NEW EUROPEAN PATENT SPECIFICATION

HUMAN GROWTH HORMONE AQUEOUS FORMULATION

WÄSSRIGE ARZNEIZUSAMMENSETZUNG, WELCHE DAS MENSCHLICHE WACHSTUMSHORMON ENTHÄLT

COMPOSITION AQUEUSE A BASE D’HORMONE DE CROISSANCE HUMAINE

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

Date of publication of application: 17.05.1995 Bulletin 1995/20

Divisional application: 99107148.1 / 0 955 062

Proprietor: GENENTECH, INC.
South San Francisco
California 94080 (US)

Inventors:
• O’CONNOR, Barbara, H.
 San Carlos, CA 94070 (US)
• OESWEIN, James, Q.
 Moss Beach, CA 94038 (US)

Representative: Nicholls, Kathryn Margaret et al
Mewburn Ellis LLP
York House
23 Kingsway
London WC2B 6HP (GB)

References cited:
EP-A- 0 131 864
EP-A- 0 303 746
WO-A-91/18621
US-A- 4 783 441
EP-A- 0 211 601
WO-A-89/09614
US-A- 4 637 834
EP 0 652 766 B2

Description

Field of the Invention

[0001] The present invention is directed to pharmaceutical formulations containing human growth hormone (hGH). More particularly, this invention relates to such pharmaceutical formulations having increased stability in aqueous formulation.

Background of the Invention

[0002] Human growth hormone formulations known in the art are all lyophilized preparations requiring reconstitution. Per vial, Protropin® hGH consists of 5 mg hGH, 40 mg mannitol, 0.1 mg monobasic sodium phosphate, 1.6 mg dibasic sodium phosphate, reconstituted to pH 7.8 (Physician’s Desk Reference, Medical Economics Co., Orawell, NJ, p. 1049, 1992). Per vial, Humatrope® hGH consists of 5 mg hGH, 25 mg mannitol, 5 mg glycine, 1.13 mg dibasic sodium phosphate, reconstituted to pH 7.5 (Physician’s Desk Reference, p. 1266, 1992).

[0004] U.S. 4,297,344 discloses stabilization of coagulation factors II and VIII, antithrombin III, and plasminogen against heat by adding selected amino acids such as glycine, alanine, hydroxyproline, glutamine, and aminobutyric acid, and a carbohydrate such as a monosaccharide, an oligosaccharide, or a sugar alcohol.

[0005] U.S. 4,783,441 discloses a method for the prevention of denaturation of proteins such as insulin in aqueous solution at interfaces by the addition of up to 500 ppm surface-active substances comprising a chain of alternating, weakly hydrophilic and weakly hydrophobic zones at pH 6.8-8.0.

[0008] European Patent Application Publication No. 0 211 601 discloses the stabilization of growth promoting hormones in a gel matrix formed by a block copolymer containing polyoxyethylene-polyoxypropylene units and having an average molecular weight of about 1,100 to about 40,000.

[0011] WO89/09614 discloses a formulation of hGH for lyophilization containing glycine, mannitol, a non-ionic surfactant, and a buffer. The instant invention provides an unexpectedly stabilized aqueous formulation in the absence of glycine.

[0012] hGH undergoes several degradative pathways, especially deamidation, aggregation, clipping of the peptide backbone, and oxidation of methionine residues. Many of these reactions can be slowed significantly by removal of water from the protein. However, the development of an aqueous formulation for hGH has the advantages of eliminating reconstitution errors, thereby increasing dosing accuracy, as well as simplifying the use of the product clinically, thereby increasing patient compliance. Thus, it is an objective of this invention to provide an aqueous hGH formulation which provides acceptable control of degradation products, is stable to vigorous agitation (which induces aggregation), and is resistant to microbial contamination (which allows multiple use packaging).

Summary of the Invention

[0013] The present invention provides stable aqueous liquid pharmaceutical formulations of human growth hormone for storage for 6-18 months at 2-8°C. This can be provided by a stable aqueous liquid pharmaceutical formulation for storage for 6-18 months at 2-8°C comprising 5 mg/ml hGH, 8.8 mg/ml sodium chloride, 2.0 mg/ml polysorbate 20, 2.5 mg/ml sodium citrate and 2.5 mg/ml phenol at pH 6.0.

Description of the Figures

[0014] Figure 1 is a size exclusion chromatogram of aqueous growth hormone formulation stored for 28 days at 40°C (i.e.,
thermally stressed) ant for one year at 5°C (i.e., recommended conditions for storage).

Figure 2 is a plot of Arrhenius rate analysis of growth hormone aggregation in aqueous formulation.

Figure 3 is an anion exchange chromatogram comparing a thermally stressed (40°C) aqueous formulation hGH sample with an aqueous formulation hGH sample stored under recommended conditions (2-8°C) for one year.

Figure 4 is a plot of Arrhenius rate analysis of hGH deamidation in aqueous formulation.

Figure 5 is a graph of the percentage monomer present in the various formulations where mannitol has been substituted with a neutral salt.

Detailed Description of the Invention

A. Definitions

[0015] The following terms are intended to have the indicated meanings denoted below as used in the specification and claims.

[0016] The terms "human growth hormone" or "hGH" denote human growth hormone produced by methods including natural source extraction and purification, and by recombinant cell culture systems. Its sequence and characteristics are set forth, for example, in Hormone Drugs, Gueriguian et al., U.S.P. Convention, Rockville, MD (1982). The terms likewise cover biologically active human growth hormone equivalents, e.g., differing in one or more amino acid(s) in the overall sequence. Furthermore, the terms used in this application are intended to cover substitution, deletion and insertion amino acid variants of hGH, or posttranslational modifications. Two species of note are the 191 amino acid native species (somatropin) and the 192 amino acid N-terminal methionine (met) species (somatrem) commonly obtained recombinantly.

[0017] The term "pharmaceutically effective amount" of hGH refers to that amount that provides therapeutic effect in an administration regimen.

B. General Methods

[0018] The instant invention has no requirement for glycine. Glycine is an optional component of the aqueous formulation, although with less advantage in the aqueous formulations hereof compared with those formulations that are lyophilized for later reconstitution. Amounts of glycine will range from 0 mg/ml to about 7 mg/ml.

[0019] The formulations comprise 2.0 mg/ml polysorbate 20, a non-ionic surfactant. The use of non-ionic surfactants permits the formulation to be exposed to shear and surface stresses without causing denaturation of the protein. For example, such surfactant-containing formulations are employed in aerosol devices such as those used in pulmonary dosing and needleless jet injector guns.

[0020] The formulations comprise a 2.5 mg/ml sodium citrate buffer.

[0021] Phenol is included as a preservative in the formulation to retard microbial growth and thereby allow "multiple use" packaging of the hGH, at 2.5 mg/ml.

[0022] A suitable pH, adjusted with buffer, for aqueous hGH formulation is 6.0. Preferably, a buffer concentration range is chosen to minimize deamidation, aggregation, and precipitation of hGH.

[0023] Mannitol may optionally be included in the aqueous hGH formulation. The preferred amount of mannitol is about 5 mg/ml to about 50 mg/ml. As an alternative to mannitol, other sugars or sugar alcohols are used, such as lactose, trehalose, stachiose, sorbitol, xylitol, ribitol, myo-inositol, galactitol, and the like.

[0024] The formulations comprise 8.8 mg/ml sodium chloride as a neutral salt. The salt concentration is adjusted to near isotonicity, depending on the other ingredients present in the formulation.

[0025] The formulation of the subject invention comprises the following components at pH 6.0.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hGH</td>
<td>5</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>8.8</td>
</tr>
<tr>
<td>Polysorbate 20</td>
<td>2.0</td>
</tr>
<tr>
<td>Sodium citrates</td>
<td>2.5</td>
</tr>
<tr>
<td>Phenol</td>
<td>2.5</td>
</tr>
<tr>
<td>Sterile water</td>
<td>1 ml</td>
</tr>
</tbody>
</table>
In addition, more than one buffering agent, preservative, sugar, neutral salt, or non-ionic surfactant may be used. Preferably, the formulation is isotonic and sterile.

In general, the formulations of the subject invention may contain other components in amounts not detracting from the preparation of stable forms and in amounts suitable for effective, safe pharmaceutical administration. For example, other pharmaceutically acceptable excipients well known to those skilled in the art may form a part of the subject compositions. These include, for example, various bulking agents, additional buffering agents, chelating agents, antioxidants, cosolvents and the like; specific examples of these could include trimethylamine salts ("Tris buffer"), and disodium edetate.

EXPERIMENTAL EXAMPLES

A. Assay Methods

Anion exchange chromatography (HPIEC) was run on a TSK DEAE 5PW column (1.0 X 7.5 cm) at 45°C with a flow rate of 0.5 ml/min. The column was equilibrated in 50 mM potassium phosphate, pH 5.5, containing 10% (w/v) acetonitrile. Elution was performed using a 25 minute gradient from 50-100 mM potassium phosphate, pH 5.5 with constant 10% (w/v) acetonitrile. The column load was 83 μg of protein. Detection was at 230 nM.

Nondenaturing size exclusion chromatography was run on a TSK 2000 SWXL column in 50 mM sodium phosphate, pH 7.2 containing 150 mM sodium chloride. The flow rate was 1 ml/min, with a 50-75 μg column load and detection at either 214 and 280 nm.

Denaturing size exclusion chromatography was run on a Zorbax GF250 column in 200 mM sodium phosphate, pH 6.8-7.2/0.1% SDS. The flow rate was 1.0 ml/minute, with a 50-75 μg column load and detection at either 214 and 280 nm.

B. Formulation Preparation

In general, aqueous hGH formulation samples for analysis in these experimental examples were prepared by buffer exchange on a gel filtration column. The elution buffer contained either sodium chloride or mannitol, buffer and the non-ionic surfactant in their final ratios. This resulting solution was diluted to a desired hGH concentration and the preservative was added. The solution was sterile filtered using a sterilized membrane filter (0.2 micron pore size or equivalent) and filled into sterile 3 cc type 1 glass vials, stoppered and sealed with aqueous-type butyl rubber stoppers and aluminum flip-off type caps.

The aqueous hGH formulation used in the experimental examples consisted of 5.0 mg somatropin (Genentech, Inc.), 45.0 mg mannitol, 2.5 mg phenol, 2.0 mg polysorbate 20, and 2.5 mg sodium citrate, pH 6.0, per ml of solution. The lyophilized formulation used as a reference for comparison in the examples consisted of 5.0 mg somatropin, 1.7 mg glycine, 45.0 mg mannitol, 1.7 mg sodium phosphate, 9 mg benzyl alcohol per ml sterile solution after reconstitution. The aqueous hGH formulation and the formulations of Table 3 are also provided as references for comparison with the above mentioned aqueous hGH formulations that are the subject of the claims.

C. Example I

Chemical Stability of the Aqueous Formulation

Vials of the hGH aqueous formulation (lots 12738/55-102 and 12738/55-105) were incubated at either recommended storage temperatures of 2-8°C, or elevated storage temperatures of 15°C, or 25°C, and then removed at various time points and assayed for changes in pH, color and appearance, and protein concentration. In addition, samples were incubated at 40°C in order to study degradation patterns under extreme stress conditions. Degradation patterns for the aqueous formulation were also compared to the known degradation patterns for lyophilized growth hormone.

After storage at 2-8°C for up to one year, the aqueous formulation showed insignificant changes in pH, color and appearance, and protein concentration. Nondenaturing size exclusion HPLC performed on samples stored for up to one year at 2-8°C showed no significant aggregation of the drug product (Figure 1). This result is unexpected in light of the teaching of U.S. 5,096,885 that glycine contributes to preventing aggregation in the lyophilized preparation.

At temperatures above 8°C, little or no changes in pH or protein concentration were observed over time. Visual inspection revealed an increase in opalescence with time for samples stored at 40°C. This change was minimal during storage at 15-25°C and has not been observed during 2-8°C storage.

The amount of degradation product was calculated as an area percentage of the total hGH area of the chromatogram. The rate constant for each reaction was then calculated by subtracting the percentage of degradation product from 100%, taking the log_{10}, and plotting against the time in days. The slope of a straight line to fit these data was used...
as the reaction constant (k). Arrhenius analysis was done by plotting the natural logarithm (ln) of the absolute value of each calculated reaction rate constant at 15, 25, and 40°C as a function of the inverse absolute temperature and then extrapolating to 5°C. Arrhenius and real time rate analysis (Figure 2) of data from the size exclusion HPLC indicate that the amount of growth hormone aggregation after 18 months of storage will be less than 1% (w/v).

[0037] Anion exchange HPLC analysis performed on the aqueous hGH formulation stored at 40°C indicated an increase in acidic peaks over 28 days (Figure 3). Three of these peaks, eluting at about 16, 17.5, and 26 minutes, were produced by hGH deamidation at positions 149, 152, and 149 plus 152. Arrhenius and real time rate analysis (Figure 4) of data from this method, were plotted as described above, and indicate that the amount of deamidated hGH in these lots after 18 months of storage at 2-8°C will be about 9% (w/v). This includes an initial amount of about 2.4% (w/v) deamidated hGH at time zero. Values as high as 15% (w/v) deamidation have been reported for other hGH products (Larhammar, H., et al., (1985) Int. J. Pharmaceutics 23:13-23). Although the rate of deamidation is faster in the aqueous state, this rate is minimized at pH 6.0 and below.

D. Example II

Physical Stability of the Aqueous Formulation

[0038] Each of six vials of lyophilized growth hormone were reconstituted with 1 ml bacteriostatic water for injection (BWFI) U.S.P. After dissolving, the contents were transferred to 3 cc vials, stoppered, and capped to provide the same configuration as that for the aqueous formulation. The six vials of the hGH aqueous formulation and six vials of reconstituted lyophilized hGH were vigorously shaken top to bottom in a horizontal fashion on a Glas-Col Shaker-in-the-Round at 240 jolts per minute using a stroke setting of 2.5, giving a horizontal displacement of 8 ± 1 cm for up to 24 hours at room temperature to assess the effects of agitation on physical stability of the hGH aqueous formulation. All twelve samples were placed in a straight line on the shaker to assure that they were all exposed to the same force for each formulation. Two vials were removed for assays at 30 minutes, 6 hours, and 24 hours.

[0039] The results are displayed in Table I. Agitation produced very little change in the visual clarity of the aqueous formulation. There was no change in the content of total growth hormone monomer as detected by a nondenaturing size exclusion HPLC assay. This assay detects noncovalent aggregates, which are completely dispersed by SDS in a denaturing size exclusion HPLC assay.

[0040] By comparison, these results also demonstrated that the reconstituted lyophilized product was more sensitive to treatment, even after only 30 minutes of shaking. This sensitivity is typical for all currently available formulations of hGH, other than the aqueous formulation of the instant invention. The inclusion of the non-ionic surfactant is the most important factor in preventing this phenomenon from occurring.

Table I. Effects of Agitation at Room Temperature on hGH Aqueous Formulation vs. Reconstituted Lyophilized Formulation

<table>
<thead>
<tr>
<th>Sample</th>
<th>Color/Appearance</th>
<th>% HPSEC Monomer</th>
<th>% Soluble Protein</th>
<th>% Total³ Monomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unshaken</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous</td>
<td>clear/colorless</td>
<td>99.7</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Aqueous</td>
<td>clear/colorless</td>
<td>99.9</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Lyophilized</td>
<td>clear/colorless</td>
<td>99.0</td>
<td>100</td>
<td>99.0</td>
</tr>
<tr>
<td>Lyophilized</td>
<td>clear/colorless</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Shaken 0.5 hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous</td>
<td>very slightly opalescent/colorless</td>
<td>99.9</td>
<td>100</td>
<td>99.9</td>
</tr>
<tr>
<td>Aqueous</td>
<td>very slightly opalescent/colorless</td>
<td>100.0</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Lyophilized</td>
<td>slightly opalescent/colorless</td>
<td>93.6</td>
<td>100</td>
<td>93.6</td>
</tr>
<tr>
<td>Lyophilized</td>
<td>clear/colorless</td>
<td>92.8</td>
<td>100</td>
<td>92.8</td>
</tr>
</tbody>
</table>
Preservative Effectiveness in the Aqueous Formulation

[0041] Samples of hGH aqueous formulation were subjected to bacterial challenge according to an abbreviated challenge using the standard U.S.P. test. In this test, a suspension of either *E. coli* or *S. aureus* was added to an aliquot of hGH aqueous formulation to give a final concentration of bacteria between 10^5 to 10^6 CFU/ml. Viable bacteria remaining in the tubes were counted immediately and after 4 and 24 hours incubation at 20-25°C. The percentage change in the concentration of the microorganisms during the challenge was calculated according to the following equation:

\[
\text{% initial titer} = \frac{\text{titer at T=X hours} \times 100}{\text{titer at T=0}}
\]

[0042] The results of this experiment indicated that for two species of bacteria, concentrations of viable bacteria were reduced to less than 0.01% of the initial concentrations after 24 hours.

F. Example IV

Substitution of Mannitol with Salt

[0043] In this experiment aqueous formulations of hGH were compared that varied in concentrations of salt, mannitol, and non-ionic surfactant. All formulations contained 5 mg/ml hGH/0.25%(w/v) phenol/10 mM sodium citrate, pH 6.0. Samples were stored 3-4 months at 2-8°C. Figure 5 indicates the percentage monomer present in the indicated formulations. The Table below indicates the composition of each formulation. These results demonstrate the unexpected stability of hGH in a formulation in which mannitol has been substituted with a neutral salt in the presence of a surfactant.
1. A stable aqueous liquid pharmaceutical formulation for storage for 6-18 months at 2-8°C, comprising 5 mg/ml hGH, 8.8 mg/ml sodium chloride, 2.0 mg/ml polysorbate 20, 2.5 mg/ml sodium citrate and 2.5 mg/ml phenol at pH 6.0.

Patentansprüche

1. Stabile, wässrige, flüssige, pharmazeutische Formulierung zur Lagerung für 6 bis 18 Monate bei 2-8 °C, umfassend 5 mg/ml hGH, 8,8 mg/ml Natriumchlorid, 2,0 mg/ml Polysorbat 20, 2,5 mg/ml Natriumcitrat und 2,5 mg/ml Phenol mit einem pH von 6,0.

Revendications

1. Formulation pharmaceutique liquide aqueuse stable, pour un stockage pendant une durée de 6 à 18 mois à une température de 2 à 8°C, comprenant 5 mg/ml de hGH, 8,8 mg/ml de chlorure de sodium, 2,0 mg/ml de polysorbate 20, 2,5 mg/ml de citrate de sodium et 2,5 mg/ml de phénol, à pH 6,0.

Table 3

Formulations Tested in Figure 5

<table>
<thead>
<tr>
<th>Formulation #</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>0.1%(w/v) polysorbate 20 50 mM mannitol</td>
</tr>
<tr>
<td>47</td>
<td>0.1%(w/v) poloxamer /188 0.1 M NaCl</td>
</tr>
<tr>
<td>51</td>
<td>0.5%(w/v) polysorbate 20 50 mM mannitol</td>
</tr>
<tr>
<td>52</td>
<td>0.1%(w/v) poloxamer 188 50 mM mannitol</td>
</tr>
<tr>
<td>53</td>
<td>0.1%(w/v) poloxamer 184 50 mM mannitol</td>
</tr>
<tr>
<td>60</td>
<td>0.2%(w/v) polysorbate 20 0.1 M NaCl</td>
</tr>
<tr>
<td>61</td>
<td>0.2%(w/v) polysorbate 20 0.05 M NaCl</td>
</tr>
<tr>
<td>62</td>
<td>0.2%(w/v) polysorbate 20 0.15 M NaCl</td>
</tr>
<tr>
<td>63</td>
<td>0.2%(w/v) polysorbate 20 50 mM mannitol</td>
</tr>
</tbody>
</table>
\[\ln k = 27.68 - \frac{11456}{T}; \quad R = 0.9895 \]

\[E_a = 23 \text{ kcal/mole} \]

Real time rate thru 12 mo.

\((-0.4\% \text{ aggregation at 18 mo.})\)

Arrhenius extrapolation

\((-0.3\% \text{ aggregation at 18 mo.})\)
\[
\ln k = 32.92 - 11894/T; \quad R = 0.9998
\]

\[
E_a = 24 \text{ kcal/mole}
\]

Arhenius extrapolation

Real time rate thru 12 mo.
(-8.5% deamination at 18 mo.)

1/°K

5°C

0.0031
0.0032
0.0033
0.0034
0.0035
0.0036
0.0037

-10
-9
-8
-7
-6
-5
-4
\[\ln k\]

FIG. 4
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4297344 A [0004]
- US 4783441 A [0005]
- US 4812557 A [0006]
- EP 0211601 A [0008]

- EP 0193917 A [0009]
- AU 3077189 A [0010]
- US 5096885 A [0034]

Non-patent literature cited in the description

- Physician’s Desk Reference. Medical Economics Co, 1992, 1049 [0002]
- (Physician’s Desk Reference, 1992, 1266 [0002]