EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:

Application number: 94203406.7

Date of filing: 23.11.1994

Modified polyurea-polyurethane systems endowed with improved processability
Modifizierte Polyharnstoff-Polyurethansysteme ausgestattet mit verbesselter Verarbeitbarkeit
Systèmes de polyuré-polyuréthane modifiés dotés d’une aptitude à la mise en oeuvre améliorée

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE
Designated Extension States:
SI

Priority: 03.12.1993 US 160783

Date of publication of application:
14.06.1995 Bulletin 1995/24

Proprietor: ENICHEM S.p.A.
20124 Milano (IT)

Inventor: Smith, Stuart
Conyers, Georgia 30208 (US)

Representative: Fusina, Gerolamo et al
Ing. Barzanò & Zanardo Milano S.p.A,
Via Borgonuovo, 10
20121 Milano (IT)

References cited:
EP-A- 0 361 937
WO-A-88/02636
DE-A- 2 713 776

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
EP 0 657 481 B1

Description

[0001] This invention relates to a modified polyurea-polyurethane RIM composition, molded articles of a modified polyurea-polyurethane RIM composition, and a method of forming a modified polyurea-polyurethane molded article.

Discussion of the Background:

[0002] Polyurethane polymers prepared from an active hydrogen-containing compound and an isocyanate are widely employed in molding processes, particularly reaction injection molding (hereinafter RIM) processes. RIM articles are finding increased usage as automotive fascia.

[0003] The basic polyurethane polymer systems are typically based on an OH polyl component, an OH cross-linker and an isocyanate component. However this system suffers from long cycle times, greatly increasing the processing time. Modifications to the basic polyurethane system to shorten these processing times have been achieved through substitution of the OH cross-linker with an amine cross-linking system. Typically, thermosetting urethane polymer compositions comprise an modulus by increasing the functionality of the polyl component also suffers from "cold break".

[0004] In addition to the mechanical properties of the polyurethane polymer, the processing of the polymer plays an important role in the usefulness of a polyurethane system. In RIM processing, a short gel time is desired to increase the productivity of the overall process. However, polyurethane systems based on an OH polyl component, an OH cross-linker and an isocyanate component had a gel time of from 5-8 seconds and a cycle time of from 3-3.5 min. Polyurethane systems using -NH₂ crosslinkers and -OH polyls (for example U.S. 4,595,742, 4,631,298, and 4,786,656) reduced the gel time to about 1.2 seconds and the cycle time to 1.5-2 min. This greatly increased the productivity of RIM processes using these systems, but these -NH₂ crosslinkers and -OH polyls systems suffered from an inability to increase the flexural modulus above 30,000 psi without observing "cold break", without the addition of fillers.

[0005] Polyurea systems based on amine terminated polyether resins and amnic cross-linkers have been developed (U.S. 4,396,729, 4,433,067 and 4,444,910), which afford superior heat resistance and mechanical properties. Due to the extremely high reactivity of the amine terminated polyether resin, the gel times are extremely short, in the range of 0.7 seconds and the demold times are very short. Such an isocyanate component with an excess of isocyanate groups and an aromatic diamine as a chain extender, to form a polyurea-type urethane polymer. Optionally, the polymer composition may also contain additional amounts of a reactive polyl to form a hybrid urea-urethane polymer. Such systems greatly decrease the cream and demolding times, therefore enabling much shorter cycling times in a RIM process.

[0006] The use of chain extenders, such as di-alkyl aromatic diamines, and more particularly di-ethyltoluene diamines and di(alkylthio) aromatic diamines are often used with isocyanate pre-polymers alone or with a polyl component to form a polyurethane/polyurea molding RIM composition (for example U.S. 4,595,742, 4,631,298, and 4,786,656). While an increase in the flexural modulus is observed through the addition of di-alkyl(ethio)aromatic diamines, these compositions are still limited with respect to flexural modulus without observing "cold break" on demolding. "Cold Break" is a brittleness observed in the molded article during demolding. The presence of cold break causes the molded article to fracture on demolding. When trying to achieve a higher flexural modulus, to above 80,000 psi, by increasing the isocyanate content of the isocyanate component (i.e. higher % NCO), these materials suffer "cold break". Alternatively attempts to increase the flexural rapid reaction rate makes these systems very difficult to manipulate, and also severely limits the type of RIM technique for which such a composition is suitable.

[0007] One of the major problems encountered is the RIM processes in premature gelling of the composition, causing insufficient filling of the mold, or limiting the size of the molded article due to the rapidity with which the system gels. In processing by RIM methods, it is necessary that the molding composition maintains a sufficiently low viscosity in order to completely fill the mold. After the mold is filled, the material must then polymerize very rapidly in order to reduce the demolding times. The two properties are at opposite ends since to increase the demolding times by using a rapidly polymerizing system, the mold size has been limited. By decreasing the gel time to accommodate larger molded articles, the demolding times are increased, thereby decreasing productivity of the overall operation.

[0008] One solution to increase the mold size without decreasing the rate of polymerization, is to increase the output rate of the RIM machine. In this way more material can be injected into the mold over a short period of time, which allows for the formation of larger articles. However, there is increased costs in high output RIM machines. Moreover, even this solution has its limitations and is still limited by the viscosity of the material and the rate it can be injected by.

[0009] Another related problem associated with the longer gel times needed to accommodate larger molds, is the production of molded articles which exhibit a rubbery feel upon demold due to insufficient curing of the composition. Even though the molded article has sufficient structural integrity to be demolded, the molded article requires further curing to obtain the desired stiffness of the final product. This post-demolding curing only further adds to the processing time.
[0010] Ideally, a polyurethane system which exhibited a low viscosity during the mold filling stage, yet rapidly polymerized and cured after the mold has been filled is desired. Such a system would exhibit a non-linear increase in viscosity initially, followed by a very rapid increase in viscosity at the end.

[0011] The reactivity problem becomes more stringent in the case of Structural Reaction Injection molding (SRIM). This technology is not applicable to such systems having short reaction time, resulting in incomplete wetting of the structural reinforcement.

[0012] Consequently, research continues into systems with excellent mechanical and processing properties.

SUMMARY OF THE INVENTION

[0013] Accordingly, one object of this invention is to provide a novel modified polyurea-polyurethane system comprising:

A) a polyisocyanate component comprising:
 i) a polyisocyanate having a free isocyanate content of from 10-33% by weight;

B) a polyol component comprising:
 i) 25-50 pbw of a polyester polyol of functionality 2-3 and a number average molecular weight of 400-6,000, preferably, 500-1,200;
 ii) 25 pbw of an aromatic diamine; and
 iii) 10-25 pbw of an aminic polyol; and

C) 2-30% by weight based on the total polyisocyanate component (A) of an anhydride having formula:

\[\text{R}_1 \quad \text{R}_2 \quad \text{O} \]

[0014] Another object of the invention is to provide a novel modified polyurea-polyurethane molded article comprising the reaction product of:

A) a polyisocyanate component comprising:
 i) a polyisocyanate having a free isocyanate content of from 10-33% by weight;

B) a polyol component comprising:
 i) 25-50 pbw of a polyester polyol of functionality 2-3, having a number average molecular weight of 400-6,000, preferably, 500-1,200;
 ii) 25 pbw of an aromatic diamine; and
 iii) 10-25 pbw of an aminic polyol; and

C) 2-30% by weight based on the total polyisocyanate component (A) of a carboxylic anhydride (I).

[0015] Another object of the invention is to provide a method of forming a modified polyurea-polyurethane molded
article.

[0016] The inventor of the present invention has discovered that the addition of a carboxylic anhydride (I) provides a modified polyurea-polyurethane molding composition with excellent processability, in terms of very long gel times and very short demolding times, to form articles with high impact strength, flexural modulus, and excellent green strength after demolding.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0017] The isocyanate component may be any polyisocyanate used in forming polyurethanes. Specific non-limiting examples of the polyisocyanate component can be an aromatic or aliphatic polyisocyanate, such as methylene bis (4-phenylisocyanate) (hereinafter MDI), crude MDI, uretonimine-MDI, hydrogenated MDI, 2,6-toluene disocyanate (hereinafter TDI), 1,5 naphthalene disocyanate (hereinafter HN), m-xylene disocyanate (hereinafter XDI), 1,3-bis (isocyanatomethyl) cyclohexane (H2XDI), p-phenylene disocyanate, polyethylene polyphenylisocyanate, diisocyanate, bis(3-methyl-3-isocyanatophenyl)methane, bis(3-methyl-4-isocyanatophenyl)methane, 4,4'-diphenyl propane disocyanate, hexamethylene disocyanate (hereinafter HDI) and HDI-biuret obtained by treatment of HDI with water.

[0018] In addition, the polyisocyanate component may be an isocyanate pre-polymer which is the reaction product of a polyisocyanate as recited above, but more specifically MDI. Crude MDI, TDI, HDI and uretonimine modified-MDI, with a polyether polyol component, having a final free NCO content of 10-27% by weight, more particularly 14-22% by weight. The isocyanate pre-polymer preferably has an NCO equivalent of 420-168 and a viscosity of 1000-150 centipoise at 75°F.

[0019] The polyurethane prepolymer component in forming the pre-polymer is a polyether polyol of functionality 2-4 based on a di-, tri-, or tetraol such as ethylene, glycol, glycerine or pentaerythritol. The polyether polyol is extended ethylene oxide (EO), propylene oxide (PO) or both. More preferably, the EO content is 10-65 wt.% and the PO content is 15-90 wt.%, most preferably a triol having 70 wt.% EO and 30 wt.% PO is preferred.

[0020] The polyether polyol has a number average molecular weight M_2 of 500-6,000, preferably 2,000-5,000, more preferably 4,000. However the polyether polyol component should be a liquid at the processing temperatures for RIM of about 80-100°F, preferably 90°F.

[0021] The polyether polyol can be either a random heteropolymer of polyethylene oxide and propylene oxide units or end capped with ethylene oxide.

[0022] The polyether polyol has a hydroxyl number of from 28-38, more preferably 35. A suitable material is sold commercially as POLY-G 83-34 (a trademark of Olin Chemicals).

[0023] The polyether polyol may be made by conventional methods known to those of ordinary skill in the art. More specifically, polyether polyls can be made by the reaction of ethylene oxide and/or propylene oxide with a di-, tri- or tetraol, with the aid of a catalyst such as potassium or sodium hydroxide. A suitable method is described in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Ed., vol 18, p363-.

[0024] The isocyanurate component used to form a quasi pre-polymer is methylene bis(4-phenylisocyanate) (hereinafter MDI) or a uretonimine modified MDI. The free isocyanate content of the polyisocyanate component is 20-30% by weight free NCO, more preferably 27-29% by weight NCO. The polyisocyanate component is preferably a liquid at room temperature such as the uretonimine modified MDI. The uretonimine modified MDI has a viscosity of 40 cps at 20°C. Uretonimine modified MDI is preferred.

[0025] Examples of commercial materials of this type are Dow-Upjohn’s ISONATE 125M (pure MDI) and ISONATE 143L (uretonimine modified MDI), RUBINATE LF-16B (a uretonimine modified MDI and trademark of ICI), and T-316 (a uretonimine modified MDI manufactured by Enicem).

[0026] The isocyanate quasi-pre-polymer is prepared by reacting 1 part of the polyether polyol component with from 1-6 part of the polyisocyanate at a temperature of from room temperature (22.22°C (72°F) to 148.89°C (300°F), more preferably 48.89-65.56°C (120°C-150°F)), for a period of 2-3 hours.

[0027] The materials may be reacted at room temperature, but preferably they are heated to a temperature of 65.56°C (150°F).

[0028] The polyol component B) used in the modified polyurea-polyurethane system of the present invention comprises:

i) 25-50 pbw of a polyester polyol of functionality 2-3 having a number average molecular weight of 400-6,000, preferably, 500-1,200;
ii) 25 pbw of an aromatic diamine; and
iii) 10-25 pbw of an aminoc polyol.

[0029] As polyester polyls are saturated fatty acid diesters of polyalkylene diols. For example, C_{2-4} fatty diacid
esters of polyethyleneglycol, polypropyleneglycol or ethylene oxide-propylene oxide copolymer, for example a poly-
ethylenealglycol adipate.

[0030] The polyester polyol component has a number average molecular weight of from 400-6,000, preferably from
5 500-1,200. However, it is preferred that the polyester polyol remains a liquid at RIM temperatures of 26.7-37.8°C
(80-100°F), preferably 32.2°C (90°F).

[0031] The polyester polyol component can be made by conventional methods known to those of ordinary skill
in the art. For example, a polyester polyol can be prepared by esterification of a polyalkyleneglycol with a fatty acid.

[0032] As the aromatic diamine component, are diethyltoluene diamine or DETDA which is commercially available
10 as a product of the Ethyl Corporation (ETHACURE 100) and comprises a mixture of positional isomers having about
76% 1-methyl-3,5-diethyl-2,4-diaminobenzene and about 24% 1-methyl-3,5-diethyl-2,6-diaminobenzene. Also suitable
as the aromatic diamine component is dimethyltoluenediamines such as 1-methyl-3,5-dimethylthio-2,4-diaminobenzene
and 1-methyl-3,5-dimethylthio-2,6-diaminobenzene available from the Ethyl Corporation as (ETHACURE®100).

[0033] The aromatic diamine component may be made by conventional means known to those of ordinary skill
15 in the art. The synthesis of 1-methyl-3,5-dimethylthio-2,4-diaminobenzene is described in U.S. 4,595,742.

[0034] As the amine polyol component, are triethanolamine or C_{2}-C_{3} alkylenedioxide adducts of triethanolamine, di-
ethanolamine, etc. A triethanolamine end capped ethylene oxide or propylene oxide adduct of molecular weight ranging
from 600-1,000 or more is preferred. Also suitable are aromatic diamines, such as toluenediamine, which are both
20 ethoxylated or propoxylated. Also suitable are ethylene diamine polyols. The amine polyol component may also be
used as a mixture of the above-identified materials. An amine polyol with 10-20 % by weight of ethylene oxide units
and 80-90 % by weight of propylene oxide units is preferred. Especially suitable is a mixture of toluenediamine of CH
= 340 and ethylene diamine propoxylated polyol.

[0035] The amine polyol component may be made by conventional means known to those of ordinary skill in the art
25 in a manner analogous to the synthesis of hydroxy based polyether polyols.

[0036] The polyester polyol, aromatic diamine, amine polyol components form the polyol component B) of the mod-
ified polyurea-polyurethane system. The system preferably contains from 25-50 pbw of the polyester polyol, more
preferably 30-40 pbw, 25 pbw of the aromatic diamine component; 10-25 pbw of the amine polyol component.

[0037] The modified polyurea-polyurethane composition is formed in the absence of a urethane forming catalyst.

[0038] The catalyst absence is a great advantage since the presence of catalytic amounts of urethane forming cat-
yalysts results in a reduction of the aging stability of the B component.

[0039] The polyol component B) is mixed with the polysisocyanate component A) at a 102 index or greater. A 102
30 index is known to those of ordinary skill in the art as meaning that at least 1.02 equivalents of isocyanate groups in the
polysisocyanate component A) are reacted per equivalent of active hydrogen containing component based on the polyol
component B). Preferably the index is in the range of 102-110, more preferably 105.

[0040] The carboxylic anhydride component C) is any carboxylic anhydride which is non-reactive with the polysis-
cyanate and is miscible or soluble in the polysisocyanate. It is also preferred that the carboxylic anhydride be non-toxic.
Specifically 4-methyl- 1,2,3,6-tetrahydro-phthalic anhydride is preferred. Other liquid carboxylic anhydrides, such as
35 anhydrides of C_{2} aliphatic carboxylic acids like acetic, propionic and butyric anhydride are also suitable.

[0041] Aliphatic carboxylic anhydrides may be prepared by conventional means known to those of ordinary skill
in the art. In particular, 4-methyl- 1,2,3,6-tetrahydro-phthallic anhydride can be prepared by conventional methods known
to those of ordinary skill in the art, for example by the cycloaddition reaction of maleic anhydride with isoprene.

[0042] The carboxylic anhydride component is added in an amount of 2-30% by weight, preferably 3-25% by weight
40 more preferably 5-20% by weight, even more preferably 8-12% by weight based on the total weight of the polysisocyanate
component A). The carboxylic anhydride may be added as a separate component stream during the RIM process or
may also be added directly to the isocyanate component A), before reaction with polyol component B).

[0043] It has been surprisingly discovered that when dimethylitolouenediamines are used along with an amonic
polyol and polyol polyurethane as the polyol component B) and an uretonimine modified MDI as the polysisocyanate com-
ponent A) and 4-methyl 1,2,3,6- tetrahydrophthalic anhydride as the carboxylic anhydride component C), the resulting
modified polyurea-polyurethane article is translucent to light. Without the anhydride, a cloudy white composition re-
sulted. However transparency in a polyurethane type system is a very rare phenomenon. While the resulting material
45 has a light yellow cast, the cured material is optically clear to the extent that when a 1.27 cm (1/2") thick piece of the
molded modified polyurea-polyurethane composition is placed over type written material, the type can be clearly read
without distortion.

[0044] It has also been discovered that, when an aromatic isocyanate is used as the polysisocyanate component A),
resulting composition exhibits surprisingly improved stability to U.V. light. Typically, polyurethane compositions based
on aromatic isocyanates are not light stable and undergo a discoloration upon prolonged exposure. Unexpectedly, in
the presence of the carboxylic anhydride, such discoloration is not observed.

[0045] The process of forming modified polyurea-polyurethane compositions according to the present invention is
accomplished by conventional reaction injection molding techniques (RIM), or reinforced reaction injection molding (PRIM) or structural reaction injection molding (SRIM) techniques. The process also allows for spray molding. This includes both open and closed mold processes. This allows for a substitute spray molding composition which gives physical properties as good or better than conventional polyester resin fiberglass article, yet avoids the problem of volatile organic compounds. In addition, the composition can be applied using existing spray molding equipment.

[0046] In spray molding it is preferable that the molded article be subjected to a post mold curing at a temperature of above 93.3°C (200°F) for 1 h, preferably at 121.1°C (250°F) for 1 h. Alternatively, or in addition to it is possible to heat the mold to a temperature of 93.3-121.1°C (200-250°F) to insure a complete curing.

[0047] The present invention also allows for the formation of a Structural Reaction Injection Molding (SRIM) molded article with an A class surface. This is achieved by RIM molding or spraying a surface layer of the modified polyurea-polyurethane composition of the present invention on either or both surfaces of a mold to form the exterior surfaces, followed by forming an intermediate layer by conventional SRIM methods. The modified polyurea-polyurethane surface layer may be filled or unfilled with conventional fillers and additives. Conventional SRIM articles often suffer the drawback of a surface layer which reveals the fiberglass structural reinforcement. By forming a surface layer of modified polyurea-polyurethane, an A class surface can now be obtained in an SRIM article. The surface layer of modified polyurea-polyurethane may be from 0.25-0.5 cm (0.1-0.2") thick, preferably 0.318 cm (0.125"). It is preferable for the intermediate layer be of the same polymer composition as the surface layers to avoid delamination problems due to differences in the coefficient of thermal expansion.

[0048] The present process also allows for molded articles to contain suitable fillers and reinforcing material and the like, stabilizer, mold release agents and other additives known to those of ordinary skill in the art as commonly employed in the field of polyurethane molding compositions, especially RIM, RRIM and SRIM molding compositions.

[0049] As reinforcing materials are included but not limited to chopped or milled glass fibers, chopped or milled carbon fibers, or mineral fibers such as calcium silicate or wollastonite fibers or mica. Particularly suitable are fiberglass reinforcement fibers, particularly those having lengths of from 0.16 cm (1/16") to 1.27 cm (1/2").

[0050] The molded articles from this modified polyurea-polyurethane system according to the present invention has high flexural modulus in the range of 150-400,000 psi and a Gardner impact resistance of 80 or greater.

[0051] The modified polyurea-polyurethane system can also be foamed in the mold by the addition of air or nitrogen as foaming agents in a manner conventional to RIM methods.

[0052] The modified polyurea-polyurethane reactive system of the present invention does not require conventional urethane forming catalysts such as amines or organometallic derivatives, and displays improved processability having relatively long gel times and relatively short demolding times. More specifically, this system has a slow increase of viscosity up to the "gel time", followed by a very fast polymerization rate after the "gel time". This combination gives a total demolding time comparable to those of the prior art. In addition, the slow viscosity build up allows for improved wettability of reinforcing agents in SRIM methods, improved aesthetic surfaces of molded article in RIM, RRIM and SRIM, homogenous distribution of the reactive material inside the mold and long shelf life of the polyol component B due to the lack of a conventional catalyst. In addition, Applicant has discovered a translucent modified polyurea-polyurethane composition.

[0053] The modified polyurea-polyurethane molding composition of the present invention is useful for forming any molded article conventionally formed by RIM methods.

[0054] The modified polyurea-polyurethane molding composition which is translucent to light is especially useful for forming molded containers, especially ones used in the automotive industry.

[0055] Other features of the invention will become more apparent the course of the following description of exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof.

SYNTHESIS OF ISOCYANATE QUASI PRE-POLYMER

Example 1

[0056] A uretonimine modified MDI (T-316 from EniChem, a 29% by weight of free NCO) was reacted with a 4,800 molecular weight polyether triol (glycerine starter) containing, with random distribution, 70% by weight EO, 30% by weight PO (polyol TERCAPUR 1264 from EniChem) at 65.56°C (150°F). The material was dispensed into containers and checked for percent NCO, viscosity and reactivity.

[0057] Isocyanate pre-polymers were made by this process with the following NCO percent:

<table>
<thead>
<tr>
<th>% NCO</th>
<th>T-316/T-1264</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1/1</td>
</tr>
</tbody>
</table>
Comparative Example 2

[0058] In this, and all further examples, parts by weight (pbw) are determined based on 25 pbw of the aromatic diamine component.

<table>
<thead>
<tr>
<th>% NCO</th>
<th>T-316/T-1264</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>1.5/1</td>
</tr>
<tr>
<td>19</td>
<td>2/1</td>
</tr>
<tr>
<td>21</td>
<td>3/1</td>
</tr>
<tr>
<td>23</td>
<td>4/1</td>
</tr>
<tr>
<td>24</td>
<td>5/1</td>
</tr>
<tr>
<td>25</td>
<td>6/1</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Polyl Component B Composition (pbw) dimethylthio toluene diamine<sup>1</sup></th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEOA adduct<sup>2</sup></td>
<td>25</td>
</tr>
<tr>
<td>Polyester polyol<sup>3</sup></td>
<td>35</td>
</tr>
<tr>
<td>Dibutyl tin dilaurate<sup>4</sup></td>
<td>0.1</td>
</tr>
<tr>
<td>Polysocyanate Component A MDI pre-polymer (21% NCO)<sup>5</sup></td>
<td>130</td>
</tr>
</tbody>
</table>

¹ ETHACURE 300 from the Ethyl Corporation
² a triethanolamine adduct with an OH # 650
³ polyester polyol 11-225 from Witco
⁴ UL 28 from Witco
⁵ T-9032 from EniChem

[0059] The A and B components were reacted under the following conditions:

- Mold: 600 x 300 mm plate 3.1 mm thickness (weight 650-750 g)
- Mold Temperature: 70°C
- Equipment: Gusmer high pressure machine model Delta Rim 120
- Output: 900 g/sec
- Raw Material Temperature: 35°C

[0060] The gel time for this system, in the absence of the anhydride was only 10 seconds and the demolding time was 80 seconds. However, the molded article had a rubbery feel after demold even though the impact strength was good after cooling. The molded article had poor heat sag properties and a milky white color.

Comparative Example 3

[0061] Table 3

<table>
<thead>
<tr>
<th>Polyl Component B Composition (pbw) dimethylthio toluene diamine<sup>1</sup></th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEOA adduct<sup>2</sup></td>
<td>25</td>
</tr>
<tr>
<td>Polyester polyol<sup>3</sup></td>
<td>35</td>
</tr>
<tr>
<td>Dibutyl tin dilaurate<sup>4</sup></td>
<td>0.1</td>
</tr>
<tr>
<td>Polysocyanate Component A MDI pre-polymer (21% NCO)<sup>5</sup></td>
<td>130</td>
</tr>
</tbody>
</table>

¹ ETHACURE 300 from the Ethyl Corporation
² a triethanolamine adduct with an OH # 650
³ polyester polyol 11-225 from Witco
⁴ UL 28 from Witco
⁵ T-9032 from EniChem
The A and B components were reacted under the same conditions as in Example 2. The gel time for this system increased to 20 seconds and however the demolding time also increased, up to 90 seconds. The molded article had a less rubbery feel after demold than in Example 2, but the composition was more brittle after cooling. The molded article had a milky white color.

Example 4

<table>
<thead>
<tr>
<th>Table 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyl Component B Composition (pbw) dimethylthio toluene diamine<sup>1</sup></td>
</tr>
<tr>
<td>TEOA adduct<sup>2</sup></td>
</tr>
<tr>
<td>Polyester polyol<sup>3</sup></td>
</tr>
<tr>
<td>Polyisocyanate Composition MDI pre-polymer (21%NCO)<sup>5</sup></td>
</tr>
<tr>
<td>methyl tetrahydrophthalic anhydride<sup>6</sup></td>
</tr>
</tbody>
</table>

¹ ETHACURE 300 from the Ethyl Corporation
² a triethanolamine adduct with an OH ≠ 650
³ polyester polyol 11-225 from Wilco
⁵ T-9032 from EnChem
⁶ Lindridge 2-4-methyl 1,2,3,6-tetrahydrophthalic anhydride from Landau Chemical

The polyisocyanate composition, now containing the above specified anhydride and B component, without the organometallic catalyst were reacted under the same conditions as in Example 2. The gel time for this system increased to only 27 seconds but the demolding time was only 45 seconds. In addition, the molded article was rigid upon demold and displayed good impact and heat resistance. The molded article had a clear color.

Example 5

<table>
<thead>
<tr>
<th>Table 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyl Component B Composition (pbw) dimethylthio toluene diamine<sup>1</sup></td>
</tr>
<tr>
<td>TEOA adduct<sup>2</sup></td>
</tr>
<tr>
<td>Polyester polyol<sup>3</sup></td>
</tr>
<tr>
<td>Polyisocyanate Composition HDI pre-polymer (21.6%NCO)<sup>3</sup></td>
</tr>
<tr>
<td>methyl tetrahydrophthalic anhydride<sup>6</sup></td>
</tr>
</tbody>
</table>

¹ ETHACURE 300 from the Ethyl Corporation
² a triethanolamine adduct with an OH ≠ 650
³ polyester polyol 11-225 from Wilco
⁶ Lindridge 2 4-methyl 1,2,3,6-tetrahydrophthalic anhydride from Landau Chemical
⁷ N-3300, an aliphatic pre-polymer made from HDI with a free NCO content of 21.6% from Miles Chemical

The polyisocyanate composition, now containing the above specified anhydride and an aliphatic isocyanate, and B component, without the organometallic catalyst, were reacted under the same conditions as in Example 2. The gel time for this system was only 10 seconds and the demolding time was only 20 seconds. In addition, the molded article was rigid upon demolding and displayed good impact and heat resistance above 150°C.

Claims

1. A modified polyurea-polyurethane molding composition comprising:
 A) a polyisocyanate component comprising:
 i) a polyisocyanate having a free isocyanate content of from 10-33% by weight;
 B) a polyol component comprising:
EP 0 657 481 B1

i) 25-50 pbw of a polyester polyol of functionality 2-3 and a number average molecular weight of 400-6,000;
ii) 25 pbw of an aromatic diamine; and
iii) 10-25 pbw of an aminic polyol; and

C) 2-30% by weight, based on the weight of said polyisocyanate (A), of an anhydride, having formula:

\[
R_1 - \text{C} - \text{C}_1 - \text{C}_2 - \text{C}_3 - \text{C}_4 - \text{C}_5 - \text{C}_6 - \text{C}_7 - \text{C}_8 - \text{C}_9 - \text{C}_{10}
\]

wherein R₁ and R₂, equal or different, are C₁-C₅ (alkyl) radicals, or R₁ and R₂ together form a C₅-C₁₀ saturating or unsaturating (alkyl)cycloaliphatic radical or a C₆-C₁₀ (alkyl)aromatic radical.

2. The molding composition of Claim 1 wherein said anhydride (I) is 4-methyl-1,2,3,6 tetrahydrophthalic anhydride.

3. The molding composition of Claim 1 wherein said isocyanate component (A) is a pre-polymer from the reaction of uretonimine modified MDI with a polyether polyol having a free NCO content of 10-27% b.w.

4. The molding composition of Claim 1 wherein said isocyanate component is a pre-polymer which is the reaction product of hexamethylene diisocyanate and a polyether polyol having a free NCO content of 10-27% b.w.

5. The molding composition of Claim 1 wherein said polyester polyol has a number average molecular weight of from 500-1,200.

6. The molding composition of Claim 1 wherein said polyester polyol is polyethyleneglycol adipate.

7. A modified polyurea-polyurethane molded article comprising the reaction product of:

A) a polyisocyanate component comprising:
 i) a polyisocyanate having a free isocyanate content of from 10-33% by weight;

B) a polyol component comprising:
 i) 25-50 pbw of a polyester polyol of functionality 2-3 and a number average molecular weight of 400-6,000;
 ii) 25 pbw of an aromatic diamine; and
 iii) 10-25 pbw of an aminic polyol; and

C) 2-30% by weight, based on the weight of said polyisocyanate (A), of an anhydride having formula:

\[
R_1 - \text{C} - \text{C}_1 - \text{C}_2 - \text{C}_3 - \text{C}_4 - \text{C}_5 - \text{C}_6 - \text{C}_7 - \text{C}_8 - \text{C}_9 - \text{C}_{10}
\]
EP 0 657 481 B1

wherein \(R_1 \) and \(R_2 \), equal or different, are \(C_1-C_{10} \) iso(alkyl) radicals, or \(R_1 \) and \(R_2 \) together form a \(C_5-C_{10} \) saturated or unsaturated (alkyl)cycloaliphatic radical or a \(C_6-C_{16} \) (alkyl)aromatic radical.

8. The molded article of Claim 7 wherein said article is translucent to light.

9. A process of forming a modified polyurea-polyurethane molded article comprising the reaction of a molding composition comprising:

A) a polyisocyanate component comprising:

i) a polyisocyanate having a free isocyanate content of from 10-33% by weight,

B) a polyol component comprising:

i) 25-50 pbw of a polyester polyol of functionality 2-3 and a number average molecular weight of 400-6,000;

ii) 25 pbw of an aromatic diamine; and

iii) 10-25 pbw of an aminic polyol; and

C) 2-30% by weight, based on the weight of said polyisocyanate, of an anhydride having the formula:

\[
\begin{align*}
\text{R}_1 & - \text{C} - \text{O} \\
\text{R}_2 & - \text{C} - \text{O} \\
\end{align*}
\]

wherein \(R_1 \) and \(R_2 \), equal or different, are \(C_1-C_{10} \) iso(alkyl) radicals, or \(R_1 \) and \(R_2 \) together form a \(C_5-C_{10} \) saturated or unsaturated (alkyl)cycloaliphatic radical or a \(C_6-C_{16} \) (alkyl)aromatic radical.

10. The process of Claim 9, wherein said reaction is reaction injection molding.

11. The process of Claim 9, wherein said reaction is structural reaction injection molding.

12. The process of Claim 9, wherein said reaction is reinforced reaction injection molding.

13. The process of Claim 9, wherein said reaction is spray molding.

Patentansprüche

1. Modifizierte Polyharnstoff-Polyurethan-Gießmassenzusammensetzung, umfassend:

A) eine Polyisocyanatkomponente, umfassend:

i) ein Polyisocyanat, das einen freien Isocyanatanteil von 10 bis 33 Gew.% hat;

B) eine Polyolkomponente, umfassend:

i) 25 bis 50 Gewichtsteile eines Polyesterpolys mit einer Funktionalität von 2 bis 3 und einer mittleren Molekulargewichtszahl von 400 bis 6,000;

ii) 25 Gewichtsteile eines aromatischen Diamins; und
iii) 10 bis 25 Gewichtsteile eines ein Amin umfassenden Polyols; und

C) 2 bis 30 Gew.%, bezogen auf das Gewicht des Polyisocyanates (A), eines Anhydrides, welches die folgende Formel aufweist:

\[
\begin{align*}
\text{R}_1 & \quad \text{O} \\
\text{C} & \quad \text{O} \\
\text{R}_2 & \quad \text{O}
\end{align*}
\]

wobei \(\text{R}_1 \) und \(\text{R}_2 \) gleich oder verschieden sind und \(\text{C}_1-\text{C}_{10} \)-alkyl oder \(\text{C}_6-\text{C}_{10} \)-aromatisches Radikal darstellen, oder wobei \(\text{R}_1 \) und \(\text{R}_2 \) zusammen ein \(\text{C}_5-\text{C}_{10} \)-gesättigtes oder -ungesättigtes (alkyl)cycloaliphatisches Radikal oder ein \(\text{C}_6-\text{C}_{10} \) -(alkyl)aromatisches Radikal darstellen.

2. Gießmassenzusammensetzung nach Anspruch 1, wobei das Anhydrid (I) 4-Methyl-1,2,3,6-tetrahydrophthalsäureanhydrid ist.

5. Gießmasse nach Anspruch 1, wobei das Polyesterpolyol eine durchschnittliche Molekulargewichtszahl von 500 bis 1 200 aufweist.

6. Gießmasse nach Anspruch 1, wobei das Polyesterpolyol Polychloroalkyladipat ist.

7. Formkörper, der aus modifiziertem Polyharnstoff-Polyurethan gegossen ist, umfassend das Reaktionsprodukt aus:

A) einer Polyisocyanatkomponente, umfassend:

i) ein Polyisocyanat, welches einen freien Isocyanatanteil von 10 bis 33 Gew.% hat;

B) einer Polyolkomponente, umfassend:

i) 25 bis 50 Gewichtsteile eines Polyesterpolyols mit einer Funktionalität von 2 bis 3 und einer mittleren Molekulargewichtszahl von 400 bis 6 000;

ii) 25 Gewichtsteile eines aromatischen Diarms; und

iii) 10 bis 25 Gewichtsteile eines ein Amin umfassenden Polyols; und

C) 2 bis 30 Gew.%, bezogen auf das Gewicht des Polyisocyanates, eines Anhydrides, welches die Formel
hat, wobei \(R_1 \) und \(R_2 \) gleich oder verschieden sind und \(C_1-C_{10}-\text{Iso}(\text{alkyl})\)-radikale darstellen, oder wobei \(R_1 \) und \(R_2 \) zusammen ein \(C_5-C_{10}\)-gesättigtes oder -ungesättigtes (alkyl)cycloaliphatisches Radikal oder ein \(C_6-C_{10}-(\text{alkyl})\)-aromatisches Radikal darstellen.

8. Gegossener Formkörper nach Anspruch 7, wobei der Formkörper lichtdurchlässig ist.

9. Verfahren zur Herstellung eines aus modifiziertem Polyharnstoff-Polyurethan gegossenen Formkörpers, umfassend die Reaktion einer Gießmassenzusammensetzung, welche umfaßt:

 A) eine Polysicyanatkomponente, umfassend:

 i) ein Polysicyanat, das einen freien Isocyanatanteil von 10 bis 33 Gew.\% hat;

 B) eine Polyolkomponente, umfassend:

 i) 25 bis 50 Gewichtsteile eines Polyesterpolyols mit einer Funktionalität von 2 bis 3 und einer mittleren Molekulargewichtszahl von 400 bis 6 000;

 ii) 25 Gewichtsteile eines aromatischen Diamins; und

 iii) 10 bis 25 Gewichtsteile eines ein Amin umfassenden Polyols; und

 C) 2 bis 30 Gew.\%, bezogen auf das Gewicht des Polysicyanates, eines Anhydrides, welches die folgende Formel aufweist:

 \[
 \begin{align*}
 R_1 & - C & O \\
 R_2 & - C & O
 \end{align*}
 \]

 wobei \(R_1 \) und \(R_2 \) gleich oder verschieden sind und \(C_1-C_{10}-\text{Iso}(\text{alkyl})\)-radikale darstellen, oder wobei \(R_1 \) und \(R_2 \) zusammen ein \(C_5-C_{10}\)-gesättigtes oder -ungesättigtes (alkyl)cycloaliphatisches Radikal oder ein \(C_6-C_{10}-(\text{alkyl})\)-aromatisches Radikal darstellen.

10. Verfahren nach Anspruch 9, wobei die Reaktion Reaktionsspritzgießen ist.

11. Verfahren nach Anspruch 9, wobei die Reaktion Strukturreaktionspritzgießen ist.
12. Verfahren nach Anspruch 9, wobei die Reaktion Reaktionsspritzgießen verstärkter Polyurethanschaumstoffe ist.

13. Verfahren nach Anspruch 9, wobei die Reaktion Faserspritzen ist.

Revendications

1. Composition de moulage en polyuréopolyuréthanne modifié comprenant :

 A) un composant polyisocyanate comprenant :

 i) un polyisocyanate ayant une teneur en isocyanate libre de 10 à 33 % en poids

 B) un composant polyol comprenant :

 i) de 25 à 50 % en poids d'un polyesterpolyol ayant une fonctionnalité 2-3 et une masse molaire moyenne en poids de 400 à 6 000 ;

 ii) 25 % en poids d'une diamine aromatique ; et

 iii) de 10 à 25 % en poids d'un polyol aminé ; et

 C) de 2 à 30 % en poids, par rapport au poids dudit polyisocyanate (A), d'un anhydride répondant à la formule

 \[

 \begin{align*}
 & R_1 \ - \ C \ - \ O \\
 & \ \\
 & R_2 \ - \ C \ - \ O
 \end{align*}
 \]

 où R₁ et R₂, identiques ou différents, représentent des radicaux iso(alkyle en C₁⁻C₁₀), ou R₁ et R₂ forment ensemble un radical (alkyle en C₆⁻C₁₀)cycloaliphatique saturé ou insaturé ou un radical (alkyle en C₆⁻C₁₀) aromatique.

2. Composition de moulage selon la revendication 1, où ledit anhydride (I) est l'anhydride 4-méthyl-1,2,3,6-tétrahydrophthalique.

3. Composition de moulage selon la revendication 1, où ledit composant isocyanate (A) est un prépolymère obtenu par réaction du MDI modifié par l'urétonimine avec un polyéther-polyol ayant une teneur en NCO libre de 10 à 27 % en poids.

4. Composition de moulage selon la revendication 1, où ledit composant isocyanate est un prépolymère préparé par réaction de l'hexaméthylène diisocyanate et d'un polyéther-polyol ayant une teneur en NCO libre de 10 à 27 % en poids.

5. Composition de moulage selon la revendication 1, où ledit polyester-polyol présente une masse molaire moyenne en nombre de 500 à 1 200.

6. Composition de moulage selon la revendication 1, où ledit polyester-polyol est l'adipate de polyéthylèneglycol.

7. Article moulé de polyurée-polyuréthanne modifié comprenant le produit de réaction de :

 A) un composant polyisocyanate comprenant :

 i) un polyisocyanate ayant une teneur en isocyanate libre de 10 à 33 % en poids

13
B) un composant polyol comprenant :
 i) de 25 à 50% en poids d'un polyester-polyol ayant une fonctionnalité 2-3 et une masse molaire moyenne en poids de 400 à 6 000 ;
 ii) 25 % en poids d'une diamine aromatique ; et
 iii) de 10 à 25 % en poids d'un polyol aminé ; et

C) de 2 à 30 % en poids, par rapport au poids dudit polyisocyanate (A), d’un anhydride répondant à la formule

\[\text{(I)} \]

où \(R_1 \) et \(R_2 \), identiques ou différents, représentent des radicaux iso(alkyle en C\(_1\)–C\(_{10}\)), ou \(R_1 \) et \(R_2 \), forment ensemble un radical (alkyle en C\(_5\)–C\(_{10}\)) cycloaliphatique saturé ou insaturé ou un radical (alkyle en C\(_6\)–C\(_{10}\)) aromatique.

8. Article moulé selon la revendication 7, où ledit article est translucide à la lumière.

9. Procédé de formation d’un article moulé de polyurée-polyuréthanne modifié comprenant la réaction d’une composition de moulage comprenant :
 A) un composant polyisocyanate comprenant :
 i) un polyisocyanate ayant une teneur en isocyanate libre de 10 à 33 % en poids ;

B) un composant polyol comprenant :
 i) de 25 à 50 % en poids d’un polyester-polyol ayant fonctionnalité 2-3 et une masse molaire moyenne en poids de 400 à 6 000 ;
 ii) 25 % en poids d’une diamine aromatique ; et
 iii) de 10 à 25 % en poids d’un polyol aminé ; et

C) de 2 à 30 % en poids, par rapport au poids dudit polyisocyanate (A), d’un anhydride répondant à la formule

\[\text{(I)} \]

où \(R_1 \) et \(R_2 \), identiques ou différents, représentent des radicaux iso(alkyle en C\(_1\)–C\(_{10}\)), ou \(R_1 \) et \(R_2 \), forment ensemble un radical (alkyle en C\(_5\)–C\(_{10}\)) cycloaliphatique saturé ou insaturé ou un radical (alkyle en C\(_6\)–C\(_{10}\)) aromatique.
10. Procédé selon la revendication 9, où ladite réaction est le moulage par injection réactif.

11. Procédé selon la revendication 9, où ladite réaction est le moulage par injection réactif structuré.

12. Procédé selon la revendication 9, où ladite réaction est le moulage par injection par réaction renforcée.

13. Procédé selon la revendication 9, où ladite réaction est le moulage par pulvérisation.