EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 11.12.1996 Bulletin 1996/50
(21) Application number: 93921494.6
(22) Date of filing: 16.09.1993
(51) Int. Cl. 6: B23K 20/12
(86) International application number: PCT/US93/08564
(87) International publication number: WO 94/06595 (31.03.1994 Gazette 1994/08)

(54) FRICTION WELDING MOLYBDENUM-RHENIUM ALLOY
REIBSCHWEISSEN EINER MOLYBDÄN-REHNIUM LEGIERUNG
SOUDAGE PAR FRICTION D'UN ALLIAGE AU MOLYBDENNE-RHENIUM

(84) Designated Contracting States:
DE ES FR GB IT NL

(43) Date of publication of application: 12.07.1995 Bulletin 1995/28

(73) Proprietor: E.I. DU PONT DE NEMOURS AND COMPANY
Wilmington Delaware 19898 (US)

(72) Inventors:
 • FELIX, Vinci, Martinez
 Kennett Square, PA 19348 (US)

 • WELLS, David, A.
 Newark, DE 19711 (US)

(74) Representative: Woodcraft, David Charles
BROOKES & MARTIN
High Holborn House
52/54 High Holborn
London, WC1V 6SE (GB)

(56) References cited:
DE-A-2 915 418

 • SCHWEISSEN UND SCHNEIDEN vol. 38, no. 9 ,
1986 , DÜSSELDORF (DE) pages 437 - 441 LISON
'Schweissen von Molybdän und seinen
Legierungen'

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to the field of joining molybdenum alloy rods, tubes and pipes by friction or spin welding.

BACKGROUND OF THE INVENTION

Molybdenum (Mo) metal is used for various specialty applications which require its unusual properties. The melting point of molybdenum is 2630°C, over 1000°C higher than iron, which permits using molybdenum for furnace parts, rocket nozzles and other high-temperature applications wherein most metals would melt or fail. Molybdenum also possesses exceptional resistance to corrosion by mineral acids when exposed to such acids in non-oxidizing conditions.

The mechanical properties of an article fabricated from molybdenum typically depend upon the conditions which are used to shape or work the metal. For best results, molybdenum is worked at a temperature below its recrystallization temperature, thereby avoiding recrystallization and grain growth within the article. When recrystallization is allowed to occur, molybdenum has a tendency to become brittle at relatively low temperatures, e.g., near room temperature and below. Recrystallization becomes particularly difficult to avoid should the manufacturing process employ brazing or welding because temperatures, which are sufficient to induce recrystallization, exist locally at the brazing or welding site. The tendency of recrystallized molybdenum to become brittle is a deterrent to its use in many applications.

Another difficulty arises when commercial molybdenum extrusion products are used for applications which require that rods, tubes or pipes be joined to extend their length, i.e., to form continuous lengths, and that the joined products be bent into a coil or curved object. While the ductility of such commercial molybdenum extrudates is usually satisfactory in the longitudinal direction, the transverse ductility is typically unacceptable, if not zero, which causes failure as a result of stress cracking when the extrudate is bent.

Molybdenum has been alloyed with rhenium (Re), which is a metal with a 3180°C melting point. MoRe alloy pieces are conventionally welded by techniques which minimize welding temperatures, i.e., to avoid recrystallization, such as electron beam welding under an inert shielding gas or a high vacuum.

Document "Schweissen und Schneiden" Vol. 38, no. 9, 1986, Düsseldorf, pages 437-441, discloses friction welding of molybdenum alloys, in particular a MoZr alloy, in an inert shielding gas or a vacuum environment.

SUMMARY OF THE INVENTION

The present invention relates to a process for friction welding molybdenum-rhenium alloys (hereinafter "MoRe alloys"), and more particularly to friction welding MoRe alloys which range in rhenium content from about 10% to about 50% by weight. The process of the invention as defined in claims 1, 2, 3 or 4 comprises generally the steps of effecting a relative rotation of two MoRe work pieces at rim surface speeds up to about 102 to 204 meters (4,000 to 8,000 inches) per minute, forcing the work pieces into frictional contact under an axially applied pressure (force force) of about 20,685 to 137,900 KPa (3,000 to 20,000 pounds per square inch) of interface surface, and sustaining this pressure until a burnoff has been achieved, thereby forming a weld.

The present invention further provides a work piece according to claim 9.

Conventional techniques such as electron beam welding for joining molybdenum rhenium alloys, which require an inert shielding gas or a vacuum environment are described in Schweissen und Schneiden Vol. 38, no. 9, 1986, Düsseldorf, pages 437-441. Such an environment is employed because molybdenum rhenium alloys typically oxidize at high temperatures. Moreover, a molybdenum rhenium alloy has an increased high temperature strength and a higher melting point in comparison to molybdenum. Accordingly, it was a surprising and unexpected result of the present invention that friction welding MoRe alloy work pieces is feasible in air by using the parameters which are disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 - Fig. 1 is a cross-sectional schematic drawing of an apparatus which can be used to perform the friction welding of the present invention.

FIGURE 2 - Fig. 2 is a photograph of a macro-section at 7X magnification which illustrates a friction weld formed between two Mo41%Re rods.

FIGURE 3A - Fig. 3A is a photomicrograph at 10X magnification of a section of a Mo41%Re rod prior to forming the weld illustrated in Fig. #8.

FIGURE 3B - Fig. 3B is a photomicrograph at 100X magnification of a section of a friction weld formed between two Mo41%Re rods.

FIGURE 4 - Fig. 4 is a photograph of a macro-section at 7X magnification which illustrates a friction weld formed between two Mo13%Re rods.

FIGURE 5A - Fig. 5A is a photomicrograph at 100X magnification of a section of a Mo13%Re rod prior to forming
the weld illustrated in Fig. 5B.

FIGURE 5B-FIG 5B is a photomicrograph at 100X magnification of a section of a friction weld formed between two Mo13%Re rods.

FIGURE 6-FIG 6 is a cross-sectional drawing to scale which illustrates the design preparation that was used in accordance with Example 3.

FIGURE 7-FIG 7 is photomicrograph at 7X magnification which illustrates a friction weld formed between two Mo41%Re pipes.

DETAILED DESCRIPTION OF THE INVENTION

The present invention fills the need for continuous lengths of pipes, rods, and tubes, comprising corrosion resistant MoRe alloys that can be used for producing equipment which is employed for manufacturing alternative or replacement fluorocarbon compounds. The alternative or replacement fluorocarbons, known as hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs), have a very low and zero ozone depleting potential, respectively, in comparison to conventional chlorofluorocarbon (CFC) compounds. Suitable techniques for manufacturing the replacement HCFCs and HFCs are disclosed in U.S. PATENT Nos., 4,258,225 and 4,967,024, which are hereby incorporated by reference. Such manufacturing techniques require using hydrogen fluoride in combination with highly acidic, corrosive perfluorinated catalysts, such as tantalum pentaoxfluoride (TaF5), niobium pentaoxfluoride (NbF5), among others. These manufacturing techniques create an environment which is extremely acidic and corrodes conventional manufacturing equipment. The by-products of the corrosion process are released into the manufacturing process, thereby contaminating the resultant fluorocarbon, poisoning the perfluorinated catalyst, and causing undesired side-reactions. The present invention provides a method for fabricating continuous lengths of corrosion resistant molybdenum rhenium pipes, rods, and tubes which ameliorates, if not eliminates, the contamination associated with conventional manufacturing equipment. Examples of equipment which can be obtained from the molybdenum rhenium pipes, rods, and tubes of the invention include a shaft of an agitator assembly, distribution rings, an internal heating coil and thermowell, among others.

The present invention relates to a process for friction welding molybdenum-rhenium alloys (hereinafter “MoRe alloys”), and more particularly to friction welding MoRe alloys which range in rhenium content from about 10% to about 50% by weight. In some cases, it is desirable to include about 10 to about 20 wt% tungsten, and about 30 to about 100 ppm carbon in the alloy composition. The tungsten typically increases the hardness of the alloy, and carbon can function as a de-oxidant.

The process of the invention comprises generally the steps of effecting a relative rotation between two MoRe alloy work pieces at rim surface speeds of up to about 102 to 204 meters (4,000 to 8,000 inches) per minute, forcing the work pieces into frictional contact under an axially applied pressure, i.e., forge force, of about 20,685 to 137,900 kPa (3,000 to 20,000 pounds per square inch) of interface surface, and sustaining this pressure until a total alloy burnoff of at least about 2 mm (0.080 inch) has been achieved, thereby forming a weld.

Whenever used in the specification and appended claims the terms below are intended to have the following definitions.

“Work piece” is intended to refer to at least two articles comprising a MoRe alloy which are friction welded together to form a continuous length of the article. Examples of work pieces include pipes, rods, tubes, among others. While any suitable work piece can be employed in practice of the invention, work pieces are normally fabricated by extrusion or drawing.

“Forge force” is intended to refer to the force of pressure which is applied after the rotating work piece has been brought into contact with the stationary work piece. The force must be sufficient to allow the work pieces to intermix or meld together at the interface between the work pieces while avoiding excessive deformation of the work pieces.

“Weld” is intended to refer to the bond which is formed between the work pieces by frictional welding. A weld is obtained by localized heating of the interface between the work pieces, which is generated between the rotating and stationary work pieces, and pressing the work pieces together such that the interface will melt, and subsequently fuse together when cooled. The temperature which is generated during welding is less than about the melting point of the work pieces.

“Burnoff” is intended to refer to loss or removal of a certain quantity of the work pieces from the interface which is exposed to friction. Burnoff can occur as a result of localized heating of the work pieces which is sufficient to cause volatilization, mechanical abrasion, among other causes.

“Friction Force” is intended to refer to energy which is generated as a result of the rotating work piece being contacted with the stationary work piece. The friction force functions to convert mechanical energy into heat which is employed to form a weld between the work pieces.

The process of the invention for friction welding molybdenum-rhenium alloys generally comprises the steps of:

providing a friction welding machine which includes a stationary chuck for holding one MoRe alloy work piece, and
a rotatable chuck for holding the second MoRe alloy work piece, placing one MoRe alloy work piece into the stationary chuck, and a second one into the rotatable chuck, driving the rotatable chuck to achieve a work piece rim surface speed of about 102 to 204 meters (4,000 to 8,000 inches) per minute relative to the stationary work piece, forcing the work pieces into frictional contact under an axially applied pressure of about 20,685 to 137,900 kPa (3,000 to 20,000 pounds per square inch) at the interfacial surface of the work pieces, and; sustaining the axial pressure until a total burnoff of at least about 2 mm (0.080 inches) has occurred allowing the work pieces to cool; thereby fusing the work pieces together and forming a bond or weld therebetween.

Any friction welding machine of commercial design is suitable for practicing the invention which is capable of attaining the required work piece rim speed and applying the necessary forge force. The machine can be operated in air, and either a horizontal or vertical fashion. An example of a suitable commercial friction welding machine is illustrated in Fig. 1. Referring now to Fig. 1, the frictional welding machine comprises a frame 1 for housing a stationary chuck 2 which is mounted on a tailstock fixture 3 that is equipped for axial movement by a hydraulic drive or transmission, and with a pressure control device 4 to exert and monitor the axial pressure. The machine further comprises a rotatable chuck 5 which is centered along the longitudinal axis of the stationary chuck 2 and adapted to receive flywheels 6 of differing mass. Power is normally supplied to rotatable chuck 5, for example, by a hydraulic transmission 7. An example of a suitable friction welding machine possesses a 74,570 to 298,280 watts (100 to 400 horsepower) transmission and is capable of providing a maximum axial load which ranges from about 996,352 to 1,594,163 Newton (N) (224,000 to 358,400 lbs.).

By contacting one end of a rotating work piece to an end of the stationary work piece, the welding machine applies a frictional force that causes the interface between the work pieces to generate heat which in some cases is sufficient to induce metal plastic flow. The welding machine also applies a forge force along the longitudinal axis of the work pieces, typically at the end of the friction heating cycle, which causes the heated ends of the work pieces to intermingle such that the ends will consolidate or fuse together when cooled; thereby forming the weld. Normally, the forge force is applied after rotation of the work piece has ceased. Usually, the forge force is approximately twice the friction force. When performing the friction welding of the invention, normally a work piece in the rotatable chuck is revolved at high velocity while a work piece in the stationary chuck is forced against the rotating work piece. As the ends of the two work pieces are brought into contact, the frictional heat increases until the work pieces reach the welding temperature. For best results, after the work pieces have been brought into contact the transmission is disconnected, e.g., power is no longer supplied to the transmission. In some cases, a portion of the work pieces becomes molten, and is expelled from the machine, e.g., as a result of centrifugal force. Expelling molten work piece is known as flashing or upsetting; the material lost is called burnoff. The rotating chuck eventually stops rotating, and then the forge force is applied to consolidate the weld.

The rotational velocity or rim speed of the work piece within the rotating chuck is sufficient to overcome the frictional forces which are generated when the ends of the work pieces are brought into contact. Rim speed is determined by measuring the velocity of a point on the circumference at the end of the work piece. The optimum rim speed for a particular MoRe alloy work piece will vary with the rheunit content of the alloy, geometry of the work pieces, previous working and annealing history of the work pieces, among others. For example, a relatively high velocity or rim speed will generally result in excessive heat at the joint and excessive alloy waste due to excessive burnoff, whereas a relatively low rim speed can produce an unacceptable weld. Normally, a rim speed which ranges from about 102 to 204 meters (4,000 to 8,000 inches) per minute is sufficient to form a weld. Should at least one of the work pieces comprise a rod, the rim speed at the center of the rod’s end will approach zero. Such low rim speeds may require that rods, which have a relatively large cross-sectional diameter, be machined for providing a projection or protuberance that is located at the end of the work piece, e.g., the center of the interface. The projection serves to increase the frictional forces at the center of the rods. In other words, providing a protuberance on at least one end of the work pieces, increases the surface area of the work piece interface thereby ensuring frictional generation of heat which is adequate to permit the work pieces to be welded together.

An axial pressure or a forge force along the longitudinal axis of the work pieces is also employed for generating frictional heat which permits the work pieces to be welded together. The optimum forge force for a particular MoRe alloy work piece will vary with the rheunit content of the alloy, previous working and annealing history of the work piece, among other factors. A relatively low forge force may create an unacceptable weld, whereas a relatively high forge force may induce excessive heat generation at the joint and undue alloy burnoff. A forge force, which is a function of the composition and rim speed of the work pieces, is capable of producing a weld that possesses a strength, e.g., bond strength, of about 85 to 100% of the unwelded work pieces. Preferably, the weld has a strength which is at least about 90 to 100% of the unwelded work pieces. For example, a forge force for welding MoRe work pieces may range from at least about 58,263 to 208,850 KPa (8450 to about 30,000 psi).

Friction welding may cause localized heating of the work pieces which is sufficient to cause volatilization, mechanical abrasion, among other causes, or "burnoff" that removes a portion of the work pieces. However, the amount of the
work pieces which is removed by burnoff can be monitored for determining the progress or extent of the friction welding process. The optimum burnoff for a particular MoRe alloy work piece will vary with the rhenium content of the alloy, previous working and annealing history of the work piece used, among other factors. For example, a burnoff can remove at least about 2 mm (0.08 inch) from the length of the work pieces. In some cases, the amount of burnoff is sufficient to form an upset or burr around the exterior surface of the joined work pieces.

Normally, the work pieces which are friction welded together can be at least about 127 mm (5 inches) in cross-sectional diameter, and virtually any length. In some cases, one or more of the work pieces comprises a pipe or tube which has a cross-sectional diameter of at least about 102 mm (4 inches), and wall thickness of at least about 25 mm (1 inch). However, the invention may be employed to friction weld together work pieces which have a virtually unlimited array of shapes and sizes. For example, work pieces which have differing shapes, sizes, alloy compositions, among others, can be welded together by practicing the present invention. However, the size and shape of the work pieces must be considered when determining the appropriate friction welding parameters.

In one aspect of the invention, the properties of the weld are improved by heat treating, e.g., heat treating in a manner which avoids recrystallization of the alloy. For example, the completed weld can be heat treated, e.g., annealed, for increasing the band strength of the weld. Further, when a MoRe alloy work piece is fabricated by extrusion, the properties of the weld can be enhanced by annealing the work piece prior to friction welding. Annealing can be performed by heating the MoRe alloy within a protective atmosphere, e.g., a vacuum or under an inert gas, to a temperature which ranges from about 850 to about 1,100°C for a time that is sufficient to relieve stresses within the alloy, e.g., 5 minutes at 3 hours. In some cases, substantially only the weld can be annealed by locally heating the weld by using a high frequency (HF) coil within a vacuum environment. After appropriate annealing, the MoRe alloy work piece and/or weld possesses improved ductility thereby increasing the strength of the weld, and the angle to which welded work pieces can be bent without adverse effects.

In another aspect of the invention, the weld and/or the area adjacent thereto is machined. The friction weld which is formed in accordance with the invention, typically produces an upset or burr that extends outwardly from the weld. The upset can be readily removed by machining should a more uniform exterior surface be desirable. Moreover, prior to friction welding, the work pieces can be machined in order to obtain a weld having a predetermined configuration and/or to enhance the friction welding process, e.g., machining to provide a projection on the end of a work piece.

While particular emphasis has been placed upon friction welding two work pieces which comprise a MoRe alloy, the present invention can be used to join a MoRe work piece to another work piece which comprises a metallic material that has a melting point which ranges from about 2600 to about 3400°C of the MoRe alloy.

Certain aspects of the invention are demonstrated by the following Examples which were conducted in air using a Mo13%Re alloy and a Mo41%Re alloy. It is believed that the methods used in the following friction welding Examples are applicable to molybdenum rhenium alloys which contain from about 10% to 50% by weight rhenium. It is to be understood that the following Examples are provided to illustrate and not limit the scope of the appended claims.

EXAMPLE 1

A Mo41%Re rod about 3,292 mm (10.8 feet) in length, and about 12 mm (0.472 inches) in diameter was cut and dry machined flat faces into nominal 64 mm (2.5 inch) lengths for weld tests. The friction welding conditions, which were used to form welds 1-18, are summarized below in Table 1.

Welds 1 to 6 were carried out on a FW2 friction welding machine (supplied by The Welding Institute, Abington Hall, United Kingdom). While the FW2 friction welding machine was capable of producing welds which possessed an Ultimate Tensile Strengths (UTS) of up to about 1,075,000 kPa (155.9 ksi (ksi = 1,000 psi), and a rim speed of about 5,000 revolutions/minute (rpm), i.e., about 188 meters (7,400 inches) per minute, it is believed that the FW2 machine lacked adequate power to form acceptable welds in accordance with the invention. Therefore, the rotation speed was reduced to 3325 rpm (125 meters [4920 inches] per minute rim speed), in an attempt to increase the available torque at the weld interface. This proved to be unsatisfactory because the machine stalled before complete burnoff was achieved. In order to compensate for the lack of power, subsequent welds were produced using an FW11 friction welding machine (supplied by The Welding Institute, Abington Hall, United Kingdom), which as demonstrated by the Friction and Forge Forces set forth in Table 1, has an increased power capability.

Weld 7 was produced, and tensile tested by using a 498,176 N (112,000 lbs.) Denson Testing Machine. Failure occurred through the weld interface at an Ultimate Tensile Stress (UTS) value of about 579,000 kPa (84 ksi). Without wishing to be bound by any theory or explanation, it is believed that this relatively low result was caused by slippage of the stationary work piece within the work piece holder at the beginning of the welding cycle. Weld 8 stalled during formation as a result of a too high friction force being applied. Weld 8 was produced by applying a lower force which resulted in a UTS of about 944,000 kPa (136.9 ksi). Welds 10 and 11 were produced with reduced forge pressures and shorter burnoffs than the previous welds. Welds 10 and 11 achieved tensile values of about 989,000 kPa (143.4 ksi) and 998,000 kPa (144.7 ksi), respectively.

Welds 12 to 14 were produced using substantially the same parameters as Weld 11, and were tested for tensile
strength and ductility. Weld 12 failed at the juncture between the parent metal, i.e., the metal prior to welding, and the weld. However, the welded joint remained intact, and had a tensile test value of about 962,000 kPa (139.5 ksi). Weld 13 was subjected to bend testing, and withstand being bent 90 degrees without failure.

Weld 14 was sectioned, etched, and polished, for metallurgical examination and showed a fully bonded weld interface which is illustrated in Fig. 2 that is a macrosection of weld 14 at 7X magnification. Figures 3A and 3B are photomicrographs taken at 100X magnification, respectively, of the MoRe alloy prior to welding, and a section of the resultant weld 14. The upper portion of Fig. 3B corresponds to Mo14%Re alloy which is generally unaffected by the welding process.

Welds 11 through 18 were produced for demonstrating that the friction welding process of the invention can consistently produce acceptable welds between MoRe alloys.

The conditions for the above series of weld tests are summarized in the following Table 1:

<table>
<thead>
<tr>
<th>Weld No.</th>
<th>Mach.</th>
<th>Rim Speed</th>
<th>Friction Force</th>
<th>Forge Force</th>
<th>Burnoff</th>
<th>Weld UTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>in/min</td>
<td>m/min</td>
<td>psi</td>
<td>kPa</td>
<td>psi</td>
</tr>
<tr>
<td>1</td>
<td>FW2</td>
<td>7,400</td>
<td>188</td>
<td>10,240</td>
<td>70,600</td>
<td>12,030</td>
</tr>
<tr>
<td>2</td>
<td>FW2</td>
<td>7,400</td>
<td>188</td>
<td>6,140</td>
<td>42,300</td>
<td>12,030</td>
</tr>
<tr>
<td>3</td>
<td>FW2</td>
<td>7,400</td>
<td>188</td>
<td>3,070</td>
<td>21,200</td>
<td>4,610</td>
</tr>
<tr>
<td>4</td>
<td>FW2</td>
<td>7,400</td>
<td>188</td>
<td>3,070</td>
<td>21,200</td>
<td>4,610</td>
</tr>
<tr>
<td>5</td>
<td>FW2</td>
<td>4,920</td>
<td>125</td>
<td>3,070</td>
<td>21,200</td>
<td>4,610</td>
</tr>
<tr>
<td>6</td>
<td>FW2</td>
<td>4,920</td>
<td>125</td>
<td>3,070</td>
<td>21,200</td>
<td>4,610</td>
</tr>
<tr>
<td>7</td>
<td>FW11</td>
<td>4,440</td>
<td>113</td>
<td>6,400</td>
<td>44,100</td>
<td>12,800</td>
</tr>
<tr>
<td>8</td>
<td>FW11</td>
<td>4,440</td>
<td>113</td>
<td>12,800</td>
<td>88,300</td>
<td>25,600</td>
</tr>
<tr>
<td>9</td>
<td>FW11</td>
<td>4,440</td>
<td>113</td>
<td>8,450</td>
<td>58,300</td>
<td>15,360</td>
</tr>
<tr>
<td>10</td>
<td>FW11</td>
<td>4,440</td>
<td>113</td>
<td>8,450</td>
<td>58,300</td>
<td>11,260</td>
</tr>
<tr>
<td>11</td>
<td>FW11</td>
<td>4,440</td>
<td>113</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
</tr>
<tr>
<td>12</td>
<td>FW11</td>
<td>4,440</td>
<td>113</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
</tr>
<tr>
<td>13</td>
<td>FW11</td>
<td>4,440</td>
<td>113</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
</tr>
<tr>
<td>14</td>
<td>FW11</td>
<td>4,440</td>
<td>113</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
</tr>
<tr>
<td>15</td>
<td>FW11</td>
<td>4,440</td>
<td>113</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
</tr>
<tr>
<td>16</td>
<td>FW11</td>
<td>4,440</td>
<td>113</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
</tr>
<tr>
<td>17</td>
<td>FW11</td>
<td>4,440</td>
<td>113</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
</tr>
<tr>
<td>18</td>
<td>FW11</td>
<td>4,440</td>
<td>113</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
</tr>
</tbody>
</table>

Note 1: Weld was bend tested by being bent around a stationary cylindrical jig, and achieved 90 degree bend without failure.

EXAMPLE 2

Example 2 illustrates the effects of friction welding a MoRe alloy which has a reduced Re content.

A Mo13%Re rod approximately 3.3 meters (10.9 feet) in length and 12 mm (0.472 inch) in diameter was cut and dry machined flat faced into nominal 64 mm (2.5 inch) lengths for weld tests. The friction welding conditions which were used to form welds 1-21 are summarized below in Table 2.

Welds 1 to 4 were carried out on a FW11 friction welding machine (supplied by The Welding Institute, Abington Hall, United Kingdom). Weld 1 was produced substantially in accordance with the friction welding conditions which were
used to form welds 11-18 in Example 1. Weld 1 was subjected to a tensile evaluation, and failed at a UTS of about 534,000 kPa (77.5 ksi) which produced a brittle fracture surface.

The welding conditions that provided the most favorable and reproducible results correspond to Weld 14, which achieved a tensile failure, through the weld interface, at a UTS of about 578,000 kPa (83.8 ksi).

Weld 21 was sectioned, etched, and polished, for metallographic examination, which showed a fully bonded weld interface, that is illustrated in Fig. 4 which is a macrosection of weld 21 at 7X magnification. Figures 5A and 5B are photomicrographs taken at 100X magnification, respectively, of the Mo13%Re alloy prior to welding, and a section of the resultant weld 21. The upper portion of Fig. 5B corresponds to Mo13%Re alloy which is generally unaffected by the welding process.

The conditions for the above series of tests are summarized in the following Table 2:

<table>
<thead>
<tr>
<th>Weld No.</th>
<th>Mach. in/min</th>
<th>Rim Speed</th>
<th>Friction Force</th>
<th>Forge Force</th>
<th>Burnoff</th>
<th>Weld UTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
<td>58,300</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
<td>58,300</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>8,450</td>
<td>58,300</td>
<td>11,260</td>
<td>77,600</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
<td>58,300</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>125</td>
<td>3,070</td>
<td>21,200</td>
<td>4,610</td>
<td>31,800</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>8,450</td>
<td>58,300</td>
<td>15,360</td>
<td>105,900</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
<td>58,300</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>8,450</td>
<td>58,300</td>
<td>8,450</td>
<td>58,300</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>8,450</td>
<td>58,300</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FW11</td>
<td>3,240</td>
<td>82</td>
<td>6,400</td>
<td>44,100</td>
<td>6,400</td>
<td>44,100</td>
</tr>
<tr>
<td>FW11</td>
<td>3,240</td>
<td>82</td>
<td>12,800</td>
<td>88,300</td>
<td>6,400</td>
<td>44,100</td>
</tr>
<tr>
<td>FW12</td>
<td>3,240</td>
<td>82</td>
<td>3,840</td>
<td>26,500</td>
<td>12,800</td>
<td>88,300</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>14,080</td>
<td>97,100</td>
<td>3,840</td>
<td>26,500</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>14,080</td>
<td>97,100</td>
<td>14,080</td>
<td>97,100</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>14,080</td>
<td>97,100</td>
<td>19,200</td>
<td>132,400</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>14,080</td>
<td>97,100</td>
<td>14,080</td>
<td>97,100</td>
</tr>
<tr>
<td>FW11</td>
<td>4,400</td>
<td>112</td>
<td>19,200</td>
<td>132,400</td>
<td>19,200</td>
<td>132,400</td>
</tr>
</tbody>
</table>
EP 0 662 022 B1

18 FW 11 4,400 112 19,200 132,400 19,200 132,400 0.160 4.1 79.9 551,000
19 FW 11 4,400 112 14,080 97,100 14,080 97,100 0.160 4.1 85.3 588,000
20 FW 11 4,400 112 14,080 97,100 14,080 97,100 0.160 4.1 note 2 note 2
21 FW 11 4,400 112 14,080 97,100 14,080 97,100 0.160 4.1

Note 1: The weld failed a drop test, which comprised dropping the joined work pieces from a height of about 1 meter (3 feet) onto a steel plate, and was not tested further.

Note 2: The weld was tested by being bent 90 degrees around a stationary cylindrical jig.

EXAMPLE 3

In this Example, tests were carried out on two extruded and annealed Mo41%Re seamless pipes approximately 119 mm (4.7 inches) in outer diameter and 69 mm (2.7 inches) inner diameter. After the pipes were extruded, the pipes were annealed by being heated in a hydrogen-containing atmosphere to a temperature of about 1,100°C which was maintained for about 3 hours. Prior to welding, the annealed pipes were cut, and dry machined into nominal 89 mm (3.5 inch) lengths. The exterior dimensions of the pipe were oversized so that the ends, which are to be welded together, could be machined to the dimensions or "Preparation Designations" that are shown in Fig. 6, and listed in the following Table 3. With the exception of the interior 10 and exterior 20 diameter of the protuberance on the end of the pipe, the dimensions of the pipe in Fig. 6 are drawn to scale. The interior and exterior dimensions of the protuberance are listed below in Table 3. The height of the protuberance is about 16 mm (0.625 inch).

<table>
<thead>
<tr>
<th>Preparation designation</th>
<th>Outside Diameter</th>
<th>Inside Diameter</th>
<th>Cross-sect. Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inches</td>
<td>mm</td>
<td>Inches</td>
</tr>
<tr>
<td>A</td>
<td>4.5</td>
<td>114.3</td>
<td>3.5</td>
</tr>
<tr>
<td>B</td>
<td>4.6</td>
<td>116.8</td>
<td>3.38</td>
</tr>
<tr>
<td>C</td>
<td>4.25</td>
<td>108.0</td>
<td>3.5</td>
</tr>
<tr>
<td>D</td>
<td>4.0</td>
<td>101.6</td>
<td>3.5</td>
</tr>
<tr>
<td>E</td>
<td>4.25</td>
<td>108.0</td>
<td>3.46</td>
</tr>
</tbody>
</table>

Friction welding was performed by employing two friction welding machines (supplied by The Welding Institute, Abington Hall, United Kingdom); an FW3 which had a 74,570 watts (100 HP) transmission power, and a maximum axial load capacity of 996,352 N (224,000 lbs.) and an FW6 which had a 298,280 watts (400 HP) transmission power, and a maximum axial load capacity of 1,594,163 N (358,400 lbs.). The conditions which were used when welding the Mo41%Re pipes are summarized below in Table 4.

Weld 1 was made between two pipes by using friction welding machine FW6, and preparation design A. Weld 1 was formed by using a rim speed of about 144 meters (5655 inches) per minute, and a friction force of about 73,600 kPa (10,670 psi). While a weld was produced between the pipes, the weld failed when subjected to the 90 degree bend test. For purposes of comparison, two rods approximately 12 mm (0.472 inch) in diameter were prepared from the pipe material, and welded by using friction welding machine FW11 which produced weld 2. Weld 2 indicates that the pipe material was friction weldable, but produced a joint with low ductility and high tensile strength. Weld 3 was produced using preparation design B, and a higher rotation speed. Although weld 3 had a tensile strength of about 848,000 kPa
(123 ksi), this weld did not survive being bend tested.

Weld 4 was sectioned, etched and polished for metallurgical examination. Figure 7 is a macrophotograph at 7X magnification of weld 4, which illustrates a successful weld, and formation of an upset about the exterior of the weld. The upset can be removed by machining.

In order to obtain improved results, the remaining testes were carried out by using a relatively more powerful FW6 friction welding machine. By using preparation design B, reducing the weld time to about 2 seconds, and increasing the forge force, weld 13 was obtained. Weld 13 had a tensile strength of about 956,000 kPa (138.6 ksi), and failed through the weld interface. Such a tensile strength is about 90% of parent metal strength, and was achieved without annealing the welded pipes. Notwithstanding the tensile strength, the weld did not survive being bend tested.

The bend test results were improved by annealing the weld. A portion of weld 13 was annealed at about 850°C under a hydrogen-containing atmosphere for about 5 minutes, and a second portion of weld 13 was annealed under a hydrogen-containing atmosphere at about 960°C for about 15 minutes. After annealing the welds, longitudinal specimens were cut from the pipe, and could be bent about 30 degrees before failure occurred at the weld interface. An improvement in the tensile strength of a section of weld 13 was achieved by annealing the welds at about 960°C for 30 minutes. The later annealing step increased the tensile strength of the weld to about 1,058,400 kPa (153.5 ksi) which is nearly equal to the parent metal strength.

Welds 14 to 15 were obtained by using preparation designs B through E, and produced an upset around the exterior of the weld. However, welds 14-15 failed when machined in order to remove the upset.

Weld 16 was obtained by using preparation design A which produced a weld, that did not survive the drop test.

Weld 17 was formed under substantially the same conditions as Weld 16, except for an increased burnoff, i.e., about 3 mm (0.118 inches) instead of 2 mm (0.080 inches), which produced a weld having a tensile strength of about 947,000 kPa (137.3 ksi) or about 90% of parent metal strength. The results of this Example demonstrate that, when employing suitable conditions, welds can be obtained by friction welding Mo41%Re pipe, which achieves about 90% of parent metal strength and, if desired, the properties of the resultant welds can be further improved by annealing.

The conditions which were used to form welds in this Example are summarized below in Table 4:
Table 4 (Mo41%Re Seamless Pipe)

<table>
<thead>
<tr>
<th>No.</th>
<th>Des Mach</th>
<th>Feed Rate</th>
<th>Friction Force</th>
<th>Forge Force</th>
<th>Burnoff</th>
<th>Weld UTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>in/min</td>
<td>m/min psi</td>
<td>kPa</td>
<td>psi</td>
<td>inch</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>FW6</td>
<td>5,556</td>
<td>144</td>
<td>10,670</td>
<td>75,000</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>FW6</td>
<td>6,503</td>
<td>165</td>
<td>8,550</td>
<td>59,000</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>FW6</td>
<td>6,503</td>
<td>165</td>
<td>7,125</td>
<td>49,100</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>FW3</td>
<td>4,949</td>
<td>126</td>
<td>8,530</td>
<td>58,800</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>FW3</td>
<td>4,673</td>
<td>119</td>
<td>8,460</td>
<td>58,300</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>FW3</td>
<td>6,285</td>
<td>160</td>
<td>8,960</td>
<td>61,800</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
<td>FW3</td>
<td>7,542</td>
<td>192</td>
<td>5,970</td>
<td>41,200</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>FW3</td>
<td>7,542</td>
<td>192</td>
<td>5,970</td>
<td>41,200</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>FW3</td>
<td>7,542</td>
<td>192</td>
<td>7,470</td>
<td>51,500</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>FW3</td>
<td>7,542</td>
<td>192</td>
<td>8,960</td>
<td>61,800</td>
</tr>
<tr>
<td>12</td>
<td>D</td>
<td>FW3</td>
<td>4,400</td>
<td>112</td>
<td>8,960</td>
<td>61,800</td>
</tr>
<tr>
<td>13</td>
<td>B</td>
<td>FW6</td>
<td>6,503</td>
<td>165</td>
<td>9,970</td>
<td>68,700</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>FW6</td>
<td>6,503</td>
<td>165</td>
<td>7,120</td>
<td>49,100</td>
</tr>
<tr>
<td>15</td>
<td>E</td>
<td>FW6</td>
<td>6,008</td>
<td>153</td>
<td>12,170</td>
<td>85,900</td>
</tr>
<tr>
<td>16</td>
<td>A</td>
<td>FW6</td>
<td>7,070</td>
<td>180</td>
<td>9,060</td>
<td>68,700</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>FW6</td>
<td>7,070</td>
<td>180</td>
<td>9,060</td>
<td>68,700</td>
</tr>
</tbody>
</table>

Note 1: The weld was used for a bend test by being bent around a stationary cylindrical jig.

Note 2: The weld failed a drop test, which comprised dropping the joined work pieces from a height of about 1 meter (3 feet) onto a steel plate, and was not tested further.

Note 3: The weld passed the drop test but failed when machined.

While a few embodiments of the invention have been described in detail, one of ordinary skill would recognize that other embodiments and variations are encompassed by the appended claims.

Claims

1. A process for friction welding in air a molybdenum rhenium alloy, which contains at least 10 wt% rhenium, comprising the steps of:

 providing a friction welding machine which includes a stationary chuck (2) for holding one molybdenum alloy work piece, and a rotatable chuck (5) for holding the second molybdenum alloy work piece,
 driving the rotatable chuck to a work piece rim surface speed of about 102 to 204 meters (4,000 to 8,000 inches) per minute relative to the stationary work piece,
 forcing the work pieces into frictional contact under an axially applied pressure of about 20,685 to 137,900 kPa (3,000 to 20,000 pounds per square inch) at the interfacial surface of the work pieces,
 sustaining the axial pressure until a total burnoff of at least about 2 mm (0.080 inches) has occurred; and allowing the work pieces to cool; thereby forming a weld between the work pieces.

2. A process for friction welding in air a molybdenum rhenium alloy, which contains at least 10 wt% rhenium, compris-
ing the steps of:

providing a fiction welding machine which includes a stationary chuck (2) for holding one molybdenum rhenium alloy work piece, and a rotatable chuck (5) for holding the second molybdenum rhenium alloy work piece, driving the rotatable chuck to a work piece rim surface speed of about 102 to 204 meters (4,000 to 8,000 inches) per minute relative to the stationary work piece, forcing the work pieces into frictional contact under an axially applied pressure of about 20,685 to 137,900 kPa (3,000 to 20,000 pounds per square inch) at the interfacial surface of the work pieces, sustaining the axial pressure to cause a total burnoff at the interfacial surface of the work pieces, and allowing the work pieces to cool; thereby forming a weld between the work pieces.

3. A process for friction welding in air a molybdenum alloy, which contains about 10 to 50 wt% rhenium, comprising the steps of:

providing a fiction welding machine which includes a stationary chuck (2) for holding one molybdenum rhenium alloy work piece, and a rotatable chuck (5) for holding the second molybdenum rhenium alloy work piece, driving the rotatable chuck to a work piece rim surface speed of about 102 to 204 meters (4,000 to 8,000 inches) per minute relative to the stationary work piece, forcing the work pieces into frictional contact under an axially applied pressure of about 20,685 to 137,900 kPa (3,000 to 20,000 pounds per square inch), and sustaining the axial pressure to cause burnoff at the interface of the work pieces, allowing the work pieces to cool; thereby forming a weld between the work pieces.

4. A process for friction welding a molybdenum rhenium alloy to a metal having a melting point from about 2,600 to 3,400°C comprising the steps of:

providing a friction welding machine which includes a stationary chuck (2) for holding the molybdenum rhenium alloy work piece, and a rotatable chuck (5) for holding the metallic work piece, driving the rotatable chuck to a work piece rim surface speed of about 102 to 204 meters (4,000 to 8,000 inches) per minute relative to the stationary work piece, forcing the work pieces into frictional contact under an axially applied pressure of about 20,685 to 137,900 kPa (3,000 to 20,000 pounds per square inch) at the interfacial surface of the work pieces, sustaining the axial pressure until a total burnoff of at least about 2 mm (0.080 inches) has occurred, and allowing the work pieces to cool; thereby forming a weld between the work pieces.

5. The process of claim 1, 2, 3 or 4, wherein said work piece comprises a rod, pipe or tube.

6. The process of claim 1, 2, 3 or 4 further comprising annealing at least one of said work piece or weld.

7. The process of claim 1, 2, 3 or 4 further comprising at least one protuberance on the end of said work piece prior to fiction welding.

8. The process of claim 1, 2, 3, or 4 further comprising machining the weld.

9. A molybdenum/rhenium alloy work piece containing at least 10 wt% rhenium which has been friction-welded in air and subsequently annealed, the weld having a tensile strength which is at least equal to 90% of the tensile strength of the work piece and wherein the work piece can be bent by at least 30° before failure of the weld occurs.

Patentansprüche

1. Verfahren zum Reibschweißen einer Molybdän-Rhenium-Legierung, die wenigstens 10 Gew.-% Rhenium enthält, an Luft, umfassend die Schritte:

Bereitstellen einer Reibschweißmaschine, die eine stationäre Einspannvorrichtung (2) zum Halten eines Molybdänlegierungswerkstücks und eine drehbare Einspannvorrichtung (5) zum Halten des zweiten Molybdänlegierungswerkstücks enthält, Antreiben der drehbaren Einspannvorrichtung auf eine Geschwindigkeit an der Randfläche des Werkstücks von etwa 102 bis 204 Meter (4.000 bis 8.000 Inch) pro Minute, relativ zum stationären Werkstück, Gegeneinanderdrücken der Werkstücke unter einem axial ausgeübten Druck von etwa 20 685 bis 137 900 kPa.
(3 000 bis 20 000 Pfund pro Quadratinch) an der Grenzfläche der Werkstücke, um Reibungskontakt herzustellen,
Aufrechterhalten des Axialdrucks, bis ein Gesamtabbrand von wenigstens etwa 2 mm (0,080 Inch) stattgefunden hat, und
Abköhlenlassen der Werkstücke, wodurch eine Schweißverbindung zwischen den Werkstücken ausgebildet wird.

2. Verfahren zum Reibschweißen einer Molybdän-Rhenium-Legierung, die wenigstens 10 Gew.-% Rhenium enthält, an Luft, umfassend die Schritte:
Bereitstellen einer Reibschweißmaschine, die eine stationäre Einspannvorrichtung (2) zum Halten eines Molybdän-Rhenium-Legierungswerkstücks und eine drehbare Einspannvorrichtung (5) zum Halten des zweiten Molybdän-Rhenium-Legierungswerkstücks enthält,
Antreiben der drehbaren Einspannvorrichtung auf eine Geschwindigkeit an der Randfläche des Werkstücks von etwa 102 bis 204 Meter (4 000 bis 8 000 Inch) pro Minute, relativ zum stationären Werkstück,
Gegeneinanderdrücken der Werkstücke unter einem axial ausgeübten Druck von etwa 20 685 bis 137 900 kPa (3 000 bis 20 000 Pfund pro Quadratinch) an der Grenzfläche der Werkstücke, um Reibungskontakt herzustellen,
Aufrechterhalten des Axialdrucks, um einen Gesamtabbrand an der Grenzfläche der Werkstücke zu verursachen, und
Abköhlenlassen der Werkstücke, wodurch eine Schweißverbindung zwischen den Werkstücken ausgebildet wird.

3. Verfahren zum Reibschweißen einer Molybdänlegierung, die etwa 10 bis 50 Gew.-% Rhenium enthält, an Luft, umfassend die Schritte:
Bereitstellen einer Reibschweißmaschine, die eine stationäre Einspannvorrichtung (2) zum Halten eines Molybdän-Rhenium-Legierungswerkstücks und eine drehbare Einspannvorrichtung (5) zum Halten des zweiten Molybdän-Rhenium-Legierungswerkstücks enthält,
Antreiben der drehbaren Einspannvorrichtung auf eine Geschwindigkeit an der Randfläche des Werkstücks von etwa 102 bis 204 Meter (4 000 bis 8 000 Inch) pro Minute, relativ zum stationären Werkstück,
Gegeneinanderdrücken der Werkstücke unter einem axial ausgeübten Druck von etwa 20 685 bis 137 900 kPa (3 000 bis 20 000 Pfund pro Quadratinch), um Reibungskontakt herzustellen, und
Aufrechterhalten des Axialdrucks, um einen Abbrand an der Grenzfläche der Werkstücke zu verursachen, Abköhlenlassen der Werkstücke, wodurch eine Schweißverbindung zwischen den Werkstücken ausgebildet wird.

4. Verfahren zum Reibschweißen einer Molybdän-Rhenium-Legierung auf ein Metall mit einem Schmelzpunkt von etwa 2 600 bis 3 400°C, umfassend die Schritte:
Bereitstellen einer Reibschweißmaschine, die eine stationäre Einspannvorrichtung (2) zum Halten des Molybdän-Rhenium-Legierungswerkstücks und eine drehbare Einspannvorrichtung (5) zum Halten des Metallwerkstücks enthält,
Antreiben der drehbaren Einspannvorrichtung auf eine Geschwindigkeit an der Randfläche des Werkstücks von etwa 102 bis 204 Meter (4 000 bis 8 000 Inch) pro Minute, relativ zum stationären Werkstück,
Gegeneinanderdrücken der Werkstücke unter einem axial ausgeübten Druck von etwa 20 685 bis 137 900 kPa (3 000 bis 20 000 Pfund pro Quadratinch) an der Grenzfläche der Werkstücke, um Reibungskontakt herzustellen,
Aufrechterhalten des Axialdrucks, bis ein Gesamtabbrand von wenigstens etwa 2 mm (0,080 Inch) stattgefunden hat, und
Abköhlenlassen der Werkstücke, wodurch eine Schweißverbindung zwischen den Werkstücken ausgebildet wird.

5. Verfahren nach Anspruch 1, 2, 3 oder 4, worin das genannte Werkstück aus einem Stab, einer Röhre oder einem Rohr besteht.

6. Verfahren nach Anspruch 1, 2, 3 oder 4, weiterhin umfassend das Glühen von wenigstens einem genannten Werkstück oder einer genannten Schweißverbindung.
Un procédé de soudage par friction dans l'air d'un alliage molybdène-rhénium qui renferme au moins 10 % en poids de rhénium, comprenant les opérations consistant :

à prendre une machine à souder par friction qui comporte un mandrin fixe (2) pour tenir une pièce à travailler en alliage de molybdène, et un mandrin rotatif (5) pour tenir la seconde pièce à travailler en alliage de molybdène,
à entraîner le mandrin rotatif de manière à imprimer à la surface de la pièce à travailler mobile une vitesse périphérique d'environ 102 à 204 mètres par minute par rapport à la pièce à travailler fixe,
à placer les pièces à travailler en contact de friction sous l'application d'une pression axiale d'environ 20 685 à 137 900 kPa à la surface interfaciale des pièces à travailler,
à maintenir la pression axiale jusqu'à ce qu'il y ait un brûlage total d'au moins environ 2 mm, et
da laisser refroidir les pièces à travailler, en formant ainsi une soudure entre elles.

Un procédé de soudage par friction dans l'air d'un alliage molybdène-rhénium renfermant au moins 10 % en poids de rhénium, comprenant les opérations consistant :

à prendre une machine à souder par friction qui comporte un mandrin fixe (2) pour tenir une pièce à travailler en alliage molybdène-rhénium, et un mandrin rotatif (5) pour tenir la seconde pièce à travailler en alliage molybdène-rhénium,
à entraîner le mandrin rotatif de manière à imprimer à la surface de la pièce à travailler mobile une vitesse périphérique d'environ 102 à 204 mètres par minute par rapport à la pièce à travailler fixe,
à placer les pièces à travailler en contact de friction sous l'application d'une pression axiale d'environ 20 685 à 137 900 kPa à la surface interfaciale des pièces à travailler,
à maintenir la pression axiale pour provoquer un brûlage total à la surface interfaciale des pièces à travailler, et
da laisser refroidir les pièces à travailler, en formant ainsi une soudure entre elles.

Un procédé de soudage par friction dans l'air d'un alliage de molybdène qui renferme environ 10 à 50 % en poids de rhénium, comprenant les opérations consistant :

à prendre une machine à souder par friction qui comporte un mandrin fixe (2) pour tenir une pièce à travailler en alliage molybdène-rhénium, et un mandrin rotatif (5) pour tenir la seconde pièce à travailler en alliage molybdène-rhénium,
à entraîner le mandrin rotatif de manière à imprimer à la surface de la pièce à travailler mobile une vitesse périphérique d'environ 102 à 204 mètres par minute par rapport à la pièce à travailler fixe,
à placer les pièces à travailler en contact de friction sous l'application d'une pression axiale d'environ 20 685 à 137 900 kPa,
à maintenir la pression axiale pour provoquer un brûlage à l'interface des pièces à travailler, et
da laisser refroidir les pièces à travailler, en formant ainsi une soudure entre elles.

Un procédé de soudage par friction dans l'air d'un alliage molybdène-rhénium à un métal ayant un point de fusion d'environ 2600 à 3400 °C, comprenant les opérations consistant :

à prendre une machine à souder par friction qui comporte un mandrin fixe (2) pour tenir la pièce à travailler en alliage molybdène-rhénium, et un mandrin rotatif (5) pour tenir la pièce à travailler métallique,
à entraîner le mandrin rotatif de manière à conférer à la surface de la pièce à travailler mobile une vitesse périphérique d'environ 102 à 204 mètres par minute par rapport à la pièce à travailler fixe,
à placer les pièces à travailler en contact de friction sous l'application d'une pression axiale d'environ 20 685 à
137 900 kPa à la surface interfaciale des pièces à travailler,
à maintenir la pression axiale jusqu'à ce qu'ait eu lieu un brûlage total d'au moins environ 2 mm, et
à laisser refroidir les pièces à travailler, en formant ainsi une soudure entre elles.

5. Le procédé de l'une quelconque des revendications 1 à 4, dans lequel ladite pièce à travailler comprend une tige,
un tuyau ou un tube.

6. Le procédé de l'une quelconque des revendications 1 à 4 comprenant en outre la recuisson de l'une au moins des-
dites pièce à travailler ou soudure.

7. Le procédé de l'une quelconque des revendications 1 à 4 comprenant en outre le ménagement d'au moins une pro-
tubérence sur l'extrémité de ladite pièce à travailler avant soudage par friction.

8. Le procédé de l'une quelconque des revendications 1 à 4 comprenant en outre un usinage de la soudure.

9. Une pièce mécanique en alliage molybdène-rhénium renfermant au moins 10 % en poids de rhénium qui a été sou-
dée par friction dans de l'air puis recuite, la soudure ayant une résistance à la traction d'au moins 90 % de la résis-
tance à la traction de la pièce, et la pièce étant capable de supporter d'être incurvée d'au moins 30 degrés avant
que la soudure cède.
FIG. 2