EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 13.11.1996 Bulletin 1996/46

(21) Application number: 94928156.2

(22) Date of filing: 16.09.1994

(51) Int Cl.: E21B 43/30, E21B 33/047

(86) International application number: PCT/US94/10531

(87) International publication number: WO 95/17580 (29.06.1995 Gazette 1995/27)

(54) ASSEMBLY AND PROCESS FOR DRILLING AND COMPLETING MULTIPLE WELLS
VORRICHTUNG UND VERFAHREN UM EINE VIELZAHL VON BOHRUNGEN ZU BOHREN UND AUSZURÜSTEN
ENSEMBLE ET PROCEDE DESTINES A FORER ET A ACHEVER DES PUIS MULTIPLES

(84) Designated Contracting States:
AT BE DE DK ES FR GB IE IT NL SE

(43) Date of publication of application: 04.10.1995 Bulletin 1995/40

(60) Divisional application: 96200898.3

(73) Proprietor: MARATHON OIL COMPANY
Findlay, OH 45840 (US)

(72) Inventors:
• COLLINS, Gary, J.
 Richmond, TX 77469 (US)
• BAUDOIN, Ervin
 Lafayette, LA 77508 (US)

(74) Representative: Thomas, Roger Tamlyn et al
D. Young & Co.
21 New Fetter Lane
London EC4A 1DA (GB)

(56) References cited:
EP-A- 0 136 935
US-A- 3 050 120
US-A- 3 770 053
US-A- 3 848 669
US-A- 3 875 999
US-A- 4 044 830
US-A- 4 415 205
US-A- 4 832 381

• WORLD OIL, vol.214, no.11, November 1993,
 TEXAS-USA page 25-36, XP000412684 MARK E.
 TEEL 'drill multiple wells from one surface
 wellbore'

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The present invention provides an assembly and process for drilling multiple subterranean wells from a single or common well bore and for completing such wells via separate casings positioned within the common well bore, and more particularly, such assembly and process for drilling and completing multiple subterranean wells from a single or common well bore which will permit such wells to be separated at or near the surface of the earth during and after drilling and completion.

Increasingly, well bores are being drilled into subterranean formations at an orientation which is purposefully deviated from true vertical by means of conventional whipstock technology or a mud motor secured in the drill string adjacent the drill bit. In fractured subterranean formations, deviated wells are utilized to increase the area of drainage defined by the well within the subterranean formation, and thus, increase production of hydrocarbons from the subterranean formation. An inherent problem in utilizing a conventional whipstock to drill a deviated well is that both the depth and radial orientation of the whipstock is set when the whipstock is positioned in the well bore and cannot be changed without retrieving the whipstock from the well bore and changing the depth and/or radial orientation thereof.

In addition, wells drilled from offshore drilling platforms are usually deviated to increase the number of wells which can be drilled and completed from a single platform. Offshore drilling platforms which are utilized in deep water to drill and complete wells in a subterranean formation vary in size, structure, and cost depending upon the water depth and the loads in which the platform will be set. For example, a platform may be constructed to be supported in part by one leg or caisson which extends to the ocean floor or by as many as eight such legs or caissons. Costs of such offshore drilling platforms vary from approximately $5,000,000 to $500,000,000. Each offshore drilling platform is equipped with a set number of slots via which deviated wells can be drilled and completed through casings which are secured to the platform by conventional techniques.

Thus, a need exists for an assembly and processes for drilling and completing multiple cased wells from a single or common well bore so as to reduce capital expenditures for onshore and offshore wells.

World Oil 1993, November, No. 11, pages 25 and 36, utilizes a single riser for permitting passage of a drill string therethrough during drilling. The riser is initially strung into one of the bores through the downhole template and a well is drilled therethrough. The riser is then released, reoriented and strung into another of the bores through the downhole template. Thus, at any one time only one tubular, i.e., a riser, through which a drill string can be passed is positioned in a well bore which extends to the surface. And the riser is completely removed from this well bore when the wells drilled from the downhole template are separately cased to the surface. These production casings are conventionally not sized or designed to permit passage of a drill string therethrough.

According to one aspect of the invention, there is provided an assembly through which multiple subterranean wells can be separately drilled and completed from a common well bore, said assembly comprising:

- a wellhead located at or near the surface of the earth and positioned over a common well bore;
- a first tubular positioned within said common well bore, said first tubular being sized to permit passage of a drill string therethrough during drilling of a first subterranean well bore from said common well bore and to permit production casing to be positioned therethrough when said first subterranean well bore is completed;
- a second tubular positioned within said common well bore, said second tubular being sized to permit passage of a drill string therethrough during drilling of a second subterranean well bore from said common well bore and to permit production casing to be positioned therethrough when said second subterranean well bore is completed; and
- means positioned at said wellhead for segregating and supporting said first and said second tubulars.

According to another aspect of the invention, there is provided a process of drilling and completing subterranean wells comprising:

- suspending and separating at least two tubulars from a wellhead of a common well bore, said at least two tubulars being positioned within said common well bore;
- drilling a first subterranean well bore through one of said at least two tubulars and into a subterranean formation; and securing a first length of production casing into said wellhead, said first length of production casing extending into said first well bore and being supported at said wellhead so as to establish fluid communication between the subterranean formation penetrated by said first well bore and the surface of the earth.

According to a further embodiment, there is provided a process for drilling at least two subterranean well bores from a common well bore comprising:

- positioning at least two tubulars within said common well bore;
- drilling a first subterranean well bore through one of said at least two tubulars and into a first subterranean formation; and
- drilling a second subterranean well bore through the other of said at least two tubulars and into a second subterranean formation.
Certain preferred features of the invention are set out in the dependent claims.

In the embodiments hereinafter described in detail, the invention provides:

(a) an assembly and a process for drilling and completing multiple wells within subterranean formation(s) from a single or common well bore wherein such multiple wells are separated during and after drilling and completion at or adjacent to the surface of the earth;

(b) an assembly and a process for drilling and completing multiple wells within subterranean formation(s) from a single or common well bore without using moveable downhole components;

(c) a way of completing such multiple, cased wells in a manner such that remedial operations can be conducted on one well while hydrocarbons from the subterranean formation are simultaneously being produced from or fluid is being injected into such formation by means of the other well(s) which are completed via separate casings;

(d) such an assembly and process for drilling multiple cased wells from a single or common well bore which is relatively simple in construction, which permits production casing of each multiple well to separately depend from the surface apparatus, and which provides that the separate production casing of each multiple well extend from the subterranean formation of interest to the surface.

The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the preferred embodiments of the present invention and, together with the description thereof, serve to explain the principles of the invention.

In the drawings:

FIG. 1 is a sectional view of an assembly of the present invention as positioned over a well bore;

FIG. 2 is a sectional view of a dual bore insert as positioned in and supported by the assembly;

FIG. 3 is a sectional view of the assembly illustrating two tubulars depending from the wellhead;

FIG. 4 is a sectional view of the assembly depicting sections of the wellhead secured together during construction of the assembly;

FIG. 5 is a sectional view of the assembly including a drilling flange utilized for drilling a first subterranean well bore through one bore of a dual bore well head and associated tubular of the assembly;

FIG. 6 is a partially sectioned view of the assembly illustrating production casing positioned within a first subterranean well bore drilled utilizing the assembly of the present invention;

FIG. 7 is a partially sectioned view of the assembly including a drilling flange utilized for drilling a second subterranean well bore through another bore of the dual bore wellhead and associated tubular of the assembly;

FIG. 8 is a partially sectioned view of the assembly illustrating production casing positioned within a second subterranean well bore drilled utilizing the assembly of the present invention;

FIG. 9 is a partially sectioned view of the assembly including a dual bore tubing spool;

FIG. 10 is a partially sectioned view of the assembly having separate production tubing positioned within first and second subterranean well bores drilled utilizing the assembly of the present invention, each well bore having separate production trees at the surface;

FIG. 11 is a partially sectioned view of the assembly which is partially illustrated in FIG. 9, wherein the first and second subterranean well bores drilled utilizing the assembly have separate production trees at the surface so as to permit production of subterranean fluid through production casing positioned within each well bore;

FIG. 12 is a cutaway, sectional view of one embodiment of a downhole tie-back assembly as secured to one tubular;

FIG. 13 is a cutaway, sectional view of the embodiment of a downhole tie-back assembly illustrated in FIG. 12 showing a second tubular being lowered into engagement with a threaded bore through the tie back assembly;

FIG. 14 is a cutaway, sectional view of another embodiment of a downhole tie-back assembly as secured to one tubular and a portion of a second tubular, the remaining portion of the second tubular being lowered within the common well bore into engagement with a threaded bore through the tie back assembly;

FIG. 15 is a top view of an insert having three bores therethrough as positioned in and supported by the wellhead assembly, and

FIG. 16 is a sectional view of an assembly of the present invention illustrating three tubulars depend-
ing from the wellhead.

As illustrated in FIG. 1, a relatively large diameter tubular or pipe 2, for example a 30 inch (76 cm) diameter pipe, is driven into the ground, either onshore or offshore, by percussion or any other suitable means to a relatively shallow depth at which the pipe refuses to be driven. Alternatively, a large diameter hole, for example a 36 inch (91 cm) diameter hole, can be drilled into the earth by any conventional means as will be evident to a skilled artisan and the relatively large diameter tubular or pipe 2, for example a 30 inch (76 cm) diameter pipe, is positioned within the hole and cemented therein. Thereafter, a slightly smaller diameter well bore is drilled through pipe 2 to a depth of, for example 1200 feet (370 metres), and conductor pipe or casing 4 is positioned and cemented within this well bore in a conventional manner as will be evident to a skilled artisan. A wellhead 6 having a plurality of legs or pods 7 is positioned upon pipe 2 and casing 4 such that the bottom of legs 7 rest upon the upper end of pipe 2 and either the surface of the earth if onshore or the cellar deck of an offshore drilling platform, both illustrated as 5 in FIG. 1. The upper end of conductor pipe 4 is received within wellhead 6 and secured thereto by any suitable means, such as welds (not illustrated). The well bore is then drilled through casing 4 to an appropriate depth, e.g., about 3500 - 4000 feet (1070 - 1220 metres). The resultant well bore 9 may either be vertical or deviated.

Referring to FIG. 2, wellhead 6 has a bore 12 therethrough of varying diameter which defines a generally annular shoulder 14. An insert 20 is positioned within bore 12 and supported upon a generally annular shoulder 14. Insert 20 has at least two bores 22, 26 therethrough of varying diameter which defines generally annular shoulders 23, 27 and tapered sections 24, 28, respectively. As illustrated in FIG. 3, a plurality of tubulars 30, 34 which correspond in number to the number of bores through insert 20 are positioned through bores 22 and 26 in a manner as hereinbefore described and are secured therein by, for example, conventional casing slips 31, 35 which are expanded into engagement with insert 20 upon being lowered into contact with tapered sections 24, 28, respectively. Casing slips 31, 35 are provided with seals 32, 36 which can be constructed of any suitable material, for example an elastomer. Any other conventional means, such as split mandrel hangers, can be utilized in lieu of casing slips 31, 35 to secure tubulars 30, 34 to insert 20. Tubulars 30, 34 are also provided with conventional packoff seal rings 33, 37. As utilized throughout this description, "tubular" refers to string of pipe, such as casing, conventionally positioned within a subterranean well bore and usually made up of individual lengths of pipe which are secured together by, for example, screw threads.

Once tubulars 30, 34 are secured to insert 20, a dual bore wellhead 15 (FIG. 4) is secured to wellhead 6 by any suitable means, such as by bolts (not illustrated), and has two bores 16, 18 therethrough which are substantially aligned with tubulars 30, 34. The diameter of each of bore 16, 18 is restricted along the length thereof defining annular shoulders 17, 19, respectively. As assembled, packoff seal rings 33 and 37 function to provide a fluid tight seal between tubulars 30, 34 and dual bore wellhead 15. As thus positioned within well bore 9, tubulars 30 and 34 are cemented in a conventional manner, preferably by transporting a cement slurry via only one of the tubulars. It is preferred that the cement deposited in well bore 9 extend into casing 4.

Thereafter, a plug 38 having seals 39, for example elastomeric O-rings, is positioned within the upper end of one of bores 16 or 18 through dual bore wellhead 15 (bore 16 as illustrated in FIG. 5) and a drilling flange 40 is secured to dual bore wellhead 15 by any suitable means, such as by bolts (not illustrated). Flange 40 has a bore 41 therethrough which is substantially aligned with bore 18 and tubular 34 so as to permit passage of a drilling string therethrough. Further, flange 40 is sized to be coupled to a conventional blow out preventer for safety during drilling as will be evident to a skilled artisan. As thus assembled, drilling flange 40, wellhead 6, dual bore wellhead 15 and tubulars 30, 34 provide an assembly through which two wells can be separately drilled and completed from the surface in a manner as hereinafter described so as to eliminate the need for downhole tools having moveable parts and the problems associated therewith. This assembly can be used during drilling of wells from onshore drilling rigs and/or offshore drilling platforms.

A drilling string having a drill bit secured to one end thereof is passed through bores 41 and 18 and tubular 34 to drill out any hardened cement present therein. The drilling string is advanced from the bottom of tubular 34 and a generally vertical or a deviated well bore 46 is drilled therethrough in a conventional manner so as to penetrate a subterranean formation or zone. Once the well bore is drilled from tubular 34 and logged, if desired, production casing 56 (FIG. 6) is lowered from the surface until a portion thereof is positioned within well bore 46. The production casing 56 is first cemented within well bore 46 in a conventional manner with cement preferably extending up to the bottom of tubular 34. Prior to the cement setting, production casing 56 is secured within bore 18 of dual bore wellhead 15 by means of conventional casing slips 57 which are expanded into engagement with bore 18 of dual bore wellhead 15 upon contacting annular shoulder 19. Casing slips 57 are provided with a seal 58 to provide a fluid tight seal between bore 18 of dual bore wellhead 15 and production casing 56. The upper end of production casing 56 is also provided with conventional packoff seal rings 59.

Once production casing 56 is thus secured within bore 18 of dual bore wellhead 15 and cemented within well bore 46, drilling flange 40 is removed from dual bore wellhead 15 and the portion of production casing 56 extending beyond packoff seal rings 59 is severed or cut
by conventional tools and plug 38 is removed from the upper end of bore 16. Drilling flange 40 is again secured to dual bore wellhead 15 by any suitable means, such as by bolts (not illustrated) so that bore 41 through flange 40 is substantially aligned with bore 16 and tubular 30 so as to permit passage of a drilling string there-through (FIG. 7). A conventional blow out preventer is again secured to drilling flange 40 to ensure safety during drilling. A drilling string having a drill bit secured to one end thereof is passed through bores 41 and 16 and tubular 30 to drill out any hardened cement present therein. The drilling string is advanced from the bottom of tubular 30 and a vertical or a deviated well bore 44 is drilled therethrough in a conventional manner so as to penetrate a subterranean formation. Once this well bore is drilled from tubular 30 and logged, if desired, production casing 50 is lowered from the surface until a portion thereof is positioned within well bore 44 as illustrated in FIG. 8. The production casing 50 is first cemented within well bore 44 in a conventional manner with cement preferably extending up to the bottom of tubular 30. Prior to the cement setting, production casing 50 is secured within bore 16 of dual bore wellhead 15 by means of conventional casing slips 51 which are expanded into engagement with bore 16 upon contacting annular shoulder 17. Casing slips 51 are provided with seals 52 to provide a fluid tight seal between bore 16 of dual bore wellhead 15 and production casing 50. The upper end of production casing 50 is also provided with conventional packoff seal rings 53. Any other conventional means, such as mandrel hangers, can be utilized in lieu of casing slips 51, 57 to secure production casing 50, 56, respectively, to dual bore wellhead 15. Once production casing 50 is thus secured within bore 16 of dual bore wellhead 15 and cemented within well bore 44, drilling flange 40 is removed from dual bore wellhead 15 and the portion of production casing 50 extending beyond packoff seal rings 53 is severed or cut by conventional tools (FIG. 9).

As illustrated in FIG. 9, a dual bore tubing spool 60 is secured onto dual bore wellhead 15 by any suitable means, such as by bolts (not illustrated) so that bores 62 and 64 through spool 60 are substantially aligned with production casing 50 and 56, respectively. Each of bores 62, 64 has a restriction in diameter which defines tapered sections 63, 65. Packoff seal rings 53, 59 function to provide a fluid tight seal between production casing 50, 56, respectively, and tubing spool 60. Production casings 50 and 56 are then placed in fluid communication with the subterranean formation(s) which each penetrate by any suitable means, for example by perforations, such that fluids, preferably hydrocarbons, enter casings 50 and 56 for production to the surface. As illustrated in FIG. 10, smaller diameter production tubing 70, 76 are positioned within production casing 50, 56, respectively, and are supported by means of conventional tubing hangers 71, 77 which are hung off into tubing spool 60 upon the tubing hangers contacting annular shoulders 63 and 65, respectively. Any other conventional means, such as mandrel hangers, can be utilized in lieu of tubing hangers 71, 77 (as illustrated in FIG. 10) to secure production tubing 70, 76, respectively, to tubing spool 60. The upper end of production tubing 70, 76 are also provided with conventional packoffs 72 and 78 to provide a fluid tight seal between tubing spool 60 and production tubing 70 and 76. Separate production trees 80 and 86 are installed so as to be in fluid communication with production tubing 70 and 76, respectively.

Alternatively, fluids from subterranean formation(s) penetrated by production casing 50 and 56 can be produced to the surface of the earth directly through the production casing without the use of production tubing depending upon the particular application as will be evident to the skilled artisan. In this embodiment, separate production trees 80 and 86 are installed onto tubing spool 60 so as to be in fluid communication with production casing 50 and 56, respectively, as illustrated in FIG. 11.

As thus drilled and completed in accordance with the present invention, two subterranean wells 44, 46 are drilled into the same or different subterranean formations or horizons, to identical or different total depths, and are each either vertical or deviated. Wells 44 and 46 are separately completed to the surface through a single or common well bore so that fluid can be simultaneously produced from and/or injected into the subterranean formation(s) via both wells. Or a remedial operation including, but not limited to workovers, recompletions, and side tracking, can be performed in one well while hydrocarbons are simultaneously produced from or fluid injected into a subterranean formation via the other well. In addition, fluid can be injected into a subterranean formation via one well as hydrocarbons are being produced from the same or a different subterranean formation via the other well.

Because of the length of tubulars 30 and 34 of the assembly of the present invention, e.g. about 3500 to about 4000 feet (1070-1220 metres), it may be desirable to ensure that such tubulars remain separated near the lower end thereof as positioned within well bore 9. A downhole tie-back assembly is illustrated in FIG. 12 generally as 100 and has a first bore 102 and a second bore 104 therethrough. As positioned within the surface or common well bore, separate lengths of tubular 30 are secured within first bore 102 by means of, for example screw threads. Second bore 104 is provided with threads 105 which mate with a collet latch 37 secured to the exterior of tubular 34. As tubular 34 is lowered into the common well bore in a manner illustrated in FIG. 13, collet latch 37 snaps into engagement with threads 105 and secures tubular 34 to tie-back assembly 100 thereby fixing the relative relationship of tubulars 30 and 34 downhole. In this manner, the downhole structural stability of the assembly of the present invention is increased permitting increased directional control so as to minimize interference of well bores drilled and com-
pleted utilizing the assembly of the present invention. An alternative downhole tie-back assembly is illustrated in FIG. 14 as 120 and has a first bore 122 and a second bore 124 therethrough. As positioned within the surface or common well bore, separate lengths of tubular 30 are secured within first bore 122 by means of, for example, screw threads, and one length of tubular 34 is similarly secured within second bore 124 so as to depend therefrom. A collet latch 37 is secured to the exterior of the lower end of the remaining lengths of tubular 34. As these remaining lengths of tubular 34 are lowered into the common well bore in a manner illustrated in FIG. 14, collet latch 137 snaps into engagement with threads 125 in second bore 124 and secures the remaining lengths of tubular 34 to tie-back assembly 120 thereby fixing the relative relationship of tubulars 30 and 34 downhole. Seals 138 in the lower end of tubular 34 provide a fluid tight seal between tubular 34 and tie back assembly 120.

The following example demonstrates the practice and utility of the present invention, but is not to be construed as limiting the scope thereof.

EXAMPLE 1

A 30 foot (76 cm) diameter pipe is driven 500 feet (15 metres) into the earth by percussion. A 26 inch (66 cm) diameter well bore is drilled through the 30 foot diameter pipe to a depth of 2000 feet (610 metres) and a 24 inch (61 cm) diameter is run into and cemented therein. A 26 3/4 inch (68 cm) diameter, 3000 psi (20.7 MPa) starting wellhead is installed over the 24 inch diameter casing and swaged down to 24 inches (61 cm). A well bore is conventionally drilled through this casing to surface casing depth, i.e. 4000 feet (1220 metres), and is underreamed to 24 inches (61 cm) in diameter. A downhole tie-back assembly is screwed onto 9 5/8 inch (24.5 cm) diameter surface casing and run into the well bore. A dual bore insert is installed over the 9 5/8 inch diameter surface casing and landed into 26 3/4 inch (68 cm) starting wellhead. The string of 9 5/8 inch string is then run through one bore of the insert to approximately 30 feet (76 cm) from the bottom of the well bore. The 9 5/8 inch casing is secured within the insert by means of a mandrel hanger, and that portion of the first casing extending above the insert is removed from the mandrel hanger. A second string of 9 5/8 inch diameter casing which is equipped with a collet latch is inserted through the second bowl of the insert and lowered to the tie-back assembly until the collet latch is secured to threads in a bore through the tie-back assembly. Both strings of 9 5/8 inch casing are cemented within the well bore by circulating cement through the second string of 9 5/8 inch casing run into the well bore. The second string of 9 5/8 inch casing is then secured to the insert by means of a slip assembly and the portion of the second casing extending above the insert is cut and packoffs are installed over both casing strings.

A dual bore wellhead is installed onto the starting wellhead. A plug is inserted into the first bore of the dual bore wellhead and a drilling flange is installed onto the dual bore wellhead to provide access the second bore through the dual bore wellhead. Blow out preventers are rigged up to the drilling flange and pressure tested. A drilling string is passed through the second string of 9 5/8 inch diameter casing to drill out cement and float equipment on the bottom of this casing. A well bore is then directionally drilled from the bottom of the second string of 9 5/8 inch casing to a predetermined total depth of 10,000 feet (3050 metres). The well bore is logged and 7 inch diameter production casing is run into the well bore and cemented therein. Slips are then set to secure the casing to the dual bore wellhead. The portion of 7 inch (18 cm) production casing extending from the dual bore well head is then cut and packoff seals are then installed between the production casing and the dual bore wellhead.

The drilling flange is removed from the dual bore wellhead and the plug is removed from the first bore. The drilling flange is then installed onto the dual bore wellhead to access the first bore and isolate the first well drilled by means of the pack off seals. Blow out preventers are rigged up to the drilling flange and pressure tested. A drilling string is passed through the first string of 9 5/8 inch diameter casing to drill out cement and float equipment on the bottom of this casing. A well bore is directionally drilled from the bottom of the first string of 9 5/8 inch casing and away from the well which was previously drilled to a total depth of 12,000 feet (3660 metres). This well bore is then logged and 7 inch diameter production casing is run into the well bore and cemented therein. Slips are set to secure the casing to the dual bore wellhead. The portion of 7 inch production casing extending from the dual bore wellhead is cut and packoff seals are then installed between the production casing and the dual bore wellhead. A dual bore tubing spool is then installed and the two wells are separately completed with separate production trees.

Although the insert of the assembly of the present invention has been illustrated and described as having two bores through which two separate lengths of surface casing are positioned, it will be evident to a skilled artisan that an insert can be provided with more than two bores and that more than two strings of surface casing can be positioned through such bores and within the surface well bore depending upon the diameter of the surface well bore and the surface casings inserted therein. For example, an insert 220 is provided with three bores 221, 224, and 227 (FIG. 15) therethrough and is positioned within and supported by the wellhead 6 in a manner as described above with respect to insert 20. Tubulars 230, 234, and 237 are positioned through bores 221, 224, and 227, respectively (FIG. 16) and secured therein in a manner as described above with respect to tubulars 30 and 34. As constructed in this manner, the assembly of the present invention will permit three sub-
terranee wells to be separately drilled and completed from a common or single well bore.

Further, it is within the scope of the present invention to provide tubulars of varying length which terminate at different positions within the common well bore, to secure whipstock(s) to the assembly below the point where such tubulars terminate, and/or to provide means for deviating the drill string emanating from such tubulars, for example mud motors, to ensure against wellbore interference. In instances where a whipstock or additional downhole structural stability for the assembly of the present invention is desired, an elongated frame, for example I-beam(s), can be positioned between and secured to both first and second tubulars along the length thereof. If such elongated frame is utilized, it is preferred that such frame be secured to at least one of the tubulars by any suitable means, such as bolts, that a second tubular be stubbed into the template, and that both tubulars be positioned through generally C-shaped guides on each side of I-beam. Such generally C-shaped guides can be secured to the I-beam along the length thereof, such as by welds.

Claims

1. An assembly through which multiple subterranean wells can be separately drilled and completed from a common well bore, said assembly comprising:
 a wellhead (8) located at or near the surface of the earth and positioned over a common well bore (9);
 a first tubular (34; 234) positioned within said common well bore (9), said first tubular being sized to permit passage of a drill string therethrough during drilling of a first subterranean well bore (46) from said common well bore (9) and to permit production casing (56) to be positioned therethrough when said first subterranean well bore (46) is completed;
 a second tubular (30; 230) positioned within said common well bore (9), said second tubular (30) being sized to permit passage of a drill string therethrough during drilling of a second subterranean well bore (44) from said common well bore (9) and to permit production casing (50) to be positioned therewith when said second subterranean well bore (44) is completed; and
 means (20) positioned at said wellhead (6) for segregating and supporting said first and said second tubulars (34, 30; 234, 230).

2. The assembly of claim 1 further comprising:
 second means (100; 120) positioned within said well bore (9) for segregating and supporting said first and said second tubulars (34, 30; 234, 230).

3. The assembly of claim 1 wherein said means (20) positioned at said wellhead (6) for segregating and supporting said first and said second tubulars (34, 30) comprises a body (20) having two bores therethrough which separately receive said first and said second tubulars, said body (20) being supported by said wellhead (6).

4. The assembly of claim 1 further comprising:
 a third tubular (237) positioned within said common well bore (9), said third tubular (237) being sized to permit passage of a drill string therethrough during drilling of a third subterranean well bore from said common well bore (9) and to permit production casing to be positioned therein when said third well bore is completed, said means (20) positioned at said wellhead segregating and supporting said third tubular (237) in addition to said first and said second tubulars (234, 230).

5. The assembly of claim 1 wherein said first and said second tubulars (34, 30; 234, 230) are cemented within said common well bore (9).

6. The assembly of claim 4 wherein said first, said second and said third tubulars (234, 230, 237) are cemented within said common well bore (9).

7. A process of drilling and completing subterranean wells comprising:
 suspending and separating at least two tubulars (34, 30; 234, 230) from a wellhead (6) of a common well bore (9), said at least two tubulars being positioned within said common well bore; drilling a first subterranean well bore (45) through one (34, 234) of said at least two tubulars and into a subterranean formation; and securing a first length of production casing (56) to said wellhead (6), said first length of production casing extending into said first well bore (45) and being supported at said well head (6) so as to establish fluid communication between the subterranean formation penetrated by said first well bore (46) and the surface of the earth.

8. The process of claim 7 further comprising:
 producing hydrocarbons from said subterranean formation penetrated by said first well bore (46) to said surface of the earth via said first length of production casing (56).

9. The process of claim 7 further comprising:
 positioning production tubing (76) through said first length of production casing (56), and
sealing the annulus defined between said first length of production casing (56) and said production tubing (76).

10. The process of claim 9 further comprising:
 producing hydrocarbons from said subterranean formation penetrated by said first well bore (46) to said surface of the earth via said production tubing (76).

11. The process of any one of claims 7-10 further comprising:
 drilling a second subterranean well bore (44) through the other (30, 230) of said at least two tubulars and into a subterranean formation; and securing a second length of production casing (50) to said wellhead (6), said second length of production casing extending into said second well bore (44) and being supported at said wellhead (6) so as to establish fluid communication between the subterranean formation penetrated by said second well bore (44) and the surface of the earth.

12. The process of claim 11 further comprising:
 producing hydrocarbons from said subterranean formation penetrated by said second well bore (44) to said surface of the earth via said second length of production casing (50).

13. The process of claim 11 further comprising:
 positioning production tubing (70) through said second length of production casing (50); and sealing the annulus defined between said second length of production casing (50) and said production tubing (70).

14. The process of claim 13 further comprising:
 producing hydrocarbons from said subterranean formation penetrated by said second well bore (44) to said surface of the earth via said production tubing (70).

15. The process of claim 11 further comprising:
 conducting a remedial operation via said second length of production casing (50); and concurrently, producing hydrocarbons from said subterranean formation penetrated by said first well bore (46) to said surface via production tubing (76) positioned within said first length of production casing (56).

16. The process of claim 11 further comprising:
 injecting a fluid into the subterranean formation penetrated by said second well bore (44) via said second length of production casing (50); and concurrently, producing hydrocarbons from said subterranean formation penetrated by said first well bore (46) to said surface via production tubing (76) positioned within said first length of production casing (56).

17. The process of claim 11 further comprising:
 suspending and separating a third tubular (237) from the wellhead (6) of the common well bore (9), said third tubular being positioned within the common well bore; drilling a third subterranean well bore through said third tubular (237) and into a subterranean formation; and securing a third length of production casing to said wellhead (6), said third length of production casing extending into said third well bore and being supported at said wellhead so as to establish fluid communication between the subterranean formation penetrated by said third well bore and the surface of the earth.

18. The process of claim 17 further comprising:
 producing hydrocarbons from said subterranean formation penetrated by said third well bore to said surface of the earth via said third length of production casing.

19. The process of claim 17 further comprising:
 positioning production tubing through said third length of production casing; and sealing the annulus defined between said third length of production casing and said production tubing.

20. The process of claim 19 further comprising:
 producing hydrocarbons from said subterranean formation penetrated by said third well bore to said surface of the earth via said production tubing.

21. The process of claim 11 wherein said subterranean formation penetrated by said first well bore (46) and said subterranean formation penetrated by said second well bore (44) are the same.

22. The process of claim 11 wherein said subterranean formation penetrated by said first well bore (46) is distinct from said subterranean formation penetrated by said second well bore (44).

23. The process of claim 7 wherein said common well bore (9) is generally vertical.
24. The process of claim 7 wherein said common well bore (9) is deviated.

25. A process for drilling at least two subterranean well bores from a common well bore comprising:
 positioning at least two tubulars (34, 30; 234, 230) within said common well bore (9);
 drilling a first subterranean well bore (46) through one (34; 234) of said at least two tubulars and into a first subterranean formation; and
 drilling a second subterranean well bore (44) through the other (30; 230) of said at least two tubulars and into a second subterranean formation.

26. The process of claim 25 wherein said at least two tubulars (34, 30; 234, 230) are suspended from a common wellhead, said process further comprising:
 sealing said other (30; 230) of said at least two tubulars against fluid flow prior to drilling said first subterranean well bore (46).

27. The process of claim 26 further comprising:
 sealing said one (34; 234) of said at least two tubulars against fluid flow prior to drilling said second subterranean well bore (44).

28. The processing of claim 25 wherein said first subterranean formation and said second subterranean formation are the same.

29. The process of claim 25 wherein said first subterranean formation is distinct from said second subterranean formation.

Patentansprüche

1. Anordnung, durch welche hindurch eine Vielzahl unterirdischer Bohrungen von einem gemeinsamen Bohrloch aus getrennt gebohrt und fertiggestellt werden können, umfassend:
 einen Bohrlochkopf (6), welcher an oder nahe der Erdoberfläche angesetzt und über einem gemeinsamen Bohrloch (9) angeordnet ist;
 ein erstes Rohr (34; 234), welches innerhalb des gemeinsamen Bohrloches (9) angeordnet ist, wobei das erste Rohr bemessen ist, um durch sich hindurch den Durchgang eines Bohrstrangs während des Bohrens einer ersten unterirdischen Bohrung (46) von dem gemeinsamen Bohrloch (9) aus zu ermöglichen und um durch sich hindurch das Anordnen eines Förderrohrstranges (56) zu ermöglichen, wenn das erste unterirdische Bohrloch (46) fertiggestellt ist;
 ein zweites Rohr (30; 230), welches innerhalb des gemeinsamen Bohrlochs (9) angeordnet ist, wobei das zweite Rohr (30) bemessen ist, um durch sich hindurch den Durchgang eines Bohrstrangs während des Bohrens einer zweiten unterirdischen Bohrung (44) von dem gemeinsamen Bohrloch (9) aus zu ermöglichen und um durch sich hindurch das Anordnen eines Förderrohrstranges (50) zu ermöglichen, wenn das zweite unterirdische Bohrloch (44) fertiggestellt ist; und
 ein Mittel (20), welches am Bohrlochkopf (6) zum Herablassen und Halten des ersten und des zweiten Rohres (34, 30; 234, 230) angeordnet ist.

2. Anordnung nach Anspruch 1, ferner umfassend:
 ein zweites Mittel (100; 120), welches innerhalb des Bohrloches (9) zum Herablassen und Halten des ersten und des zweiten Rohres (34, 30; 234, 230) angeordnet ist.

3. Anordnung nach Anspruch 1, in der das Mittel (20), welches am Bohrlochkopf (6) zum Herablassen und Halten des ersten und des zweiten Rohres (34, 30) angeordnet ist, einen Körper (20) umfaßt, welcher zwei durch sich hindurch führende Bohrungen aufweist, welche getrennt voneinander das erste und das zweite Rohr aufnehmen, und wobei der Körper (20) durch den Bohrlochkopf (6) gehalten wird.

4. Anordnung nach Anspruch 1, ferner umfassend:
 ein drittes Rohr (237), welches innerhalb des gemeinsamen Bohrloches (9) angeordnet ist, wobei das dritte Rohr (237) bemessen ist, um durch sich hindurch den Durchgang eines Bohrstrangs während des Bohrens einer dritten unterirdischen Bohrung von dem gemeinsamen Bohrloch (9) aus zu ermöglichen und um durch sich hindurch das Anordnen eines Förderrohrstranges zu ermöglichen, wenn das dritte unterirdische Bohrloch fertiggestellt ist, wobei das Mittel (20), welches am Bohrlochkopf (6) angeordnet ist, zusätzlich zu dem ersten und dem zweiten Rohr (234, 230), das dritte Rohr (237) herabläßt und hält.

5. Anordnung nach Anspruch 1, in der das erste und das zweite Rohr (34, 30; 234, 230) innerhalb des gemeinsamen Bohrloches (9) einzentniert sind.

6. Anordnung nach Anspruch 4, in der das erste, das zweite und das dritte Rohr (234, 230, 237) innerhalb des gemeinsamen Bohrloches (9) einzentniert sind.

7. Verfahren zum Bohren und Fertigstellen unterirdischer Bohrungen, umfassend:
Einhängen und Trennen wenigstens zweier Rohre (34, 30, 234, 230) von einem Bohrlochkopf (6) eines gemeinsamen Bohrochs (9), wobei die wenigstens zwei Rohre innerhalb des gemeinsamen Bohrochs angeordnet sind; Bohren einer ersten unterirdischen Bohrung (46) durch eines (34, 234) der wenigstens zwei Rohre in eine unterirdische Formation hinein; und Befestigen einer ersten Länge eines Förderrohrstranges (56) an dem Bohrlochkopf (6), wobei sich die erste Länge des Förderrohrstranges in die erste Bohrung (46) hinein erstreckt und am Bohrlochkopf (6) gehalten wird, um eine Fließverbindung zwischen der unterirdischen Formation, welche von der ersten Bohrung (46) durchdrungen ist, und der Erdoberfläche aufzubauen.

8. Verfahren nach Anspruch 7, ferner umfassend:
Fördern von Kohlenwasserstoffen aus der unterirdischen Formation, welche von der ersten Bohrung (46) durchdrungen ist, zur Erdoberfläche über die erste Länge des Förderrohrstranges (56).

9. Verfahren nach Anspruch 7, ferner umfassend:
Anordnen einer Förderleitung (76) durch die erste Länge des Förderrohrstranges (56) hindurch; und Abdichten des Ringraums, welcher zwischen der ersten Länge des Förderrohrstranges (56) und der Förderleitung (76) liegt.

10. Verfahren nach Anspruch 9, ferner umfassend:
Fördern von Kohlenwasserstoffen aus der unterirdischen Formation, welche von der ersten Bohrung (46) durchdrungen ist, zur Erdoberfläche über die Förderleitung (76).

11. Verfahren nach einem der Ansprüche 7 bis 10, ferner umfassend:
Bohren einer zweiten unterirdischen Bohrung (44) durch das andere (30, 230) der wenigstens zwei Rohre in eine unterirdische Formation hinein; und Befestigen einer zweiten Länge eines Förderrohrstranges (50) an dem Bohrlochkopf (6), wobei sich die zweite Länge des Förderrohrstranges in die zweite Bohrung (44) hinein erstreckt und am Bohrlochkopf (6) gehalten wird, um eine Fließverbindung zwischen der unterirdischen Formation, welche von der zweiten Bohrung (44) durchdrungen ist, und der Erdoberfläche aufzubauen.

12. Verfahren nach Anspruch 11, ferner umfassend:
Fördern von Kohlenwasserstoffen aus der unterirdischen Formation, welche von der zweiten Bohrung (44) durchdrungen ist, zur Erdoberfläche über die zweite Länge des Förderrohrstranges (50).

13. Verfahren nach Anspruch 11, ferner umfassend:
Anordnen einer Förderleitung (70) durch die zweite Länge des Förderrohrstranges (50) hindurch; und Abdichten des Ringraums, welcher zwischen der zweiten Länge des Förderrohrstranges (50) und der Förderleitung (70) liegt.

14. Verfahren nach Anspruch 13, ferner umfassend:
Fördern von Kohlenwasserstoffen aus der unterirdischen Formation, welche von der zweiten Bohrung (44) durchdrungen ist, zur Erdoberfläche über die Förderleitung (70).

15. Verfahren nach Anspruch 11, ferner umfassend:
Durchführen einer Abhilfemaßnahme über die zweite Länge des Förderrohrstranges (50); und gleichzeitiges Fördern von Kohlenwasserstoffen aus der unterirdischen Formation, welche von der ersten Bohrung (46) durchdrungen ist, zur Erdoberfläche über die Förderleitung (76), welche innerhalb der ersten Länge des Förderrohrstranges (56) angeordnet ist.

16. Verfahren nach Anspruch 11, ferner umfassend:
Injizieren einer Flüssigkeit in die unterirdische Formation, welche von der zweiten Bohrung (44) durchdrungen ist, über die zweite Länge des Förderrohrstranges (50); und gleichzeitiges Fördern von Kohlenwasserstoffen aus der unterirdischen Formation, welche von der ersten Bohrung (46) durchdrungen ist, zur Erdoberfläche über die Förderleitung (76), welche innerhalb der ersten Länge des Förderrohrstranges (56) angeordnet ist.

17. Verfahren nach Anspruch 11, ferner umfassend:
Einhängen und Trennen eines dritten Rohres (237) von einem Bohrlochkopf (6) eines gemeinsamen Bohrochs (9), wobei das dritte Rohr innerhalb des gemeinsamen Bohrochs angeordnet ist; Bohren einer dritten unterirdischen Bohrung durch das dritte Rohr (237) in eine unterirdische Formation; und Befestigen einer dritten Länge eines Förderrohrstranges an dem Bohrlochkopf (6), wobei sich die dritte Länge des Förderrohrstranges in
die dritte Bohrung hinein erstreckt und am Bohrlochkopf gehalten wird, um eine Fließverbindung zwischen der unterirdischen Formati-
on, welche von der dritten Bohrung durchdrungen ist, und der Erdoberfläche aufzubauen.

18. Verfahren nach Anspruch 17, ferner umfassend:
Fördern von Kohlenwasserstoffen aus der unter-
irdischen Formation, welche von der dritten Boh-
rung durchdrungen ist, zur Erdoberfläche über die
dritte Länge des Förderrohrstranges.

19. Verfahren nach Anspruch 17, ferner umfassend:
Anordnen einer Förderleitung durch die dritte
Länge des Förderrohrstranges hindurch; und
Abdichten des Ringraums, welcher zwischen
der dritten Länge des Förderrohrstranges und
der Förderleitung liegt.

20. Verfahren nach Anspruch 19, ferner umfassend:
Fördern von Kohlenwasserstoffen aus der un-
terirdischen Formation, welche von der dritten Boh-
rung durchdrungen ist, zur Erdoberfläche über die
Förderleitung.

21. Verfahren nach Anspruch 11, wobei die unterirdi-
sche Formation, welche von der ersten Bohrung
(46) durchdrungen ist, und die Formation, welche
von der zweiten Bohrung (44) durchdrungen ist,
dieselben sind.

22. Verfahren nach Anspruch 11, wobei die unterirdi-
sche Formation, welche von der ersten Bohrung
(46) durchdrungen ist, von der unterirdischen For-
nation, welche von der zweiten Bohrung (44)
durchdrungen ist, verschieden ist.

23. Verfahren nach Anspruch 7, wobei das gemeinsa-
me Bohrloch (9) im wesentlichen senkrecht ist.

24. Verfahren nach Anspruch 7, wobei das gemeinsa-
me Bohrloch (9) abgelenkt ist.

25. Verfahren zum Bohren von wenigstens zwei unter-
irdischen Bohrungen aus einem gemeinsamen
Bohrloch, umfassend:
Anordnen von wenigstens zwei Rohren (34; 30;
234, 230) innerhalb des gemeinsamen Bohr-
lochs (9);
Bohren einer ersten unterirdischen Bohrung
(46) durch eines (34; 234) der wenigstens zwei
Rohre hindurch in eine erste unterirdische For-
nation hinein; und
Bohren einer zweiten unterirdischen Bohrung
(44) durch das andere (30; 230) der wenigstens
two Rohre hindurch in eine zweite unterirdi-
sche Formation hinein.

26. Verfahren nach Anspruch 25, wobei die wenigstens
zwei Rohre (34, 30; 234, 230) in einen gemeinsa-
men Bohrlochkopf eingehängt sind, und ferner um-
fassend:
Abdichten des anderen (30; 230) der wenigstens
zwei Rohre gegen den Flüssigkeitsstrom vor
dem Bohren der ersten unterirdischen Bohrung
(46).

27. Verfahren nach Anspruch 26, ferner umfassend:
Abdichten des einen (34; 234) der wenigstens
zwei Rohre gegen den Flüssigkeitsstrom vor dem
Bohren der beiden unterirdischen Bohrung (44).

28. Verfahren nach Anspruch 25, wobei die erste unter-
irdische Formation und die zweite unterirdische
Formation dieselben sind.

29. Verfahren nach Anspruch 25, wobei die erste unter-
irdische Formation von der zweiten unterirdischen
Formation verschieden ist.

Revisions

1. Un ensemble à travers lequel des puits souterrains
multiples peuvent être forés et achevés de manière
séparée à partir d’un puits de forage commun, dit
ensemble comprenant :

une tète de puits (6), située au niveau ou près
de la surface de la terre, et mise en place sur
un puits de forage commun (9) ;

une première structure tubulaire (34 ; 234) mi-
se en place à l'intérieur dudit puits de forage
commun (9), ladite première structure tubulaire
étant dimensionnée pour permettre le passage
d'une garniture de forage à travers cette der-
nière pendant le forage d'un premier puits de
forage souterrain (46) à partir dudit puits de fo-
rage commun (9) et pour permettre à un tubage
de production (56) d'être mis en place à travers
elle lorsque ledit premier puits de forage sou-
terrain (46) est achevé ;

une seconde structure tubulaire (30 ; 230) mise
en place à l'intérieur dudit puits de forage com-
mun (9), ledit second élément tubulaire (30)
étant dimensionné pour permettre le passage
d'une garniture de forage à travers ce dernier
pendant le forage d'un second puits de forage
souterrain (44) à partir dudit puits de forage
commun (9) et pour permettre au tubage de
production (50) d'être mis en place à travers lui
lorsque ledit second puits de forage souterrain
(44) est achevé ; et
des moyens (20) placés au niveau de la tête de puits (6) pour séparer et supporter ladite première et ladite seconde structure tubulaire (34, 30 ; 234, 230).

2. L'ensemble selon la revendication 1, comprenant en outre :
de seconds moyens (100 ; 120) mis en place à l'intérieur dudit puits de forage (9) pour séparer et supporter ladite première et ladite seconde structure tubulaire (34, 30 ; 234, 230).

3. L'ensemble selon la revendication 1, dans lequel lesdits moyens (20) mis en place au niveau de ladite tête de puits (6) pour séparer et supporter ladite première et ladite seconde structure tubulaire (34, 30) comprend un corps (20) présentant deux forages à travers ce dernier qui reçoivent séparément ladite première et ladite seconde structure tubulaire, ledit corps (20) étant supporté par ladite tête de puits (6).

4. L'ensemble selon la revendication 1, comprenant en outre :
une troisième structure tubulaire (237) mise en place à l'intérieur dudit puits de forage commun (9), ladite troisième structure tubulaire (237) étant dimensionnée pour permettre le passage d'une garniture de forage à travers cette dernière pendant le forage d'un troisième puits de forage souterrain à partir dudit puits de forage commun (9) et pour permettre à un tubage de production d'y être mis en place lorsque ledit troisième puits de forage est achevé, lesdits moyens (20) mis en place au niveau de ladite tête de puits séparant et supportant ladite troisième structure tubulaire (237) en plus de ladite première et de ladite seconde structure tubulaire (234, 230).

5. L'ensemble selon la revendication 1, dans lequel ladite première et ladite seconde structure tubulaire (34, 30 ; 234, 230) sont cimentées à l'intérieur dudit puits de forage commun (9).

6. L'ensemble selon la revendication 4, dans lequel ladite première, ladite seconde et ladite troisième structure tubulaire (234, 230, 237) sont cimentées à l'intérieur dudit puits de forage commun (9).

7. Un procédé destiné à forer et à achever des puits souterrains, comprenant les opérations consistant à :
suspendre et séparer au moins deux structures tubulaires (34, 30 ; 234, 230) à une tête de puits (6) d'un puits de forage commun (9), lesdites deux structures tubulaires étant mises en place à l'intérieur dudit puits de forage commun ;

forer un premier puits de forage souterrain (46) à travers l'une (34, 234) desdites deux structures tubulaires et dans une formation souterraine ; et fixer une première longueur de tubage de production (56) à ladite tête de puits (6), ladite première longueur de tubage de production s'étendant dans ledit premier puits de forage (46) et étant supportée au niveau de ladite tête de puits (6) de manière à établir une communication des fluides entre la formation souterraine pénétrée par ledit premier puits de forage (46) et la surface de la terre.

8. Le procédé selon la revendication 7, comprenant en outre l'opération consistant à :
amener des hydrocarbures depuis ladite formation souterraine pénétrée par ledit premier puits de forage (46) jusqu'à ladite surface de la terre par l'intermédiaire de ladite première longueur de tubage de production (56).

9. Le procédé selon la revendication 7, comprenant en outre les opérations consistant à :
mettre en place un tube de production (76) à travers ladite première longueur de tubage de production (56) ; et
rendre étanche l'anneau défini entre ladite première longueur de tubage de production (56) et ledit tube de production (76).

10. Le procédé selon la revendication 9, comprenant en outre l'opération consistant à :
amener des hydrocarbures depuis ladite formation souterraine pénétrée par ledit premier puits de forage (46) jusqu'à ladite surface de la terre par l'intermédiaire dudit tube de production (76).

11. Le procédé de l'une quelconque des revendication 7 à 10, comprenant en outre les opérations consistant à :
forer un second puits de forage souterrain (44) à travers l'autre (30 ; 230) desdites deux structures tubulaires et dans une formation souterraine ; et
fixer une seconde longueur de tubage de production (50) à ladite tête de puits (6), ladite seconde longueur de tubage de production s'étendant dans ledit second puits de forage (44) et étant supportée au niveau de ladite tête de puits (6) de manière à établir une communication des fluides entre la formation souterraine pénétrée par ledit second puits de forage...
(44) et la surface de la terre.

12. Le procédé selon la revendication 11, comprenant en outre l'opération consistant à :
 amener des hydrocarbures à partir de ladite formation souterraine pénétée par ledit second puits de forage (44) jusqu'à ladite surface de la terre par l'intermédiaire de ladite seconde longueur de tubage de production (50).

13. Le procédé selon la revendication 11, comprenant en outre les opérations consistant à :
 mettre en place un tube de production (70) à travers ladite seconde longueur de tubage de production (50) ; et
 rendre étanche l'anneau défini entre ladite seconde longueur de tubage de production (50) et ledit tube de production (70).

14. Le procédé selon la revendication 13, comprenant en outre l'opération consistant à :
 amener des hydrocarbures à partir de ladite formation souterraine pénétée par ledit second puits de forage (44) jusqu'à ladite surface de la terre par l'intermédiaire dudit tube de production (70).

15. Le procédé selon la revendication 11, comprenant en outre les opérations consistant à :
 conduire une opération curative par l'intermédiaire de ladite seconde longueur de tubage de production (50) ; et, en même temps,
 amener des hydrocarbures à partir de ladite formation souterraine pénétée par ledit premier puits de forage (46) jusqu'à ladite surface par l'intermédiaire d'un tube de production (76) mis en place à l'intérieur de ladite première longueur de tubage de production (56).

16. Le procédé selon la revendication 11, comprenant en outre les opérations consistant à :
 injecter un fluide dans ladite formation souterraine pénétée par ledit second puits de forage (44) par l'intermédiaire de ladite seconde longueur de tubage de production (50) ; et, en même temps,
 amener des hydrocarbures depuis ladite formation souterraine pénétée par ledit premier puits de forage (46) jusqu'à ladite surface par l'intermédiaire du tube de production (76) mis en place à l'intérieur de ladite première longueur de tubage de production (56).

17. Le procédé selon la revendication 11, comprenant en outre les opérations consistant à :
 suspendre et séparer une troisième structure tubulaire (237) de la tête de puits (6) du puits de forage commun (9), ladite structure tubulaire étant mise en place à l'intérieur du puits de forage commun ;
 forer un troisième puits de forage souterrain à travers ladite troisième structure tubulaire (237) et dans une formation souterraine ; et
 fixer une troisième longueur de tubage de production à ladite tête de puits (6), ladite troisième longueur de tubage de production s'étendant dans ledit troisième puits de forage et étant supportée au niveau de ladite tête de puits de manière à établir une communication des fluides entre la formation souterraine pénétée par ledit troisième puits de forage et la surface de la terre.

18. Le procédé selon la revendication 17, comprenant en outre l'opération consistant à :
 amener des hydrocarbures depuis ladite formation souterraine pénétée par ledit troisième puits de forage jusqu'à ladite surface de la terre par l'intermédiaire de ladite troisième longueur de tubage de production.

19. Le procédé selon la revendication 17, comprenant en outre les opérations consistant à :
 mettre en place un tube de production à travers ladite troisième longueur de tubage de production ; et
 rendre étanche l'anneau défini entre ladite troisième longueur de tubage de production et ledit tube de production.

20. Le procédé selon la revendication 19, comprenant en outre l'opération consistant à :
 amener des hydrocarbures depuis ladite formation souterraine pénétée par ledit troisième puits de forage jusqu'à ladite surface de la terre par l'intermédiaire dudit tube de production.

21. Le procédé selon la revendication 11, dans lequel ladite formation souterraine pénétée par ledit premier puits de forage (46) et ladite formation souterraine pénétée par ledit second puits de forage (44) sont les mêmes.

22. Le procédé selon la revendication 11, dans lequel ladite formation souterraine pénétée par ledit premier puits de forage (46) est distincte de ladite for-
23. Le procédé selon la revendication 7, dans lequel le dit second puits de forage commun (9) est, de manière générale, vertical.

24. Le procédé selon la revendication 7, dans lequel le dit puits de forage commun (9) est dévié.

25. Le procédé destiné à forer au moins deux puits de forage souterrains à partir d'un puits de forage commun comprenant les opérations consistant à :

 mettre en place au moins deux structures tubulaires (34, 30 ; 234, 230) à l'intérieur dudit puits de forage commun (9) ;

 forer un premier puits de forage souterrain (46) à travers l'une (34 ; 234) desdites deux structures tubulaires et dans une première formation souterraine ; et

 forer un second puits de forage souterrain (44) à travers l'autre (30 ; 230) desdites deux structures tubulaires et dans une seconde formation souterraine.

26. Le procédé selon la revendication 25, dans lequel lesdites deux structures tubulaires (34, 30 ; 234, 230) sont suspendues à une tête de puits commune, ledit procédé comprenant en outre l'opération consistant à :

 rendre étanche ladite autre (30 ; 230) desdites deux structures tubulaires à l'encontre de l'écoulement des fluides avant le forage dudit premier puits de forage souterrain (46).

27. Le procédé selon la revendication 26, comprenant en outre l'opération consistant à :

 rendre étanche ladite première (34 ; 234) desdites deux structures tubulaires à l'encontre de l'écoulement des fluides avant le forage dudit second puits de forage souterrain (44).

28. Le procédé selon la revendication 25, dans lequel ladite première formation souterraine et ladite seconde formation souterraine sont les mêmes.

29. Le procédé selon la revendication 25, dans lequel ladite première formation souterraine est distincte de ladite seconde formation souterraine.