EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 04.03.1998 Bulletin 1998/10

Application number: 94309078.7

Date of filing: 06.12.1994

Tape binding device for electric wire bundle and tape binding method

Verfahren und Vorrichtung zum Binden eines Kabelbaums mittels Klebeband

Procédé et dispositif pour ligaturer un faisceau de câbles électriques au moyen d’une bande adhésive

Designated Contracting States:
DE FR GB

Priority: 06.12.1993 JP 305570/93

Date of publication of application: 14.06.1995 Bulletin 1995/24

Proprietors:
• SUMITOMO ELECTRIC INDUSTRIES, LIMITED
 Osaka 541 (JP)
• SUMITOMO WIRING SYSTEMS, LTD.
 Yokkaichi City Mie 510 (JP)

Inventors:
• Nishide, Yutaka,
 c/o Osaka Works of Sumitomo
 Osaka 554 (JP)

• Fujioka, Takahiro,
 c/o Osaka Works of Sumitomo
 Osaka 554 (JP)
• Yoshida, Ricardo Kiyoshi,
 c/o Sumitomo Wiring
 Yokkaichi-shi, Mie 510 (JP)

Representative:
W.P. Thompson & Co.
Coopers Building,
Church Street
Liverpool L1 3AB (GB)

References cited:

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The present invention relates to a tape binding device used for bundling a plurality of electric wires in the production process of wire harnesses, etc., and a tape binding method.

The production process of a wire harness consisting of various kinds of insulated electric wires bundled together includes an electric wire measuring/cutting step, a peeling step for peeling an insulative sheath at the end of the electric wire, a terminal crimping step for crimping a terminal fitment at the end of the peeled electric wire, a terminal insertion step for inserting a terminal into a connector housing, and a subassembling step for assembling electric wires to assemble wire harness subassemblies, etc.

The production process has conventionally been performed manually. Recently, however, mechanical devices for automating the respective steps have been proposed, one of which is an automated wire laying out device for performing a part of the wire cutting step and subassembling step.

The automated wire laying out device is constructed in that a wire lay-out head for paying out electric wires moves relatively to a wire lay-out board wherein a wire lay-out pin is provided at a predetermined position according to a predetermined program. That is, for example, the wire layout head is moved parallel to the wire lay-out board and the electric wires paid out are wound around the wire lay-out pin at the time of moving, thereby laying out the electric wire in the predetermined pattern.

After wires are laid out, the end of the electric wire is peeled and a desired terminal is crimped, and then the terminal is inserted into a connector housing. In this way, wire harness subassemblies constituting a portion of a wire harness are produced. Similarly, various kinds of wire harness subassemblies constituting the wire harness are produced. The wire harness subassembly produced via laying out of wires on the wire lay-out board is temporarily removed from the wire laid-out board. Then, various kinds of wire harness subassemblies are further assembled in a predetermined embodiment and then subjected to a main assembling step to obtain a wire harness assembly as a finished product.

The wire harness subassembly is, for example, composed of about 25 electric wires. Therefore, if the wire harness subassembly is removed from the wire lay-out board, the electric wires constituting the wire harness subassembly are taken to pieces. Thus, if the same kinds of wire harness subassemblies are collected in one location, electric wires constituting different wire harness subassemblies may be intertwined with each other. For this reason, there was a problem of a poor workability in assembling wire harness subassemblies by collecting the same type of wire harness subassemblies individually.

In order to solve this problem, it may be considered to tape a key portion in the state where a plurality of electric wires are laid out on the wire lay-out board. As a matter of course, it is desirable to automate such a taping operation from the viewpoint of automating the production of wire harness subassemblies.

However, in order to tape the key portion of electric wires laid out complicatedly on the wire lay-out board, a mechanical device which can enter into a narrow space between electric wires laid out and wind a tape on the electric wire bundle will be required.

Tape winding devices which have hitherto been proposed for producing a wire harness are, for example, disclosed in Japanese Patent Unexamined Publication Nos. 59-12052, 59-64477, 59-90377 and 60-163307. However, in these devices, a bobbin wound with an adhesive tape is rotated around an electric wire bundle, and then the tape is paid out from the bobbin sequentially to wind it around the electric wire bundle. Therefore, a large space is required for rotating the bobbin around the electric wire bundle, and the structure itself is large.

Thus, the above prior art is suitable for taping to coat the whole wire harness after the completion of a main assembly operation, but is not suitable for taping the key portion of the electric wire bundle laid out on the wire lay-out board. For this reason, the above taping treatment has had to rely conventionally on manual operations.

From EP-A-0456144 there is known another automatic machine for taping and cutting bundles of fibres, such as natural and artificial textile fibres, which includes a taping means for wrapping respective lengths of adhesive tape around spaced-apart peripheral portions of a fibre bundle supported by a bundle moving means. In use of this machine, the fibre bundle is displaced into a semi-circular slot where the bundle enters notches in the peripheries of two cogwheels and traps respective lengths of adhesive tape which adhere to portions of the bundle which are radially inward of the cogwheels. The end portions of the tape are turned over so as also to wrap portions of the bundle which are radially outward of the cogwheels whereby two-spaced apart peripheral portions of the bundle become completely wrapped in the adhesive tape.

However, the latter machine is again complex and bulky.

It is an object of the present invention to provide a tape binding device and tape binding method which can solve the above described technical problems and bind an electric wire bundle with a tape by winding the tape around the electric wire bundle in a narrow space.

In order to accomplish the above object, one aspect of the present invention provides a tape binding device for binding an electric wire bundle with a tape piece having an adhesive surface on one side, comprising:

- a device body;
- a pair of arms arranged vertically movable to said
device body, and having a mutually contactable/separable free end, respectively;
a respective holding surface provided on said arms so as to be continuous with said free end to hold
said tape piece;
a biasing means for biasing said free ends of said
arms to bring them into contact with each other;
a tape piece holding means for holding said tape
piece with a predetermined holding strength while
contacting the non-adhesive surface of said tape
piece with said holding surfaces of said arms; and
an arm moving means for moving said arms verti-
cally with respect to said device body.

According to this aspect, a tape piece is caused to
be held onto the holding surface of a pair of arms, which
are then lowered from the upper side of the electric wire
bundle. At the time of this lowering, the tape piece is
covered around the electric wire bundle while pressing it
by the free ends of the arms. Then, the pair of arms are
further lowered, thereby clipping both ends of the tape
piece in the state where adhesive surfaces at both ends of
the tape piece are adhered to each other at the lower
side of the electric wire bundle by the free end at the
time of this lowering to laminate adhesive surfaces to
each other. The winding can be conducted in a very nar-
row space in comparison with a conventional type
device wherein a bobbin is rotated. As a result, it
becomes possible to automatically tape the key portion of
the electric wire bundle laid out on the wire lay-out board.

The invention is described further hereinafter, by
way of example only, with reference to the accompa-
nying drawings, in which:

Figs. 1A and 1B are perspective views illustrating a
key portion of the tape binding device of one
embodiment of the present invention, wherein Fig.
1A illustrates the condition of a pair of arms receiv-
ing a tape piece from a tape piece supplying mecha-
nism, and Fig. 1B illustrates the condition of the
arms applying a tape piece around an electric wire
bundle.

Fig. 2 is a schematic perspective view illustrating an
automated taping module as a tape binding device.
Fig. 3 is a schematic perspective view illustrating a
wire lay-out board for explaining the taping opera-
tion.

Fig. 4 is a schematic perspective view illustrating
the overall construction of a wire harness produc-
tion system using the automated taping module.

Fig. 5 is a schematic perspective view illustrating
the construction of a tape piece supplying mecha-
nism of the tape binding mechanism.

Fig. 6 is a schematic lateral view illustrating a tape
drawing mechanism among tape piece supplying
mechanisms.

Figs. 7A and 7B are partial sectional lateral views
illustrating a tape clamping mechanism among tape
piece supplying mechanisms, where Fig. 7A illus-
trates an unclamping state and Fig. 7B illustrates a
state of the tape to be clamped.

Fig. 8 is a partial sectional front view illustrating the
tape binding mechanism.

Fig. 9 is a partial sectional lateral view illustrating
the tape binding mechanism.

Fig. 10 is a schematic sectional view of the tape
binding mechanism illustrating an electric wire bun-
dle clamping mechanism when viewed frontally.

Fig. 11 is a schematic sectional view of the tape
binding mechanism illustrating an electric wire bun-
dle clamping mechanisms when viewed laterally.

Fig. 12 is a schematic perspective view illustrating
the electric wire bundle clamping mechanism.

Fig. 13 is a schematic perspective view illustrating
a state of the wire bundle clamping mechanism
clamping an electric wire bundle.

Fig. 14 is a schematic perspective view illustrating
the tape piece supplying mechanism and a state of
the tape clamping mechanism clamping the end of
the tape.

Fig. 15 is a schematic perspective view illustrating
the tape piece supplying mechanism and a state of
the tape clamping mechanism moving forward
while clamping the end of the tape to hold the end
of the tape onto a tape end holding member.

Fig. 16 is a schematic perspective view illustrating
the tape piece supplying mechanism and a state
where a tape having a predetermined length is
applied after the tape clamping mechanism has
been moved backward.

Fig. 17 is a schematic perspective view illustrating
the tape piece supplying mechanism and a state of
the applied tape held by a tape supporting member.
Fig. 18 is a schematic perspective view illustrating
the tape piece supplying mechanism and the tape
binding mechanism and a state where a tape piece
cut to the predetermined length is adsorbed and
held by means of arms of the tape binding mecha-
nism.

Fig. 19 is a schematic perspective view illustrating
an electric wire bundle clamping mechanism and a
state of the electric wire bundle clamping mecha-
nism clamping the electric wire bundle.

Fig. 20 is a schematic perspective view illustrating
the tape binding mechanism, wherein Fig. 20A
illustrates a state wherein the tape piece is pressed
and wound around the electric wire bundle by
means of a pair of arms and Fig. 20B illustrates a
state wherein the ends of the tape pieces are la-
nimated each other at the lower side of the electric
wire bundle.

Fig. 21 is a schematic perspective view illustrating
an action of the tape binding mechanism and a
state wherein a pair of arms are opened out and left
from the electric wire bundle.

Overall Construction

Fig. 4 is a general perspective view illustrating the
construction of the production system of a wire harness
incorporated with a tape binding device of one embodi-
ment of the present invention. This production system
has a construction wherein devices modularized for
every step are coupled in such an arrangement that
each step contains a predetermined number of the
modularized devices.

More specifically, this production system comprises

1) three automatic wire laying out modules 1a, 1b
and 1c (referred to as "automatic wire laying out
modules 1" en bloc hereinafter), 2) an automatic
taping module 2 as a tape binding device of one
embodiment of the present invention, 3) two strip-
ning modules 3a, 3b (referred to as "stripping mod-
ules 3" en bloc hereinafter), 4) a stripping check
module 4, 5) four terminal crimping modules 5a, 5b, 5c
and 5d (referred to as "terminal crimping mod-
ules 5" en bloc hereinafter), 6) a terminal check
module 6, 7) three terminal inserting modules 7a, 7b
and 7c (referred to as "terminal inserting mod-
ules 7" en bloc hereinafter), and 8) a conductivity
checking module 8, all of which are serially coupled
in this order.

When a wire harness is produced by this production
system, a predetermined wire lay-out board 9 is succes-
sively carried from module to module along a path from
the automatic wire laying out modules 1a toward the
conductivity checking module 8 so as to build up a wir-
ing harness on the wire lay-out board 9.

The automatic wire laying out modules 1 are
devices for automatically laying out electric wires with
measured length on the wire lay-out board 9. Specified
kinds of electric wire group 10 involved in the laying out
are stored in the vicinity of the automatic wire laying out
modules 1. Electric wires of the electric wire group 10
are selectively incorporated in the automatic wire laying
out modules 1, laid out on the wire lay-out board 9, and
then cut with measured length.

The wire lay-out board 9, after wires are laid out by
the automatic wire laying out modules 1, is carried to the
automatic taping modules 2, and a bundle of the electric
wires laid out on the wire lay-out board 9 is taped up in
predetermined positions so as not to be untidy.

The wire lay-out board 9 is carried to the stripping
modules 3, where the predetermined length of an insu-
lative sheath at the end of each wire is removed and the
wire cores are exposed. Then the wire lay-out board 9 is
carried to the stripping checking module 4.

The stripping inspection module 4 is, for example,
provided with a checking camera for determining
acceptance/rejection of the stripping process according
to the photographed images. That is, it is conducted to
check if the insulative sheath is completely removed, if
the stripped end of the electric wire is bent or untidy, and
so forth.

There are four of the terminal crimping modules 5
connected in series downstream from the stripping
check module 4. The respective terminal crimping mod-
ules 5 are used for crimping of various kinds of termi-
nals. Between the second terminal crimping module 5b
and the third terminal crimping module 5c, a convey-
orbuff module 11 is inserted. In the conveyor-buffer
module 1, the timing of carrying the wire lay-out board 9
toward the third terminal crimping module 5c is
adjusted.

The crimping check module 6 is coupled down-
streamwise from the terminal crimping modules 5. The
crimping check module 6 has, for example, a check
camera to determine acceptance/rejection of the termi-
nal crimping process by taking a picture of the vicinity
of the end of the electric wire and subjecting the resulting
image to a predetermined treatment. That is, it is con-
ducted to check if the terminal is properly crimped, if
the end of the electric wire is bent abnormally, and so forth.

The wire lay-out board 9 is carried to the terminal
inserting modules 7 after checking of the crimping. The
terminal inserting modules 7 are devices for automati-
cally inserting the terminal cramped at the end of the
electric wire into a connector housing. The respective
terminal crimping modules 7a, 7b and 7c insert different
kinds of terminals.
The conductivity checking module 8 is coupled downstream from the terminal inserting module 7. In the conductivity checking module 8, a checking coupler is connected to the connector housing into which the terminal is inserted to conduct a conductivity check to the electric wire used for the laying out.

A buffer module 12 is coupled downstream from the conductivity checking module 8, and the wire lay-out board 9 carried to the buffer module 12 is transferred to the next production step because the required processing in this production line is completed.

By means of such production systems, a wire harness assembly constituting a wire harness is obtained. Through the main assembling operation wherein multiple kinds of wire harness subassemblies are fabricated to be arranged into the respective kinds of wire harness subassemblies, a complete wire harness is obtained.

Incidentally, the respective modules do not necessarily perform the same operation, but apply different treatments against a plurality of wire lay-out boards 9 according to the predetermined program, thereby various kinds of wire harness subassemblies constituting a wire harness are produced in turn and carried to the buffer module 12. Therefore, by sequentially removing the wire harness subassemblies on the wire lay-out boards 9 carried to the buffer module 12 and conducting a main assembling operation, a complete product of a wire harness can be obtained. That is, different production lines are not necessarily required for the respective wire harness subassemblies, but various kinds of wire harness subassemblies are produced in a production line.

In order to apply different treatments to the respective wire lay-out boards 9, it may be conducted to form numbers or symbols corresponding to the wire harness subassembly to be formed on the wire lay-out board 9 on the back surface of the wire lay-out board 9 to read symbols or the like, thereby causing the respective modules to conduct program operations.

A wire harness subassembly retains a fixed shape when held onto a wire lay-out board 9, but if the subassembly is removed from the wire lay-out board 9, it does not retain its shape and a plurality of wires may be untidy or electric wires belonging to different wire harness subassemblies may be mutually intertwined. In order to prevent such inconveniences, an automatic taping module 2 connected downstream from the automatic wire laying out modules 1 is provided.

Fig. 3 is a schematic diagram for illustrating the automatic taping module 2 and a state wherein the electric wire laid out on the wire lay-out board 9 is subjected to a taping treatment. The wire lay-out board 9 is provided with a pin board 9A on which the wire lay-out pins 15 are disposed vertically, and a base plate 9B to hold this pin board. The wire lay-out pins 15 are disposed vertically at locations corresponding to the desired layout pattern, and the automatic wire laying out modules 1 lay the electric wires 16 by winding the electric wires 16 around the wire lay-out pins 15.

In the base plate 9B, one side edge following the transportation direction 17 of the wire lay-out board 9 is provided with an electric wire clamp 18 capable of holding the end of the electric wire 16 at a predetermined distance. Further, at one end and the other end relative to the transportation direction 17, a pair of mutually parallel guide rods 21, 22 is provided, the pin board 9A being interposed between them. The guide rods 21, 22 are held at a constant level from the surface of the base plate 9B by means of supporting members 23, 24, 25 and 26, both ends of the supporting member having approximately L-shape.

On guide rods 21, 22, slide members 31, 32 are inserted slidably, respectively. Between this pair of slide members 31, 32, a housing holding rod 33 is held parallel to the electric wire clamp 18. On a predetermined location of the housing holding rod 33, approximately U-shaped holding members 34 are provided to hold a connector housing (not shown). Shock absorbing members 27, 28, 29 and 30 of urethane resin are fitted into both ends of the guide rods 21, 22, which reduce the impact of the slide members 31, 32 at the time of collision.

The housing holding rod 33 is maintained at a location avoiding the space over the pin board 9A so as not to inhibit wire laying out and taping treatments until the treatment by means of the automatic taping module 2 is completed as shown in Fig. 3. Prior to the treatment by means of the terminal inserting modules 7, it is located in the vicinity of the electric wire clamp 18 by sliding the slide members 131, 132 along the guide rods 21, 22. In the terminal inserting module 7, the electric wires 16 are removed sequentially from the electric wire clamp 18 and the terminals crimped to the tip end of these electric wires 16 (not shown) are inserted into the connector housing held by the holding member 34 (not shown).

In the automatic taping module 2, the wire harness subassemblies on the wire lay-out board 9 are temporarily held at the key portions by means of a tape T. That is, in order to prevent the electric wires 16 from becoming untidy or mutually intertwining themselves when they are removed from the wire lay-out board 9, a plurality of electric wires 16 are mutually taped at predetermined positions resulting in a temporarily taped state.

Fig. 2 is a perspective view illustrating the whole construction of the automatic taping module 2. The automatic taping module 2 as a tape binding device is provided with 1) a base 41, 2) a tape binding mechanism 200 which bundles a tape piece onto the electric wire bundle, 3) a moving mechanism 45 held on the base 41 to move the tape binding mechanism 200 to the required location of the upper part of the base 41, and 4) a tape piece supplying mechanism 100 held on the base 41 to supply the tape piece to the tape binding mechanism 200 and the like.

Referring to Fig. 2, rails 42 for guiding a base plate 9B of the wire lay-out board 9 are provided on the base 41. On the rails 42, the wire lay-out board 9 is located
and fixed by means of a fixing mechanism (not shown), and the taping treatment is also conducted. The rails 42 correspond to the holding section of the wire lay-out board.

In the base 41, the guide rail 43 is provided at a location which is opposed to one side edge of the wire lay-out board 9. An X-direction moving holder 44 moving in the X-direction is provided slidably on this guide rail 43. The moving holder 44 is fixed with a guide member 45 extending in the Y-direction intersected perpendicularly to the X-direction within a horizontal surface. Further, a tape piece supplying mechanism 100 for supplying a tape piece of a specified length is fixed thereon.

The guide member 45 is provided slidably with the Y-direction moving holder 46, the removing holder 46 being fixed with a guide member 47 extending in the Z-direction as a perpendicular direction. This guide member 47 is provided slidably with a Z-direction moving holder 48 which is provided with a tape binding mechanism 200 via an axis 49. A rotating drive mechanism (not shown) which causes the tape binding mechanism 200 to rotate in a direction around the axial line 49a of the axis 49 and the like is provided in the interior of the Z-direction moving holder 48.

The respective moving holders 44, 46, 48 are driven in the X-, Y-, and Z-directions by means of a feed screw mechanism DS driven by the motor M. The conveyance in the X-Y-and Z-directions and the rotation related to the φ direction of the tape binding mechanism 200 are conducted according to the predetermined programs executed by a control means (not shown). Thereby, the tape binding mechanism 200 shifts in the X-, Y-, and Z-directions and revolves in the φ direction to change its direction. Then, the electric wires 16 are temporarily taped by the tape T at the predetermined positions, whereby the taping treatment shown in Fig. 3 is accomplished.

As described above, in this embodiment, there is provided the moving mechanism 40 for moving the tape binding mechanism 200 to the predetermined position on the wire lay-out board 9, which includes the above-described guide rail 43, X-direction moving holder 44, guide member 45, Y-direction moving holder 46, guide member 47, Z-direction moving holder 48, feed screw mechanism DS and motor M. Further, the X-direction moving holder 44 also functions as a holding member of a tape supplying mechanism 100.

Referring now to Figs. 1A and 1B, this embodiment is characterized by 1) receiving a tape piece TT held by means of tape supporting members 140 between a tape clamp mechanism 120 of a tape piece supplying mechanism 100 and a tape end holding member 130 by air suction by means of a plate-like pressing part 451a, 452a of a pair of arms 451, 452 of a tape binding mechanism 200 as shown in Fig. 1A, 2) moving the tape piece to the predetermined position while holding it with arms 451, 452 and 3) lowering and separating the respective arms 451, 452 on the two sides respectively of the electric wire bundle W, as shown in Fig. 1B, to wind the tape piece TT around the electric wire bundle W.

Tape piece supplying mechanism

Fig. 5 is a perspective view illustrating a schematic construction of the tape piece supplying mechanism 100. Referring to the same drawing, this tape piece supplying mechanism 100 includes 1) a tape drawing mechanism 110 for drawing the tape from a rotation roll 111 on which has been wound a tape having an adhesive surface on one side, 2) a tape clamping mechanism 200 for clamping the end of the tape T drawn from the rotation roll 111 and removing between the forward position (F-direction is called forward in Fig. 5) and the backward position (R-direction is called backward in the same drawing), 3) a tape end holding member 130 for receiving and holding the end of the tape T from the tape clamping mechanism 120, held rockably on the base section BS and movable to the forward position, 4) a tape supporting member 140 which supports the tape T extended in a straight state between the tape end holding member 130 and the tape clamping mechanism 120 which have moved to a backward position from the lower direction, 5) a tape cutting member 150 for cutting the tape T at a position in the vicinity of the tape clamping mechanism 120 when in the backward position and 6) a driving mechanism 160 which drives in synchronization the clamping mechanism 120, the tape end holding member 130, the tape supporting member 140 and the tape cutting member 150.

Tape drawing mechanism

Referring to Fig. 6, the tape drawing mechanism 110 includes 1) a supporting lever 112 mounted rockably to the base section BS thereto and centred at a predetermined position 112a in the vicinity of the lower end thereof, 2) an air cylinder 113 forming a driving means for inclining the supporting lever 112 backwards to draw the tape T by pushing the supporting lever 112 at its lower end 112c and 3) a photomicrosensor 114 provided on the rear portion of the supporting lever 112, as a tape ending checking means for detecting the tape T wound around the rotating roll 111 reaching the end.

The center rear portion of the supporting lever 112 is provided with a sensor dog 115 for operating the photomicrosensor 114.

When the air cylinder 113 operates (see solid line in Fig. 6), the tape clamping mechanism 120 provided on the rear position thereof clamps and stops the end portion of the tape T. On the other hand, when the tape clamping mechanism 120 moves forward, the backwardly inclined supporting lever 112 is, along with this movement, stretched forward via the tape T in confrontation with its own weight, and raises itself until it erects approximately, as shown by the chain-dot line. Since the
tape T has been drawn out of the rotating roll 111 before the tape clamping mechanism 120 moves forward for measuring, the tape clamping mechanism 120 does not confront a resistance in its forward movement.

Furthermore, when the tape clamping mechanism 120 moves forward, if the tape T on the rotating roll 111 has come to its roll end, the supporting lever 112 inclines backward by its own weight since it is not stretched forward, as shown in Fig. 6. As a result, a photomicrosensor 114 is blocked by a sensor dog 115, so that the photomicrosensor 114 turns ON, thereby stopping the bundling device, and the replacement time of the rotating roll 111 is indicated via buzzers, etc.

Tape clamping mechanism

Referring to Figs. 5, 7A and 7B, the tape clamping mechanism 120 includes 1) a plate member 121 having a lower end 121a which is mutually rotatable and moves forward/backward mounted to a third conveying axis 165 (to be described later) of the driving mechanism 160 and having an upper end 121b with a tape inserting hole 122 in angular section, and a clipping plate 123 provided vertically movably on the plate member 121 along its back surface, which clips the tape T at the upper position between itself and the rear side of the upper rim of the tape inserting hole 122, as shown in Fig. 7B. On the other hand, the clipping plate 123 permits the tape T to move through the tape inserting hole 122 in the lowered position shown in Fig. 7A.

Referring to Fig. 5, a cylindrical locking projection 124, which locks up with the locking hole 176a in the rocking lever 176 to be described later of the driving mechanism 160, is formed on the lateral side of the plate member 121. Referring to Figs. 7A, 7B, a cam follower 125 composed of a cylindrical projection following a tape clamping cam 168 of the driving mechanism 160 to be described later is formed at the lower portion of the clipping plate 123.

Tape end holding member

Referring to Fig. 5, the tape end holding member 130 is mounted rotatably to the base section BS around the rotation axis line at the central part thereof. The upper surface of one end of the tape end holding member 130 functions as a tape end holding member 130a for holding the end of the tape T with its adhesive force. Further, the other end of the tape supporting member 130 is formed into a channel form containing a pair of projections 130b. The respective projections 130b are provided with an elongate hole section 131. A pin 183 formed on the end of the operation lever 182 contained in the tape end holding cam-link mechanism 180 to be described later of the driving mechanism 160 is inserted into the elongate hole section 131, respectively.

Tape supporting member

Referring to Fig. 5, the tape supporting member 140 comprises a rocking lever provided on the fourth conveying axis 195 of the driving mechanism 160 in an integrally rotatable way, a pair of rocking levers being provided with a predetermined distance therebetween (only one of them is shown in the drawing).

Tape cutting member

Referring to Figs. 5 and 7A, the tape cutting member 150 comprises the plate member provided along the front surface of the plate member 121 of the tape clamping mechanism 120 in a vertically movable way and a cutter edge 150a formed on the upper surface. On the lower portion of the tape cutting member 150, a cam follower 151 comprising a cylindrical projection following a tape cutting cam 167 to be described later of the driving mechanism 160 is formed. The tape cutting member 150 can be moved forward/backward together with the tape clamping mechanism 120. The tape cutting member 150 cuts the tape at the position along the front surface of the plate member 121 by the movement in the upper direction.

Driving mechanism

Referring to Fig. 5, the driving mechanism 160 includes 1) a motor M as a drive source, 2) a first conveying axle 161 driven by the motor M, 3) a second conveying axle 163 drive-joined via a first bevel gear mechanism 162 with the first conveying axle 161 and 4) the first bevel gear mechanism 162 and a third conveying axle 165 drive-joined via the second conveying axle 163 and the second bevel gear mechanism 164.

The second conveying axle 163 is mounted in an integrally rotatable way with a reciprocating cam 163a for moving forwardly/backwardly the tape clamping mechanism 120 and the tape cutting member 150 via a reciprocating cam-link mechanism 170.

The third conveying axle 165 is mounted in an integrally rotatable way with 1) a tape end holding cam 166 for rocking the tape end holding member 130 via the tape end holding cam-link mechanism 180, 2) a tape cutting cam 167 for vertically moving the tape cutting member 150 via the cam follower 151, 3) a tape clamping cam 168 for vertically moving the clipping plate 123 via the cam follower 125 and 4) a tape supporting cam 169 for rocking the tape supporting member 140 via a tape supporting cam-gear mechanism 190 between the supporting position and the non-supporting position. The reciprocating cam-link mechanism 170 includes 1) a cam follower 171 following the reciprocating cam 163a, 2) a rocking lever 172 having a base end supported rotatably with one end of an axis 173 and a tip end supporting the cam follower 171 rotatably, 3) a rocking lever 174 having one end supported integrally.
rotatable to the other end of the axis 173 and 4) an operation lever 182 having a lower end supported rotatable to the base section BS and an upper end formed with the locking hole 176a, which is coupled with the rocking lever 174 via a coupling lever 175.

The tape end holding cam-link mechanism 180 includes a cam follower 181 following the tape holding cam 166 and the operation lever 182 supporting rotatably the cam follower 181 at the lower end. The pin 183 is formed protectively on the side surface opposing the upper end of the operation lever 182.

The tape supporting cam-gear mechanism 190 includes:

1) a cam follower 193 following the tape supporting cam 169, 2) an operation lever 191 fixing the cam follower 193 on the lower end and forming a gear section 191a on the upper end surface, which is supported rotatably around the axle 192 of the approximately center portion and 3) a gear 194 which engages with the gear section 191a of the operation lever 191 and includes a gear 194 rotating integrally with the fourth conveying axle 195. The axle 192 and the fourth conveying axle 195 are supported rotatably relative to the base section, respectively.

Tape binding mechanism

Referring to Figs. 8 to 11, the tape binding mechanism 200 will be explained. This tape binding mechanism 200 includes 1) a frame 300 fixed to the moving holder 48 at the upper end thereof and 2) a winding mechanism 400 held to the frame 300. This winding mechanism 400 includes 1) a pair of electric wire bundle clamping mechanisms 410, 420 clamping wires at the time of tape winding to hold them, 2) an air cylinder 430 mounted to the frame 300 to provide a lifting means and 3) a lifting section 435 lifted by means of this air cylinder 430.

Electric wire bundle clamping mechanism

Referring to Fig. 12, the respective electric wire bundle clamping mechanisms 410, 412 include 1) a pair of clamping members 411, 412, 2) spur gears 413,414 connected rotatably to the respective clamping members 411, 412 and engaged with each other, 3) axial members 415, 416 fixing the respective spur gears at one end thereof and holding the respective spur gears 413, 414 rotatably to the frame 300, 4) a circular member 417 and a lever member 418 fixed to the other ends of these axial members 415, 416, respectively and 5) an air cylinder 419 holding a pin 418a formed on the tip end of the lever member 418 rotatably to the slit 419b at the lower end of a rod 419a.

The air cylinder 419 and the axial members 415, 416 are, as shown in Figs. 11 and 12, supported by means of the frame 300. Further, as shown in Figs. 10, 12 and 13, the pair of clamping members 411, 412 are provided with positioning surfaces 411a, 412a for positioning the upper end of the electric wire bundle W at a predetermined location when clamping the electric wire bundle W. The positioning surfaces 411a, 412a are, as shown in Fig. 10, formed into a circular arc surface centering on the axial members 415, 416.

In these electric wire bundle clamping mechanisms 410, 420, the distance between both clamping members 411, 412 is narrowed by extending the rod 418 to clamp the electric wire bundle W, as shown in Fig. 13.

Both upper ends of the air cylinder 419 of the respective electric wire bundle clamping mechanisms 410, 420 are connected together via a connecting rod 419c, as shown in Fig. 11.

Lifting section

Referring to Fig. 8, the lifting section 435 includes 1) a lifting section body 440, 2) an elastic pressing mechanism 450 including the pair of arms 451, 452 held rockably relative to the lifting section body 440, for pressing resiliently the non-adhesive surface of the tape piece TT to wind it around the electric wire bundle W, 3) a tape piece holding mechanism 460 supported on the lifting section body 440 in a vertically movable way, for holding the tape piece TT on the lower surface of plate-like pressing sections 451a, 452a of the arms 451, 452 and 4) air cylinders 470 acting as a distance adjusting mechanism for adjusting the distances between clipping members 453, 454 formed on the tip portions of the arms 451, 452.

Lifting section body

Referring to Fig. 9, the lifting section body 440 is designed to be slid vertically via a slide rail mechanism 480 provided between the body and the frame 300. The lifting section body 440 is connected to the air cylinder 430 via the tip end of the rod 430a of the air cylinder 430, connecting lever 443 and the connecting frame 444, and is made to move vertically together with the extension/retraction of the rod 430a of the air cylinder 430.

The lifting section body 440 is, as shown in Fig. 8, provided with rod inserting hole 440a through which a rod 465 to be described later of the tape piece holding mechanism 460 is inserted in a vertically movable way.

Resilient pressing mechanism

Referring to Fig. 8, the resilient pressing mechanism 450 includes 1) the pair of mutually opposing L-shaped and reverse-L shaped arms 451, 452 supported rockably relative to the lifting section body 440 around pins 441, 442, 2) the plate-like pressing sections 451a, 452a included in the respective arms 451, 452 and
formed by leaf springs resiliently pressing the tape piece TT to the electric wire bundle W. 3) the clipping members 453, 454 formed at the mutually opposing free ends of the plate-like pressing sections 451a, 452a for embracing both ends of the tape piece TT at the lower side of the electric wire bundle W to clip them and 4) compression coil springs 456, 457 as a resilient spring-loading means acting in the direction for reducing the distance between these clipping members 453, 454.

Holding surfaces 451c, 452c for holding the tape piece are constituted by the lower surfaces of the plate-like pressing sections 451a, 452a, respectively.

Referring to Fig. 1, the base end sections (lower end section) of the respective clipping members 453, 454 are bent with a curvature radius opposite to that of the circumferential surface of the electric wire bundle W.

In Fig. 8, the left arm 451 is spring-loaded in the counter-clockwise direction by means of the compression coil spring 456 and the right arm 452 is spring-loaded in the clockwise direction by means of the compression coil spring 457. Both clipping members 453, 454 are therefore spring-loaded in the direction to reduce the distance between the clipping members 453, 454, by means of the operation of the compression coil springs 456, 457. Further, both clipping members 453, 454 contact each other at a predetermined pressing force when no external force is applied.

Tape piece holding mechanism

Referring to Fig. 8, the tape piece holding mechanism 460 includes 1) a plurality of openings 461 formed respectively on the plate-like pressing sections 451a, 452a of the arms 451, 452 (see Fig. 1), 2) a flexible tube 462 whose lower part is connected to the respective openings 461, 3) a joint 463 provided with an air channel 463a connected to the upper ends of the respective flexible tubes 462, 4) a rod 465 having a lower end with the joint 463 fixed by a nut 464, which is supported on the lifting section body 440 in a vertically movable way by inserting the rod inserting hole 440a of the lifting section body 440 and 5) a nut 466 fixed to the upper end of this rod 465, which prevents the rod 465 from coming out.

The openings 461 are connected with an air suction pump (not shown) via the air channel 463a and a hose 466. By sucking air through the openings 461, the tape piece can be held in a stretched state relative to the plate-like pressing sections 451a, 452a of the arms 451, 452.

Distance adjusting mechanism

The air cylinders 470 acting as a distance adjusting mechanism are mounted roughly at the center portion in the height direction of the respective arms 451, 452. The respective air cylinders 470 are effective to widen the distance between both clipping members 453, 454 by extending the respective air cylinder piston rods to engage with the side surfaces of the lifting section body 440. By this construction, the winding of the tape piece T around the electric wire bundle W is completed and it becomes possible to move the clipping members 453, 454 located below the electric wire bundle W to a position above the electric wire bundle W without being interfered with by the electric wire bundle W itself.

Action

Next, referring to Figs. 14 to 21, the action of the tape binding device will be explained.

As shown in Fig. 14, the tape binding mechanism 200 is located at a home position upstream of the tape piece supplying mechanism 110 and, at a position downstream of this tape binding mechanism 200, the tape piece supplying mechanism 110 cuts the tape into tape pieces TT of the predetermined length according to the operations shown in Figs. 14 to 18 to make them deliverable to arms 451, 452 of the tape binding mechanism 200.

Firstly, as shown in Figs. 14 and 7B, the tape clamping mechanism 120 clamps the end of the tape T. In this clamped state, as shown in Fig. 15, the tape clamping mechanism 120 is moved forward and, at the same time, the tape end holding member 130 is inserted into the tape inserting hole 122 and is raised to the horizontal state. The raised tape end holding member 130 presses the ends of the tape T against the upper surface through the tape inserting hole 122, thereby adhering the adhesive surface of the tape T onto the tape end holding section 130a on the upper surface thereof.

Thereafter, the tape clamping mechanism 120 moves backward in a predetermined stroke while unclamping the tape T (see Fig. 16) and clamps the tape T again at the location where it has moved backward, as shown in Fig. 17. Simultaneously, a pair of tape supporting members 140 are moved circularly to the horizontal state to hold the lower surface of the tape T. Next, the arms 451, 452 are lowered by the air cylinder 430 and, as shown in Fig. 18, contacts the non-adhesive surface of the tape T and holds it by suction. Then, the tape end holding member 130 is inclined downward to release the holding of the end of the tape T.

Simultaneously, the tape cutting member 150 is raised along with the side surface of the plate member 121 of the tape clamping mechanism 120 to cut the tape T. Since the tape supporting members 140 hold the tape piece TT in the stretched state, the plate-like pressing sections 451a, 452a of the arms 451, 452 can receive the tape piece TT in the stretched state.

The arms 451, 452 which have received the tape piece TT are raised by the air cylinder 430. Then, by means of the movement of the respective moving holders 44, 46 in the X- and Y-directions, they are moved to
the upstream of a predetermined position on the wire lay-out board 9 where the tape will be wound and is directed in the required direction suitable for the direction of the electric wire bundle W by means of the rotation driving mechanism. Thereafter, the tape binding mechanism 200 is lowered by the movement of the Z-direction moving body, so that the bundling operation becomes ready. At this point, the electric wire bundle W is arranged between the clamping members 411, 412 of the electric wire bundle clamping mechanism 460 of the tape binding mechanism 200.

Then, as shown in Fig. 19, a pair of electric wire bundle clamping mechanisms 460 collect the electric wire bundle W into approximately circular form in section by extending the air cylinder 419, using the clamping members 411, 412 to clamp them. Since a pair of the electric wire bundle clamping mechanisms 460 clips the portion of the electric wire bundle W where the tape piece TT will be wound and clamps a pair of locations at a predetermined distance apart respectively, the section of the electric wire bundle W located between the two clamping mechanisms 460 is held firmly in a state having a roughly circular form in section. Accordingly, it is possible to wind the tape piece TT at the predetermined position of the electric wire bundle W, precisely and without sagging. Incidentally, in Fig. 19, the arms 451, 452 are not shown.

Then, as shown in Fig. 20A, after the plate-like pressing sections 451a, 452a of the arms 451, 452 having finished winding the tape piece TT around the wire bundle W from the apex portion around the two opposite semicircular side surfaces thereof by pressing with a uniform strength at the right and left of the bundle, the clipping sections 453, 454 at the end of the plate-like pressing sections 451a, 452a, clip the tip ends TT1 of both tape pieces TT as if to embrace them, as shown in Fig. 20B, and lower themselves while laminating the tip ends together at the underside of the electric wire bundle W. Thereby, the bundling by means of the tape piece TT is completed, and the two arms 451, 452 are moved apart by means of the air cylinders 470 acting as distance adjusting mechanisms, as shown in Fig. 21 and, after the distance between the clipping sections 453, 454 has been increased, the arms are raised around the electric wire bundle W to leave the electric wire bundle W therebeneath.

Then, the tape binding mechanism 200 including the arms 451, 452 returns to the home position upstream of the tape piece supplying mechanism 100 and, while the tape binding mechanism 200 is performing the winding operations, the tape piece supplying mechanism 100 simultaneously operates and the deliverable tape piece TT has already been prepared. Therefore, in the next bundling operation, as soon as the tape binding mechanism 200 returns to the home position, the operation to lower the arms 451, 452 to receive the tape piece TT (see Fig. 17) can be started. This is because the tape supplying step for cutting and supplying the tape piece TT and the tape winding step for winding the tape piece TT around the electric wire bundle W can be conducted simultaneously by separately arranging the tape piece supplying mechanism 100 and the tape binding mechanism 200. Accordingly, the bundling operation can be conducted efficiently.

According to the above embodiment, since the arms 451, 452 holding the tape piece TT are lowered from a position above the electric wire bundle W, around the two opposite sides thereof to wind the tape piece TT around the electric wire bundle W, the winding can be conducted in a very narrow space in comparison with a conventional device wherein the bobbin is rotated. As a result, it becomes possible to tape the key portion of the electric wire bundle W laid out on the wire lay-out board 9, automatically.

Further, since the arms 451, 452 resiliently press the tape piece TT around the electric wire bundle W by means of the plate-like pressing sections 451a, 452a formed by a leaf spring, the tape piece TT can be wound tightly around the electric wire bundle W, so that precise and tight bundling can be performed.

Furthermore, since the clipping members 453, 454 for laminating both ends of the tape piece TT to each other are formed on the free ends of the plate-like pressing sections 451a, 452a, it is possible to transfer smoothly from the operation of pressing the tape piece TT onto the electric wire bundle W to the operation of clipping the end of the tape piece TT below the electric wire bundle W. Accordingly, the tape piece TT can be wound tightly around the electric wire bundle W, so that more precise bundling can be conducted.

Furthermore, since the diameter of the electric wire bundle can be decreased by the tape piece TT as the pair of clipping sections 453, 454 are lowered in the state where both ends of the tape piece TT are clipped by embracing them below the electric wire bundle W, more precise bundling can be conducted.

Moreover, since the rockably provided arms 451, 452 are shaped in the form of ladles, the clipping members 453, 454 can be slid into the lower side of the electric wire bundle W without requiring a large space. Therefore, the tape winding can be conducted in a smaller space. Also, since the plate-like pressing sections 451a, 452a formed by leaf springs have a reverse curvature against the curvature of the circular surface of the electric wire bundle W, both clipping members 453, 454 can be rapidly slid to the lower side of the electric wire bundle W by making use of this repulsion force. As a result, the end portions TT1 of the tape piece TT can be clipped to each other without sagging. Therefore, still more precise bundling can be conducted.

The present invention may be embodied in other specific forms without departing from the essential characteristics thereof. The present embodiment is therefore to be considered in all respects as illustrative and not restrictive, the scope of the present invention being indicated by the appended claims rather than by the forego-
ing description and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims

1. A tape binding device for binding an electric wire bundle with a tape piece having an adhesive surface on one side, comprising:

 a device body (300);
 a pair of arms (451,452) arranged so as to be vertically movable relative to said device body (300), and having mutually contactable/separator free ends (453,454), respectively;
 a respective holding surface (451c, 452c) provided on each of said arms (451,452) so as to be continuous with said free ends (453,454) to hold said tape piece;
 a biasing means (456,457) for biasing said free ends (453,454) of said arms to bring them into contact with each other;
 a tape piece holding means (100) for holding said tape piece with a predetermined holding strength while contacting the non-adhesive surface of said tape piece with said holding surfaces (451c,452c) of said arms (451,452); and
 an arm moving means (430) for moving said arms (451,452) vertically with respect to said device body (300).

2. A tape binding device according to claim 1, wherein one (451) of said pair of arms (451,452) is L-shaped while the other arm (452) is reverse L-shaped, symmetrical to said one of said pair of arms;

 the respective arms (451,452) have a first portion (451b,452b) and a second portion (451a,452a) which is continuous with a lower end of said first portion; and
 said holding surface comprises a lower surface (451c,452c) of said second portion and said free end is included in said second portion.

3. A tape binding device according to claim 2, wherein said first portion (451b,452b) comprises an elastic member and also serves as said biasing means.

4. A tape binding device according to claim 2 or 3, wherein said second portion (451a,452a) comprises a leaf spring and includes said free end and said holding surface.

5. A tape binding device according to claim 3, wherein said second portion (451a,452a) is formed with an opening (461) on said holding surface; and

 said means for holding said tape piece comprises an air sucking means for sucking air through said opening (461).

6. A tape binding device according to claim 1, further comprising a means (470) for separating said pair of arms against said biasing means (456,457).

7. A tape binding device according to claim 1, wherein each said holding surface (451c,452c) is provided with an opening (461) and said means for holding said tape piece comprises an air sucking means for sucking air through said opening (461).

8. A tape binding device according to claim 1, wherein said biasing means comprises tension springs (456,457) interposed between said pair of arms (451,452).

9. A tape binding device according to any of claims 1 to 8, further comprising a pair of electric wire bundle clamping means (411,412), provided on said device body (300), for collecting a pair of portions mutually separated by a predetermined distance from a portion of said electric wire bundle to be wound by said tape piece in a section having a roughly circular form so as to clamp said pair of portions respectively.

10. A tape binding device according to claim 1, further comprising a tape web cutting means (150) for cutting a tape web laid out from a roll of said tape web; and

 a means (140) for holding said tape piece cut with said tape web cutting means in a deliverable state to said holding surfaces (451c,452c) of said arms (451,452).

11. A tape binding device according to claim 10, further comprising a device body moving for moving said device body;

 wherein said device body moving means (45) moves to an upper position of said tape piece held by said means for holding said tape piece in said deliverable state, and a position above a location of said electric wire bundle laid out on a wire lay-out board to be bound with said tape piece.

12. A tape binding device according to claim 1, further comprising a means (45) for moving said device body to a position above a location where said electric wire bundle laid out on a wire lay-out board is to be bound.

13. A tape binding method for binding an electric wire bundle with a tape piece having an adhesive surface on one side, comprising:
holding the tape piece onto respective holding surfaces (451c,452c) which are continuous with free ends (453,454) of a pair of arms (451,452) so that the adhesive surface faces downward; and lowering the free ends (453,454) of the arms (451,452) to both sides separated by a top portion of the electric wire bundle; wherein the action of lowering the free ends (453,454) includes the step of covering the tape piece around the electric wire bundle while pressing the tape piece onto the electric wire bundle by said free ends (453,454) during initial lowering, and clipping both ends of the tape piece in a state where adhesive surfaces at both said ends of the tape piece are adhered to each other beneath the electric wire bundle by means of said free ends (453,454) during further lowering whereby to laminate the adhesive surfaces to each other.

14. A tape binding method according to claim 13, further comprising cutting a tape web laid out from a roll of the tape web, and delivering the tape piece obtained in the cutting step to the holding surfaces of both arms.

Patentansprüche

1. Bandwickelvorrichtung zum Binden eines elektrischen Kabelbaums mit einem Stück Band mit einer Klebefläche auf einer Seite, umfassend:

 ein Vorrichtungsgehäuse (300);
 ein Paar Arme (451, 452), die so angeordnet sind, daß sie senkrecht relativ zu dem genannten Vorrichtungsgehäuse (300) beweglich sind, und die jeweils gegenseitig kontaktierbare/trennbare freie Enden (453, 454) aufweisen;
 wobei eine jeweilige Haltefläche (451c, 452c) an jedem der genannten Arme (451, 452) vorgesehen ist, daß sie mit den genannten freien Enden (453, 454) fortlaufend ist, um das genannte Bandstück zu halten;
 ein Andruckmittel (456, 457) zum Andrücken der genannten freien Enden (453, 454) der genannten Arme, um sie miteinander in Kontakt zu bringen;
 ein Bandhaltermittel (100) zum Halten des genannten Bandstückes mit einer bestimmten Haltestärke, während die nichtklebende Fläche des genannten Bandstückes mit den genannten Halteflächen (451c, 452c) der genannten Arme (451, 452) in Kontakt gebracht wird; und ein Armbewegungsmittel (430) zum Bewegen der genannten Arme (451, 452) senkrecht in bezug auf das genannte Vorrichtungsgehäuse (300).

2. Bandwickelvorrichtung nach Anspruch 1, bei der ein Arm (451) an dem genannten Paar von Armen (451, 452) L-förmig ist, während der andere Arm (452) umgekehrt L-förmig, symmetrisch zu dem genannten Arm aus dem genannten Paar Arme, ist;
 wobei die jeweiligen Arme (451, 452) einen ersten Abschnitt (451b, 452b) und einen zweiten Abschnitt (451a, 452a) aufweisen, der mit einem unteren Ende des genannten ersten Abschnittes fortlaufend ist; und wobei die genannte Haltefläche eine Unterseite (451c, 452c) des genannten zweiten Abschnittes umfaßt und das genannte freie Ende in dem genannten zweiten Abschnitt enthalten ist.

3. Bandwickelvorrichtung nach Anspruch 2, bei der der genannte erste Abschnitt (451b, 452b) ein elastisches Element umfaßt und auch als genanntes Andruckmittel dient.

4. Bandwickelvorrichtung nach Anspruch 2 oder 3, bei der der genannte zweite Abschnitt (451a, 452a) eine Blattfeder umfaßt und das genannte freie Ende und die genannte Haltefläche beinhaltet.

5. Bandwickelvorrichtung nach Anspruch 3, bei der der genannte zweite Abschnitt (451a, 452a) mit einer Öffnung (461) in der genannten Haltefläche ausgebildet ist; und das genannte Mittel zum Halten des genannten Bandstückes ein Luftsaugmittel zum Ansaugen von Luft durch die genannte Öffnung (461) umfaßt.

7. Bandwickelvorrichtung nach Anspruch 1, bei der jede genannte Haltefläche (451c, 452c) mit einer Öffnung (461) versehen ist und das genannte Mittel zum Halten des genannten Bandstückes ein Luftsaugmittel zum Ansaugen von Luft durch die genannte Öffnung (461) umfaßt.

8. Bandwickelvorrichtung nach Anspruch 1, bei der das genannte Andruckmittel Zugfedern (456, 457) umfaßt, die zwischen dem genannten Paar Arme (451, 452) angeordnet sind.

9. Bandwickelvorrichtung nach einem der Ansprüche 1 bis 8, ferner umfassend ein Paar elektrischer Kabelbaum-Einspannmittel (411, 412), die auf dem
genannten Vorrichtungsgehäuse (300) vorgesehen sind, um ein Paar Abschnitte zusammenzufassen, die um einen bestimmten Abstand von einem Abschnitt des genannten elektrischen Kabelbaums getrennt sind, der mit dem genannten Bandstück in einem Teil mit einer etwa kreisrunden Form umwickelt werden soll, um das genannte Paar Abschnitte jeweils einzuspannen.

10. Bandwickevorrichtung nach Anspruch 1, ferner umfassend ein Bandbahnzweideilmittel (150) zum Schneiden einer von einer Bandrolle abgewickelten Bandbahn; und

ein Mittel (140) zum Halten des genannten Bandstückes, das mit dem genannten Bandbahnzweideilmittel abgeschnitten wurde, in einem zuführungsfähigen Zustand zu den genannten Halteflächen (451c, 452c) der genannten Armee (451, 452).

11. Bandwickevorrichtung nach Anspruch 10, ferner umfassend ein Vorrichtungsgehäuse-Bewegungsmittel zum Bewegen des genannten Vorrichtungsgehäuses;

12. Bandwickevorrichtung nach Anspruch 1, ferner umfassend ein Mittel (45) zum Bewegen des genannten Vorrichtungsgehäuses zu einer Position oberhalb einer Stelle, an der der genannte, auf einem Drahtauslegetisch ausgelegte Kabelbaum umwickelt werden soll.

13. Bandwickelverfahren zum Binden eines elektrischen Kabelbaums mit einem Bandstück mit einer Klebefläche auf einer Seite, umfassend:

Halten des Bandstückes auf jeweiligen Halteflächen (451c, 452c), die mit freien Enden (453, 454) eines Paares von Armen (451, 452) fortlaufend sind, so daß die Klebefläche nach unten zeigt; und

Absenken der freien Enden (453, 454) der Arme (451, 452) auf beide Seiten, die durch einen oberen Abschnitt des elektrischen Kabelbaums getrennt werden;

wobei der Vorgang des Absenkens der freien Enden (453, 454) den Schritt des Abdewens des Bandstückes um den elektrischen Kabelbaum beinhaltet, während das Bandstück von den genannten freien Enden (453, 454) während des anfänglichen Absenkens auf den elektrischen Kabelbaum gedrückt wird, und Klammern beider Enden des Bandstückes in einen Zustand, in dem Klebeflächen auf beiden genannten Enden des Bandstückes aufeinander unterhalb des elektrischen Kabelbaums mit Hilfe der genannten freien Enden (453, 454) während des weiteren Absenkens geklebt werden, um die Klebeflächen aufeinander zu schichten.

Revendications

1. Dispositif de ligature au moyen d'une bande adhésive pour lier un faisceau de câbles électriques avec une pièce de bande adhésive ayant une surface adhésive d'un côté, comprenant:

un corps de dispositif (300) ;

une paire de bras (451, 452) disposés de manière à être verticalement mobiles par rapport aux extrémités (453, 454), et ayant des extrémités libres pouvant être mises mutuellement en contact ou séparées (453, 454), respectivement ;

une surface de maintien respective (451c, 452c) formée sur chacun des bras (451, 452) de manière à être continue avec les lèvres des extrémités libres (451c, 452c) pour maintenir la pièce de bande adhésive ;

des moyens de ressort (456, 457) destinés à solliciter les lèvres des extrémités libres (453, 454) des bras pour les mettre au contact l'une de l'autre ;

des moyens de maintien de pièce de bande adhésive (100) destinés à maintenir la pièce de bande adhésive avec une force de maintien prédéterminée tout en mettant la surface non adhésive de la pièce de bande adhésive en contact avec les surfaces de maintien (451c, 452c) des bras (451, 452) ;

des moyens de déplacement de bras (430) destinés à déplacer les bras (451, 452) verticalement par rapport aux corps de dispositif (300).

2. Dispositif de ligature au moyen d'une bande adhésive selon la revendication 1, dans lequel un pr-
mier bras (451) de ladite paire de bras (451, 452) est en forme de L tandis que l’autre bras (452) est en forme de L renversé, symétrique audat premier bras de ladite paire de bras ;

les bras respectifs (451, 452) ont une première partie (451b, 452b) et une deuxième partie (451a, 452a) qui est continue avec une extrémité inférieure de ladite première partie ; et ladite surface de maintien comprend une surface inférieure (451c, 452c) de ladite deuxième partie et ladite extrémité libre est comprise dans ladite deuxième partie.

3. Dispositif de ligature au moyen d’une bande adhésive selon la revendication 2, dans lequel ladite première partie (451b, 452b) comprend un élément élastique et agit également comme lesdits moyens de ressort.

4. Dispositif de ligature au moyen d’une bande adhésive selon la revendication 2 ou 3, dans lequel ladite deuxième partie (451a, 452a) comprend un ressort à lames et comprend ladite extrémité libre et ladite surface de maintien.

5. Dispositif de ligature au moyen d’une bande adhésive selon la revendication 3, dans lequel ladite deuxième partie (451a, 452a) est formée avec une ouverture (461) sur ladite surface de maintien ; et lesdits moyens destinés à maintenir ladite pièce de bande adhésive comprennent des moyens d’aspiration d’air destinés à aspirer de l’air à travers ladite ouverture (461).

6. Dispositif de ligature au moyen d’une bande adhésive selon la revendication 1, comprenant en outre des moyens (470) destinés à séparer ladite paire de bras contre lesdits moyens de ressort (456, 457).

7. Dispositif de ligature au moyen d’une bande adhésive selon la revendication 1, dans lequel chacune desdites surfaces de maintien (451c, 452c) est pourvue d’une ouverture (461) et lesdits moyens destinés à maintenir ladite pièce de bande adhésive comprennent des moyens d’aspiration d’air destinés à aspirer de l’air à travers ladite ouverture (461).

8. Dispositif de ligature au moyen d’une bande adhésive selon la revendication 1, dans lequel lesdits moyens de ressort comprennent des ressorts de tension (456, 457) intercalés entre lesdits bras de la paire de bras (451, 452).

9. Dispositif de ligature au moyen d’une bande adhésive selon l’une quelconque des revendications 1 à 8, comprenant en outre une paire de moyens de serrage de faisceau de câbles électriques (411, 412), prévus sur ledit corps de dispositif (300), afin de rassembler une paire de parties mutuellement séparées d’une distance prédéterminée d’une partie dudit faisceau de câbles électriques destinés à être entourés de ladite pièce de bande adhésive dans une section ayant une forme globalement circulaire, de manière à serrer ladite paire de parties, respectivement.

10. Dispositif de ligature au moyen d’une bande adhésive selon la revendication 1, comprenant en outre des moyens de coupe de bande adhésive (150) destinés à couper une bande adhésive déroulée d’un rouleau de bande bande adhésive ; et des moyens (140) destinés à maintenir ladite pièce de bande adhésive coupée avec lesdits moyens de coupe de bande adhésive dans un état où elle peut être distribuée auxdites surfaces de maintien (451c, 452c) desdits bras (451, 452).

11. Dispositif de ligature au moyen d’une bande adhésive selon la revendication 10, comprenant en outre des moyens de déplacement de corps de dispositif afin de déplacer ledit corps de dispositif ; dans lequel lesdits moyens de déplacement de corps de dispositif (45) se déplacent entre une position supérieure de ladite pièce de bande adhésive maintenue par lesdits moyens de maintien de ladite pièce de bande adhésive dans ledit état de distribution, et une position au-dessus d’un emplacement dudit faisceau de câbles électriques implantés sur une carte d’implantation de câbles électriques destinés à être liés avec ladite pièce de bande adhésive.

12. Dispositif de ligature au moyen d’une bande adhésive selon la revendication 1, comprenant en outre des moyens (45) pour déplacer ledit corps de dispositif à une position au-dessus d’un emplacement auquel ledit faisceau de câbles électriques implantés sur une carte d’implantation de câbles électriques doit être lié.

13. Procédé de ligature au moyen d’une bande adhésive pour lier un faisceau de câbles électriques au moyen d’une pièce de bande adhésive ayant une surface adhésive d’un côté, comprenant le fait de :

maintenir la pièce de bande adhésive sur des surfaces de maintien respectives (451c, 452c) qui sont prolongées par des extrémités libres (453, 454) d’une paire de bras (451, 452) de manière à ce que la surface adhésive soit
orientée vers le bas ; et
abaisser les extrémités libres (453, 454) des bras (451, 452) sur les deux côtés séparés par une partie supérieure du faisceau de câbles électriques ;
dans lequel l'action d’abaisser les extrémités libres (453, 454) comprend l’étape consistant à couvrir la pièce de bande adhésive autour du faisceau de câbles électriques tout en pressant la pièce de bande adhésive sur le faisceau de câbles électriques par lesdites extrémités libres (453, 454) pendant l’abaissement initial, et à serrer les deux extrémités de la pièce de bande adhésive dans un état où les surfaces adhésives auxdites deux extrémités de la pièce de bande adhésive sont collées l’une à l’autre sous le faisceau de câbles électriques au moyen desdites extrémités libres (453, 454) pendant la poursuite de l’abaissement, de manière à stratifier les surfaces adhésives l’une à l’autre.

14. Procédé de ligature au moyen d’une bande adhésive selon la revendication 13, comprenant en outre le fait de couper une bande adhésive déroulée d’un rouleau de la bande adhésive ; et de distribuer la pièce de bande adhésive obtenue à l’étape de coupe sur les surfaces de maintien des deux bras.