusatzmittel auf Hopfenbasis bei Temperaturen zwischen 50°C und 80°C einwirken gelassen wird.

Hopfen ist eine seit langem in der Bierbrauerei genutzte Lebensmittelkomponente, die dort aus Geschmacksgründen zugesetzt wird. Es ist bekannt, daß auch bei der Bierherstellung eine bakteriostatische Wirkung gegenüber gewissen Bakterien, nämlich gegenüber Milchsäurebakterien, zu beobachten ist. Diese Wirkung kommt bei der Temperatur der Hefegärung zur Entfaltung und stellt eine sonntliche Randerscheinung dar, die nicht gezielt eingesetzt werden kann, da das Bier bei stärkerer Hoflage zu bitter schmecken würde. Es wird also durch Hopfen die Entwicklung von Milchsäurebakterien, die ihrerseits die Hefegärung stören würden, in einem nicht beeinflußbaren Ausmaß unterbunden.

Lactobacillus brevis vermehrt sich bei Temperaturen über 50°C nicht oder höchstens äußerst langsam.

Thermophile Bakterien, die sich bei Temperaturen über 50°C vermehren, werden hier nicht erwähnt.

Überraschenderweise ist nun die bakteriostatische Wirkung von Hopfen auch in heißen wässrigen Medien zu beobachten, wobei Bakterien, die bei der Bierbrauerei gar keine Rolle spielen, nämlich die thermophilen Bakterien, die sich im Temperaturbereich von 50°C bis 80°C entwickeln, bekämpft werden können.

Somit erfolgt im vorliegenden Fall eine Konservierung von zuckerhaltigen wässrigen Medien, insbesondere zuckerhaltigen Extrakten und Säften, mit Hilfe eines seit langem in der Lebensmitteltechnologie bekannten Produktes und
die leidige Verwendung von Formalin, die in letzter Zeit durch gesetzliche Auflagen in vielen Ländern eingeschränkt oder verboten ist, erübrigt sich zur Gänze.

Bei den Temperaturen einer thermerischen Extraktion, im Fall von Zuckerrüben bei 65°C bis 75°C, können sich thermophile Bakterien nur dann vermehren, wenn sie ihren Stoffwechsel ununterbrochen aufrecht erhalten können. Wird der Stoffwechsel blockiert, was z. B. durch die bakteriostatische Wirkung von Hopfenwirkstoff gegeben ist, kommt es infolge der hohen Temperaturen zum Absterben der vegetativen Keime. Dadurch wirkt Hopfen in heißen Zucker- säften auch bei periodischer Zugabe konservierend, wenn die Dosierpausen so gewählt werden, daß es nicht zum Wiederauskeimen neuer Sporen kommt.

Würde man Hopfen zur Konservierung von kaltem zuckerhaltigem Saft bei Temperaturen unter 50°C einsetzen, wäre das wirkungslos, weil dieser kalte Saft durch Hefen und Schimmelpilze verderben würde, deren Wachstum durch Hopfen nicht eingeschränkt wird.

Erst durch die Kombination des Hopfenzusatzes mit der Einwirkung von Temperaturen über 50°C wird eine durchgreifende Konservierung erzielt.

Als zusätzlicher günstiger Effekt des Hopfenzusatzes hat sich außerdem herausgestellt, daß auch die unerwünschte Nitritbildung in den Extraktionslösungen dadurch unterbunden werden kann.

Als Zusatzmittel auf Hopfenbasis kann jedes beliebige Hopfenprodukt, das seinen Wirkstoff in die Zuckerlösung abgibt, verwendet werden.

Vorzugsweise wird als Zusatzmittel auf Hopfenbasis ein gelöstes oder emulgier tes Hopfenprodukt, vorzugsweise Hopfenextrakt, eingesetzt.

Ebenso können aber auch getrocknete Hopfen oder Hopfenpellets, Hopfenextrakt oder Brauereiabfälle, wie Hopfenreste enthaltende Bierhefe und/oder Hopfenbrennern, verwendet werden.

Als Extraktionsmittel sind flüssiges CO₂, Methylenchlorid und Alkohol bekannt.

Da im Rahmen der vorliegenden Erfindung das Geschmackspektrum keine Rolle spielt und nur die bakteriostatische Wirkung des Hopfens genutzt wird, können auch solche Extrakte genutzt werden, die wegen Fehlgeschmacks für die Bierbereitung untauglich oder mindertauglich sind.

Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung wird das Hopfen-Zusatzmittel während der thermischen Extraktion der Pflanzenteile einwirken gelassen.

Es wird dabei vorzugsweise der heißen (50°C - 80°C) Extraktionslösung ein flüssiger bzw. gelöster oder emulgierter Hopfenextrakt zugesetzt, der seine konservierende Wirkung so lange entfaltet, als die Temperatur der Lösung im oben genannten Bereich liegt.

Bei kontinuierlicher Dosierung von Hopfenprodukten kann unter Inkaufnahme laufender Hilfsmittelkosten ein Bakterienwachstum dauerh unterbunden werden.

Bei periodischer Dosierung kann kurzzeitig eine Eliminierung bestimmter Bakterienstämme erfolgen, wobei es nach dem Absetzen der Dosierung zum Auskeimen von Sporen kommt, die bisher schon in der Lösung enthalten waren, sich jedoch in Anwesenheit der anderen Mikroorganismen nicht entwickelt haben.

Das Zusatzmittel kann mit der Zuckerlösung an die zu schützenden Anlagenteile herangebracht werden oder es kann in Form einer getrannten Zugabe direkt auf diese Anlageteile aufgebracht werden.

Die konservierende Wirkung des Hopfens in heißen zuckerhaltigen Säften wird in den folgenden Anwendungsbeispielen erläutert.
Beispiel 1:

Rübensaft mit 16 % Trockensubstanz aus einer großtechnischen Extraktionsanlage wird mit einer Durchflußrate von 1 Gefäßvolumen pro Stunde durch ein 22L-Gefäß mit Rührwerk geleitet und dabei auf 68-80°C temperiert. Zwischen Zu- und Ablauf ergibt sich eine vom Grad der Bakterieninfektion abhängige pH-Differenz, wie sie z. B. die nachstehende Beispielstabelle zeigt. Beim kontinuierlichen Zupumpen von Hopfenextrakt in einer Menge von 1/10000 des Gefäßinhalts pro Stunde, in der nachstehenden Tabelle ab 14:18:00, verkleinert sich die pH-Differenz durch verminderte Stoffwechselaktivität der Mikroorganismen von ca. 0,5 auf ca. 0,15, also sehr wesentlich.

<table>
<thead>
<tr>
<th>Uhrzeit</th>
<th>pH Zulauf</th>
<th>pH Ablauf</th>
<th>Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:40:00</td>
<td>5,69</td>
<td>5,20</td>
<td>0,49</td>
</tr>
<tr>
<td>13:53:00</td>
<td>5,68</td>
<td>5,20</td>
<td>0,48</td>
</tr>
<tr>
<td>13:59:00</td>
<td>5,70</td>
<td>5,20</td>
<td>0,50</td>
</tr>
<tr>
<td>14:05:00</td>
<td>5,68</td>
<td>5,20</td>
<td>0,48</td>
</tr>
<tr>
<td>14:18:00</td>
<td>5,67</td>
<td>5,17</td>
<td>0,50 Hopfenzusatz kontinuierlich</td>
</tr>
<tr>
<td>14:50:00</td>
<td>5,70</td>
<td>5,19</td>
<td>0,51</td>
</tr>
<tr>
<td>15:59:00</td>
<td>5,65</td>
<td>5,21</td>
<td>0,44</td>
</tr>
<tr>
<td>16:19:00</td>
<td>5,60</td>
<td>5,23</td>
<td>0,37</td>
</tr>
<tr>
<td>16:31:00</td>
<td>5,57</td>
<td>5,25</td>
<td>0,32</td>
</tr>
<tr>
<td>16:50:00</td>
<td>5,56</td>
<td>5,27</td>
<td>0,29</td>
</tr>
<tr>
<td>17:16:00</td>
<td>5,59</td>
<td>5,31</td>
<td>0,28</td>
</tr>
<tr>
<td>17:54:00</td>
<td>5,65</td>
<td>5,39</td>
<td>0,26</td>
</tr>
<tr>
<td>18:19:00</td>
<td>5,68</td>
<td>5,43</td>
<td>0,25</td>
</tr>
<tr>
<td>18:32:00</td>
<td>5,68</td>
<td>5,45</td>
<td>0,23</td>
</tr>
<tr>
<td>19:03:00</td>
<td>5,68</td>
<td>5,49</td>
<td>0,19</td>
</tr>
<tr>
<td>19:35:00</td>
<td>5,68</td>
<td>5,51</td>
<td>0,17</td>
</tr>
<tr>
<td>20:25:00</td>
<td>5,71</td>
<td>5,53</td>
<td>0,18</td>
</tr>
<tr>
<td>21:47:00</td>
<td>5,70</td>
<td>5,55</td>
<td>0,15</td>
</tr>
<tr>
<td>22:25:00</td>
<td>5,72</td>
<td>5,56</td>
<td>0,16</td>
</tr>
</tbody>
</table>

Beispiel 2:

Rübensaft wird wie in Beispiel 1 durch ein Gefäß geleitet. Der Zulauf wird plötzlich gestoppt, wodurch eine vom Grad der Bakterieninfektion abhängige pH-Absenkung einsetzt; in der Beispielstabelle ab 13:42:06, in der Größeordnung von 0,04-0,05 pH-Einheiten pro 6 min.

<table>
<thead>
<tr>
<th>Uhrzeit</th>
<th>pH im Gefäß</th>
<th>pH Abfall pro 6 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:16:58</td>
<td>5,40</td>
<td>0,00</td>
</tr>
<tr>
<td>13:23:16</td>
<td>5,40</td>
<td>-0,01</td>
</tr>
<tr>
<td>13:36:50</td>
<td>5,39</td>
<td>0,00 Zulauf ab</td>
</tr>
<tr>
<td>13:42:06</td>
<td>5,34</td>
<td>-0,05</td>
</tr>
<tr>
<td>13:48:24</td>
<td>5,30</td>
<td>-0,04 Hopfenzusatz einmalig</td>
</tr>
<tr>
<td>13:54:42</td>
<td>5,26</td>
<td>-0,04</td>
</tr>
<tr>
<td>14:07:18</td>
<td>5,26</td>
<td>0,00</td>
</tr>
<tr>
<td>14:13:34</td>
<td>5,25</td>
<td>-0,01</td>
</tr>
</tbody>
</table>

Beispiel 3:

Rübensaft wird wie in Beispiel 1 durch ein Gefäß geleitet. Der Zulauf wird plötzlich gestoppt, wodurch eine vom
EP 0 681 029 B1

Grad der Bakterientätigkeit abhängige pH-Absenkung einsetzt, in der Beispielstabelle um 17:46:20, in der Höhe von -0,04 pH-Einheiten pro 6 min. Beim einmaligen Zusatz eines anderen, zweiten Hopfenextraktpräparats in einer Menge von 1/40000 des Gefäßinhalt, in der nachstehenden Tabelle um 17:52:36, stoppt der pH-Abfall innerhalb von 6 min:

<table>
<thead>
<tr>
<th>Uhrzeit</th>
<th>pH Gefäß</th>
<th>pH Abfall pro 6 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:27:30</td>
<td>5,29</td>
<td>0,00</td>
</tr>
<tr>
<td>17:33:48</td>
<td>5,29</td>
<td>0,00 Zulauf ab</td>
</tr>
<tr>
<td>17:40:04</td>
<td>5,29</td>
<td>-0,01</td>
</tr>
<tr>
<td>17:46:20</td>
<td>5,28</td>
<td>-0,04 Hopfenzusatz einmalig</td>
</tr>
<tr>
<td>17:52:36</td>
<td>5,24</td>
<td>0,01</td>
</tr>
<tr>
<td>17:58:54</td>
<td>5,25</td>
<td>0,00</td>
</tr>
<tr>
<td>18:05:12</td>
<td>5,26</td>
<td>0,01</td>
</tr>
<tr>
<td>18:11:28</td>
<td>5,26</td>
<td>0,00</td>
</tr>
<tr>
<td>18:17:46</td>
<td>5,26</td>
<td>0,00</td>
</tr>
<tr>
<td>18:24:03</td>
<td>5,26</td>
<td>0,00</td>
</tr>
<tr>
<td>18:30:19</td>
<td>5,27</td>
<td>0,01</td>
</tr>
<tr>
<td>18:36:37</td>
<td>5,27</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Beispiel 4:

In diesem Beispiel wird die Wirkung von Hopfenextrakt in einer technischen Rübenextraktionsanlage demonstriert:

Es wird an dieser Stelle erwähnt, daß auch thermophile Bakterien als Stoffwechselprodukte Milchsäure bilden, sodaß eine Milchsäuremessung in dem heißen Saft als Maß für den Befall durch thermophile Bakterien herangezogen werden kann. Außerdem wird festgehalten, daß als Nebenerscheinung durch den Bakterienbefall eine gute Abpreßbarkeit der Preßschnitzel erreicht wird. Im vorliegenden Fall handelt es sich um eine Abpreßbarkeit auf etwa 28 % Trockensubstanz. Diese gute Abpreßbarkeit ist vor allem dann von Vorteil, wenn die Schnitzel thermisch auf 10 % - 12 % Wassergehalt getrocknet werden sollen.

Durch direkte Dosierung eines auf 50°C erwärmten Hopfenextrakts in einer Menge von 3 kg/h in die Saugleitung einer Schnitzelpumpe wird der Milchsäuregehalt des Rohsaftes in den unteren Teilbereichen der Extraktionsanlage auf 300 mg/l abgesenkt, ohne daß die Abpreßbarkeit der Preßschnitzel abfällt. Dies vermindert den Zuckerverlust in der Anlage erheblich, ohne zu Schwierigkeiten bei der Abpression der Schnitzel zu führen.

Beispiel 5

Patentansprüche

1. Verfahren zur Hemmung thermophiler Mikroorganismen in Gegenwart zuckerhaltiger wässriger Medien, dadurch gekennzeichnet, daß auf die zuckerhaltigen wässrigen Medien ein Zusatzmittel auf Hopfenbasis bei Temperaturen zwischen 50°C und 80°C einwirken gelassen wird.
2. Verfahren nach Anspruch 1, **dadurch gekennzeichnet**, daß zuckerhaltige Pflanzenkteile, insbesondere von Zuckerrüben oder Zuckerröhr, in Gegenwart des Zusatzmittels auf Hopfenbasis thermisch extrahiert werden.

3. Verfahren nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, daß als Zusatzmittel auf Hopfenbasis ein gelöstes oder emulgierter Hopfenextrakt, vorzugsweise Hopfenextrakt, verwendet wird.

4. Verfahren nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, daß als Zusatzmittel auf Hopfenbasis ein festes Hopfenprodukt, vorzugsweise getrockneter Hopfen oder Hopfenpellets, oder Brauereiaffe, wie Hopfenreste enthaltende Bierhefe oder Hopfenextrakt, verwendet wird.

5. Verfahren nach einem der Ansprüche 1 bis 3, **dadurch gekennzeichnet**, daß der Extraktionslösung Hopfenextrakt in flüssiger oder emulgierter Form zugesetzt wird.

6. Verfahren nach einem der Ansprüche 1, 2 oder 4, **dadurch gekennzeichnet**, daß den zu extrahierenden Pflanzenkteilen ein festes Zusatzmittel auf Hopfenbasis zugesetzt wird.

7. Verfahren nach einem der Ansprüche 1 bis 6, **dadurch gekennzeichnet**, daß bei kontinuierlich geführter Extraktion der Hopfenzusatz kontinuierlich zugefügt wird.

8. Verfahren nach einem der Ansprüche 1 bis 6, **dadurch gekennzeichnet**, daß bei kontinuierlich geführter Extraktion der Hopfenzusatz periodisch erfolgt.

Claims

1. A method of inhibiting thermophilic micro-organisms in the presence of sugar-containing aqueous media, characterised in that a hop-based additive is allowed to act on the sugar-containing aqueous media at temperatures of between 50°C and 80°C.

2. A method according to claim 1, characterised in that sugar-containing plant parts, especially from sugar beet or sugar cane, are thermally extracted in the presence of the hop-based additive.

3. A method according to claim 1 or claim 2, characterised in that a dissolved or emulsified hop product, preferably hop extract, is used as the hop-based additive.

4. A method according to claim 1 or claim 2, characterised in that a solid hop product, preferably dried hops or hop pellets or brewery waste such as beer yeast containing hop residue and/or spent hops, is used as the hop-based additive.

5. A method according to any one of claims 1 to 3, characterised in that hop extract is added in liquid or emulsified form to the extraction solution.

6. A method according to any one of claims 1, 2 or 4, characterised in that a solid, hop-based additive is added to the plant parts to be extracted.

7. A method according to any one of claims 1 to 6, characterised in that the hop additive is supplied continuously during continuous extraction.

8. A method according to any one of claims 1 to 6, characterised in that hop addition is effected periodically during continuous extraction.

9. A method according to claim 1 for the treatment of sugar solutions, especially saccharose or glucose solutions or saccharose- or glucose-containing juices in membrane treatment and/or ion exchange processes, characterised
in that the membranes and/or ion exchangers are protected from bacterial infestation with the aid of the hop-based additive.

Revendications

1. Procédé destiné à bloquer la croissance de microorganismes thermophiles en présence de milieux aqueux sucrés, caractérisé en ce qu'on laisse agir, sur les milieux aqueux sucrés, un additif à base de houblon à des températures comprises entre 50 °C et 80 °C.

2. Procédé selon la revendication 1, caractérisé en ce que des parties de plantes contenant du sucre, en particulier de betteraves à sucre ou de canne à sucre, sont extraites thermiquement en présence de l'additif à base de houblon.

3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on utilise comme additif à base de houblon un produit de houblon dissous ou émulsifié, de préférence de l'extrait de houblon.

4. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on utilise comme additif à base de houblon un produit de houblon solide, de préférence du houblon séché ou des granulés de houblon, ou des déchets de brasserie, tels que de la levure de bière contenant des restes de houblon et/ou des drêches de houblon.

5. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'on ajoute à la solution d'extraction de l'extrait de houblon sous forme liquide ou émulsifiée.

6. Procédé selon l'une des revendications 1, 2 ou 4, caractérisé en ce qu'on ajoute aux parties de plantes à extraire un additif solide à base de houblon.

7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'en cas d'extraction conduite en continu, l'ajout de houblon est envoyé en continu.

8. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'en cas d'extraction conduite en continu, l'ajout de houblon s'effectue périodiquement.

9. Procédé selon la revendication 1 pour le traitement de solutions sucrées, de préférence de solutions de saccharose ou de jus contenant du saccharose ou du glucose dans des procédés de traitement sur membrane et/ou d'échange d'ions, caractérisé en ce que les membranes et/ou les échangeurs d'ions sont protégés de l'attaque des bactéries à l'aide de l'additif à base de houblon.