<table>
<thead>
<tr>
<th>(45) Date of publication and mention of the grant of the patent: 31.07.2002 Bulletin 2002/31</th>
<th>(51) Int Cl.7: H04B 10/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>(21) Application number: 94913787.1</td>
<td>(86) International application number: PCT/JP94/00653</td>
</tr>
</tbody>
</table>

METHOD AND APPARATUS FOR RECEIVING MONITORING SIGNAL

VERFAHREN UND EINRICHTUNG ZUM EMPFANGEN VON ÜBERWACHUNGSSIGNALEN

PROCEDE ET APPAREIL PERMETTANT DE RECEVOIR UN SIGNAL DE CONTROLE

| (84) Designated Contracting States: **FR GB** | • **AKIBA, Shigeyuki 26-6, Nishiohizumi 1-chome Tokyo 178 (JP)**
| (43) Date of publication of application: **10.05.1995 Bulletin 1995/19** | (74) Representative: **Exell, Jonathan Mark et al**
| (73) Proprietor: **KOKUSAI DENSIN DENWA KABUSHIKI KAISHA**
Shinjuku-ku Tokyo-to (JP) | **Elkington & Fife**
Prospect House
8 Pembroke Road
Sevenoaks, Kent TN13 1XR (GB) |
| (72) Inventors: • **HORIUCHI, Yukio 10-2-111, Kurihara 4-chome Saitama-ken 352 (JP)**
JP-A- 55 107 530
JP-A- 59 225 636
JP-A- 63 072 228
| | • **IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, June 1985, CHICAGO, US pages 11 - 14 BROOKS ET AL 'British Telecom 565 Mbit/s lightline system’** |

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

TECHNICAL FIELD

[0001] The present invention relates to a method and apparatus for receiving a repeater supervisory signal which is transmitted while being superimposed on a main optical signal in an optical amplifier repeater system.

BACKGROUND OF THE INVENTION

[0002] To transmit an optical repeater supervisory signal in an optical amplifier repeater system to the end office side, there have been proposed the following systems which superimpose the supervisory signal on the main optical signal to such an extent as not to affect the main signal.

(1) System which superimposes the supervisory signal on the envelope of the main optical signal with a low modulation depth. (For example, Japanese Pat. Laid-Open No. 119328/90, "Optical Repeater Supervisory Control System")

(2) System which superimposes the supervisory signal on the main optical signal, using an optical signal of a wavelength different from that of the main optical signal.

[0003] The repeater supervisory signal is superimposed on the main optical signal and the both signals are received simultaneously; when the supervisory signal is received at the end office, the main signal is also received. Consequently, the signal spectrum of the supervisory signal after photoelectric conversion overlaps the power spectrum of the main signal, and since the supervisory signal is superimposed on the main signal at such an extremely low level as not to exert any influence on the main signal, the main signal component becomes noise when the supervisory signal is received; hence, it is difficult to receive the supervisory signal with sufficient signal power vs. noise power ratio (SNR).

[0004] The inventors of this application has proposed a solution to this problem in Japanese Pat. Appln. No. 337902/92, entitled "Supervisory Signal Receiving Method and Apparatus." However, the method and apparatus proposed in the prior application are defective in that the function of keeping the main signal component at minimum at all times is somewhat poor.

[0005] The document WO 92/11710 in the name of British Telecomunications plc discloses an optical communication system in which low-level PRBS (pseudo-random binary sequence) are pulses superimposed over system data. A correlator including a code shift and stepping control, a digitally-stabilised analogue integrator and dump circuit, a PRBS generator and an analogue multiplexer circuit produces an identical PRBS to that superimposed but shifted in time which is used in combination with an incoming signal allowing the PRBS signal to be located, separated from the system data and for level and time delay of reflecting and backscatter from the PRBS signal to be determined without knowledge of the form of the system data.

[0006] An object of the present invention is to provide a supervisory signal receiving method and apparatus which ensure stable and reliable supervision of repeaters by receiving the repeater supervisory signal with a higher SN ratio in the optical amplifier repeater system.

DISCLOSURE OF THE INVENTION

[0007] According to one aspect of the present invention, there is provided a supervisory signal receiving method for a repeater supervisory signal transmitting system, in which a repeater supervisory signal of an optical amplifying repeating system is superimposed on a main optical signal and transmitted to an end office, said method comprising:

- converting the main optical signal by a photodetector into an electric signal, and branching the electric signal into a first signal path and a second signal path;
- performing equalizing amplification, timing extraction and discriminating regeneration of a main signal included in the signal branched to the second signal path;
- performing equalization processing, delay amount adjustment and amplitude adjustment in both the first signal path and the second signal path in order to achieve matching in waveform, phase position and amplitude between the non-regenerated main signal in the first signal path and the regenerated main signal in the second path;
- differentially combining or simply combining output signals from the first signal path and the second signal path;
- obtaining a correlation coefficient between a signal of the second signal path, subjected to said equalization processing and said delay amount adjustment, and a signal of the second signal path, subjected to said differentially combining or simply combining; and
- controlling said amplitude adjustment in the second signal path in accordance with the polarity and intensity of said correlation coefficient to minimize the components of said main signal in the differentially or simply combined output, thereby extracting said supervisory signal.

The received repeater supervisory signal, superimposed on or combined by wavelength multiplexing with the main optical signal of the optical amplifier repeater system, is subjected to a photoelectric conversion and then branched into two electric signals, one of which is subjected to equalizing amplification, timing extraction

and discrimination and regeneration to extract only the main signal component. The extracted main signal component and the main signal contained in the other electric signal which is not discriminated nor regenerated are respectively subjected to required equalization, delay adjustment and amplitude adjustment so that their waveforms, phases and amplitudes match with each other. In addition, the amplitude adjustment of the main signal is automatically controlled. By differentially combining these signals to remove only the main signal component in a manner to minimize its residual value, the supervisory signal is extracted.

According to another aspect of the present invention there is provided a supervisory signal receiving apparatus, comprising:

- a photodetector circuit for receiving an optical signal having a supervisory signal superimposed on a main signal and for converting said optical signal to an electric signal;
- an electric signal brancher for branching said electric signal into a first branch signal in a first signal path and a second branch signal in a second signal path;
- an equalizing amplifier, a timing extraction circuit and a discriminating and regenerating circuit of a main signal included in said second branch signal, which are connected in said second signal path to regenerate a main signal; filters, phase shifters and attenuators employed in both the first signal path and the second signal path in order to achieve matching in waveform, phase position and amplitude between non-regenerated main signal in the first signal path and the regenerated main signal in the second signal path;
- a combiner for differentially or simply combining output signals from the first signal path and the second signal path;
- a multiplier for obtaining a correlation coefficient between a signal of the second signal path, subjected to equalization processing by said equalizing amplifier and delay amount adjustment by said phase shifter, and a signal of the second signal path, subjected to said differentially combining or simply combining by said combiner;
- a control circuit connected to said multiplier and said attenuator of said second path for performing said amplitude adjustment in the second signal path in accordance with the polarity and intensity of said correlation coefficient to minimize the components of said main signal in the differentially or simply combined output; and
- a filter connected to an output of said combiner for thereby extracting said supervisory signal.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Fig. 1 is a block diagram of the supervisory signal receiving apparatus according to a first embodiment of the present invention;
Fig. 2 is a timing chart showing variations of signals at respective parts of the supervisory signal receiving apparatus of the present invention which are caused by intensity variations of the optical input signal thereinto;
Fig. 3 is a block diagram of the supervisory signal receiving apparatus according to a second embodiment of the present invention;
Fig. 4 is a graph showing measured results of improvement of the noise level caused by the main signal component in the supervisory signal receiving apparatus of the present invention;
Fig. 5 is a block diagram showing a conventional repeater supervisory signal transmitting method by which the supervisory signal is superimposed on the envelope of the main optical signal with a low degree of modulation and transmitted to a communication end office; and
Fig. 6 is a block diagram of a conventional supervisory signal receiving apparatus.

DETAILED DESCRIPTION OF THE BACKGROUND

[0011] To facilitate a better understanding of the present invention, a description will be given first of the background art.

[0012] With the afore-mentioned conventional systems, it is unavoidable that the supervisory signal component after photo-electric conversion in the end office overlaps the main signal component. Since the both conventional supervisory signal receiving apparatus are exactly identical in construction, a description will be given of the system (1) alone.

[0013] Fig. 5 is a block diagram showing the repeater supervisory signal transmission of the system (1), including a repeater and an end office. Fig. 6 is a block diagram of a supervisory signal receiving device for use in an optical receiver 4.

[0014] In Fig. 5, reference character R denotes an optical repeater, 1 an optical amplifier, 2 a modulator for converting repeater supervisory data into a modulated signal which can be superimposed on the main optical signal passing through the optical amplifier 1, 3 an optical fiber which is a transmission medium for the optical signal, 4 an optical receiver for receiving the main signal and the supervisory signal, and 5 a detector which detects the supervisory signal resulting from photoelectric conversion in the optical receiver 4. The repeater super-
visory data, which includes respective operation parameters in the repeater R, is converted by the modulator 2 to an amplitude-modulated or similar modulated signal. This modulated signal is used to control the amplification gain of the amplifier 1, by which the modulated signal is superimposed on the envelope of the main optical signal. In Fig. 5, the main optical signal Lin input into the repeater R is amplified by the amplifier 1, while at the same time the modulated signal containing the repeater supervisory data is superimposed on the envelope of the main optical signal; thus, the optical amplifier 1 outputs a main optical signal Lout.

[0015] The gain control of the optical amplifier 1 can be effected by a known method; for example, in the case of an optical amplifier using an Er-doped optical fiber, which is now regarded as a promising optical amplifier, the output power or drive current of its exciting light source is controlled. Since the optical amplifier using the Er-doped optical fiber inhibits the passage therethrough of a modulated signal of a frequency below several kHz owing to its frequency response characteristic, the repeater supervisory data cannot directly be superimposed on the envelope of the main optical signal. It is therefore necessary to transmit the repeater supervisory data after conversion into a modulated signal of a carrier frequency which is allowed to pass through the optical amplifier. In Fig. 5, no “behavior” of the carrier is shown in the interests of clarify and better understanding of the description. Furthermore, it is important that the degree of modulation with which the supervisory data is superimposed on the envelope of the main optical signal be so low as not to affect the transmission characteristic of the main optical signal.

[0016] The main optical signal Lout transmitted over the optical fiber 3 and received by the optical receiver 4 of the end office is subjected to a photoelectric conversion and then branched into two electric signals, the one of which is applied as a supervisory signal SVout to and band limited by a band-pass filter of a frequency component or a timing signal of the main signal deteriorated in waveform during transmission over the transmission line such as the repeater R and the optical fiber 3.

[0017] The function of the optical receiver 4 will be described in more detail. In Fig. 6, reference numeral 6 denotes a photodetector for converting an optical signal to an electric signal, 7 a first-stage amplifier for amplifying the electric signal output from the photodetector 6, 8 an electric signal brancher for branching the output from the first-stage amplifier 7 into two electric signals, and 9 a band-pass filter for extracting the supervisory signal. This construction is the same as that for the demodulation of the above-mentioned repeater supervisory data. In the main signal regenerating system, reference numeral 10 denotes an equalizing amplifier which amplifies one of the electric signals branched by the electric signal brancher 8 and shapes the waveform of the main signal, 11 a timing extracting circuit for extracting the pulse repetition frequency component or a timing signal of the main signal, and 12 a discriminating and regenerating circuit which determines whether the main signal waveform-shaped by the equalizing amplifier 10 is a “1” or “0” and regenerates the main signal. Thus, the main signal is waveform shaped by the equalizing amplifier 10 and branched into two electric signals, the one of which is provided to the timing extracting circuit 11 to extract the pulse repetition frequency component or timing signal (a clock signal). The other electric signal is fed to the discriminating and regenerating circuit 12, wherein it is determined whether the signal is a “1” or “0” on the basis of the above-mentioned timing signal and a predetermined threshold value, thereby regenerating the main signal deteriorated in waveform during transmission over the transmission line such as the repeater R and the optical fiber 3.

[0018] Fig. 1 illustrates in block form the supervisory signal receiving apparatus according to a first embodiment of the present invention. The parts corresponding to those in the prior art example of Fig. 6 are identified by the same reference numerals. In Fig. 1, reference numeral 6 denotes a photodetector for converting an optical signal to an electric signal, 7 a first-stage amplifier for amplifying the electric signal output from the photodetector 6, 8 an electric signal brancher for branching the output from the first-stage amplifier 7 into two electric signals, and 9 a band-pass filter for extracting the supervisory signal. Reference numeral 10 denotes an equalizing amplifier which amplifies one of the electric signals branched by the electric signal brancher 8 and waveform shapes the main signal, 11 a timing extracting circuit which extracts the pulse repetition frequency component or a timing signal of the main signal, 12 a discriminating and regenerating circuit which is formed by a flip-flop for determining whether the main signal waveform-shaped by the equalizing amplifier 10 is a “1” or “0” and for regenerating the main signal by the timing signal from the timing signal extracting circuit 11, 13 a low-pass filter which equalizes the frequency component of the main signal for its waveform shaping, 14 a phase shifter for adjusting the phase of the main signal component, 15 an attenuator for adjusting the amplitude of the main signal component, 16 a low-pass filter which equalizes the frequency component of a regenerated signal from the discriminating and regenerating circuit 12 to its waveform shaping, 18 an attenuator for adjusting the amplitude of the regenerated signal, 19 a differential combiner for combining the outputs from the attenuators 15 and 18, 20 a multiplier for multiplying the outputs from the phase shifter 17 and the differential combiner 19, 21 an integrator which integrates the output from the multiplier 20 to obtain a gain and determine a time constant, and 22 a control circuit which controls
the attenuation of the attenuator 18 in accordance with
the polarity and intensity of the output signal from the
integrator 21.

[0019] The main optical signal with the repeater supervisory signal superimposed thereon is converted by the photodetector 6 into an electric signal, which is amplified by the first-stage amplifier 7 and then branched by the electric signal brancher 8 into a supervisory signal output and a main signal output. In the equalizing amplifier 10 the main signal waveform-distorted in the optical amplifier repeater system is amplified and waveform shaped; in the timing extracting circuit 11 a timing signal of the main signal is extracted; in the discriminating and regenerating circuit 12, it is determined whether the waveform-shaped main signal is a "1" or "0" and it is regenerated as a new digital signal on the basis of the timing signal. This regenerated signal is provided for a communication service. The discriminating and regenerating circuit 12 usually has two output terminals for the regenerated signal and its inverted version. This embodiment uses the non-inverted regenerated signal.

[0020] To remove the main signal component from the supervisory signal output, the regenerated signal with no supervisory signal component and the other branched electric signal containing the supervisory signal component are differentially combined after having their main signal components made identical in waveform, phase and amplitude with each other, by which the main signal contained in the non-regenerated signal is cancelled. In this way, the main signal component can easily be removed from the supervisory signal output. In this instance, the regenerated signal output needs to be identical in the polarity of waveform with the non-regenerated signal.

[0021] The non-regenerated signal containing the supervisory signal component is waveform shaped by the low-pass filter 13 and fed to the differential combiner 19 via the phase shifter 14 and the attenuator 15. The regenerated signal with no supervisory signal component, which is a regenerated signal from the discriminating and regenerating circuit 12, is waveform shaped by the low-pass filter 16 and then fed to the differential combiner 19 via the phase shifter 17 and the attenuator 18. Since these two signals have been adjusted to be identical in their waveform, phase and amplitude, they are differentially combined by the differential combiner 19 to cause their main signal components to cancel each other out, outputting the supervisory signal alone.

[0022] Fig. 2 shows variations of signals at respective parts of the supervisory signal receiving apparatus of the present invention which are caused by intensity variations of the optical signal input thereinto. When the intensity of the input optical signal changes, the electric intensity of the non-regenerated signal changes as shown in Fig. 2A with the intensity of the input optical signal. On the other hand, since the intensity of the output signal from the discriminating and regenerating circuit is constant (Fig. 2B), if the attenuation value of the attenuator 18 is fixed, the amplitudes of the two signals cannot be matched to each other, with the result that the main signal component is not removed from the supervisory signal component but is output as shown in Fig. 2C, degrading the SN ratio at the time of receiving the supervisory signal. To avoid this, the output from the phase shifter 17 of a fixed amplitude (Fig. 2D) and the output from the differential combiner 19 (Fig. 2C) are multiplied in the multiplier 20 to obtain a correlation coefficient (Fig. 2E), which is integrated by the integrator 21 to control the integration gain and the time constant; by this, it is possible to obtain the correlation between the removed output signal and the main signal component and detect how much the main signal component remains unremoved in the removed output signal. Moreover, since the polarity and intensity of this correlation coefficient are represented as an amplitude ratio between the two signals which are applied to the differential combiner 19, this signal is used to control the attenuator 18 via the control circuit 22 to form a feedback loop, which is operated to minimize the main signal component, i.e. the correlation coefficient, at the output of the differential combiner 19, automatically matching the amplitudes of the two signals input thereinto. Thus, the SN ratio of the supervisory signal can be held excellent.

[0023] In the adjustment of the phase shifters 14 and 17, the main optical signal with no supervisory signal superimposed thereon is input into the photodetector 6, then the signal waveforms of the main signal components of the regenerated and non-regenerated signals are provided to an oscilloscope or like waveform observation device at the output point of the differential combiner 19, and the phase shifters 14 and 17 are roughly adjusted or controlled so that the both signal waveforms become substantially identical in phase and in amplitude. Furthermore, the both signals are applied again to the differential combiner 19 and the phase shifters 14 and 17 are finely adjusted or controlled to minimize the power on a power meter or similar power observation device connected to the output of the band-pass filter 9. This minimizes the main signal component output and hence improves the SN ratio up to a maximum. Furthermore, the phase shifter of the signal system of the phase-lagging one of the both signals and the attenuator of the signal system of the smaller-amplitude signal can be adjusted or controlled by only the adjustment or control function of the other system; hence, even if they are omitted, the function of the system will not be impaired. Once the above-mentioned adjustment is effected, no further adjustment is needed, and consequently, it is also possible to use cables of the same phase shift amount in the phase adjustment and fixed attenuators in the amplitude adjustment.

[0024] Fig. 3 illustrates in block form the supervisory signal receiving apparatus according to a second embodiment of the present invention. The parts corresponding to those in Embodiment 1 are identified by the
same reference numerals. This embodiment differs from Embodiment 1 in that the terminal at which the inverted version of the regenerated signal from the discriminating and regenerating circuit 12 is output is connected to the low-pass filter 16 and in that the differential combiner 19 is replaced with a combiner 23. Embodiment 2 is identical in its principles of operation with Embodiment 1, but the combiner 23 in Embodiment 2 does not need to use an active element, and hence is simple-structured and more reliable and more economical than the differential combiner 19 which needs to employ an active element. Accordingly, in this embodiment, the signal waveform of the output from the discriminating and regenerating circuit 12 is inverted unlike in Embodiment 1, that is, opposite in polarity to the non-regenerated signal. Since the discriminating and regenerating circuit 12 is formed by a flip-flop, the above-mentioned inverted signal can easily be obtained. Since the signal waveform of the regenerated output and the signal waveform of the non-regenerated output are already inverted relative to each other, the main signal component can be removed from the supervisory signal component by combining the signals by the combiner 23, not by the differential combiner 19. Incidentally, the constructions and methods for adjustments of the low-pass filters 13 and 16, the phase shifters 14 and 17 and the attenuators 15 and 18 are the same as those in Embodiment 1. Since the outputs from the multiplier 20 and the integrator 21 are inverted in polarity because of the inversion of the regenerated signal output, it is necessary to correct the inverted polarities of the outputs from the multiplier 20 and the integrator 21 by the control circuit 22.

[0025] The prior art examples and Embodiments 1 and 2 have been described with respect to the method for receiving the supervisory signal superimposed on the envelope of the main optical signal, but in the supervisory system for the optical amplifier repeater system using optical amplifiers, it is now contemplated to employ a method which transmits the supervisory signal through wavelength multiplexing by use of a signal of a wavelength different from that of the main optical signal as in the conventional system (2). Also in this case, the supervisory signal and the main optical signal are received at the same time; hence the supervisory signal receiving apparatus according to Embodiments 1 and 2 can be used.

[0026] While Embodiments 1 and 2 employ the low-pass filters 13 and 16 for shaping the afore-mentioned two signal waveforms, they are effective when the supervisory signal to be received needs to be high in frequency and wide in band; when the signal band of the supervisory signal is narrow, the use of a band-pass filter which permits the passage therethrough of only its frequency component allows ease in adjustment and permits efficient removal of the main signal component from the supervisory signal.

[0027] According to the present invention, the received optical signal is subjected to the photoelectric conversion and then branched into two electric signals, the one of which is subjected to equalizing amplification, timing extraction and discrimination and regeneration to thereby extract the main signal component, and to make identical the waveforms, phases and amplitudes of the above-said extracted main signal component and the main signal contained in the other electric signal which is not regenerated, required equalization, delay adjustment and amplitude adjustment are conducted in the respective signal paths, and the both signals are differentially combined to remove the main signal component alone, thereby extracting the supervisory signal desired to obtain.

[0028] Fig. 4 shows measured results of the noise level caused by the main signal component in the supervisory signal receiving apparatus according to the present invention. The supervisory signal receiving apparatus used is that of the embodiment of Fig. 3. The main signal components according to a conventional apparatus and this invention apparatus were measured for comparison, by using a 23-stage pseudo-random signal of a 5 Gbps transmission rate as the main signal component. The illustrated characteristics were obtained by observing the outputs of the combiner 23 with a spectrum analyzer and measuring the power intensities of the both main signal components. The measured waveform 1 shows a noise output by the conventional receiving apparatus and the measured waveform 2 a noise output by the receiving apparatus of the present invention. To obtain the same condition of a level diagram, the apparatus of the present invention was such as shown in Fig. 3 and the conventional apparatus was held in the state of cutting off the regenerated signal by setting the attenuation of the attenuator 18 in Fig. 3 to infinity. When the carrier frequency of the supervisory signal is in a 2 MHz band, the SN ratio by the receiving apparatus of the present invention is improved about 17 dB (50 times) as compared with the SN ratio by the conventional apparatus. This clearly indicates the effectiveness of the present invention.

INDUSTRIAL APPlicABILITY

[0029] As described above, the supervisory signal receiving method and apparatus of the present invention removes the main signal component, which can be a noise component, from the low-level supervisory signal and enables permits the supervisory signal to be received with a high SN ratio, and hence permits implementation of a stable and reliable supervising feature.

[0030] Thus, the supervisory signal receiving method and apparatus of the present invention is widely applicable as means for receiving a repeater supervisory signal of an optical communication system which is superimposed on the main signal for transmission; hence, the invention is of great utility in practical use.
Claims

1. A supervisory signal receiving method for a repeater supervisory signal transmitting system, in which a repeater supervisory signal of an optical amplifying repeating system is superimposed on a main optical signal and transmitted to an end office, said method comprising:

- converting the main optical signal by a photodetector into an electric signal, and branching the electric signal into a first signal path and a second signal path;
- performing equalizing amplification, timing extraction and discriminating regeneration of a main signal included in the signal branched to the second signal path;
- performing equalization processing, delay amount adjustment and amplitude adjustment in both the first signal path and the second signal path in order to achieve matching in waveform, phase position and amplitude between the non-regenerated main signal in the first signal path and the regenerated main signal in the second signal path;
- differentially combining or simply combining output signals from the first signal path and the second signal path;
- obtaining a correlation coefficient between a signal of the second signal path, subjected to said equalization processing and said delay amount adjustment, and a signal of the second signal path, subjected to said differentially combining or simply combining;
- controlling said amplitude adjustment in the second signal path in accordance with the polarity and intensity of said correlation coefficient to minimize the components of said main signal in the differentially or simply combined output, thereby extracting said supervisory signal.

2. A supervisory signal receiving apparatus, comprising:

- a photodetector circuit (6,7) for receiving an optical signal having a supervisory signal superimposed on a main signal and for converting said optical signal to an electric signal;
- an electric signal brancher (8) for branching said electric signal into a first branch signal in a first signal path (13,14,15) and a second branch signal in a second signal path (10,12,16,17,18);
- an equalizing amplifier (10), a timing extraction circuit (11) and a discriminating and regenerating circuit (12) of a main signal included in said second branch signal, which are connected in said second signal path to regenerate a main signal; filters (13,16), phase shifters (14,17) and attenuators (15,18) employed in both the first signal path and the second signal path in order to achieve matching in waveform, phase position and amplitude between a non-regenerated main signal in the first signal path and the regenerated main signal in the second signal path;
- a combiner (19 or 23) for differentially (19) or simply (23) combining output signals from the first signal path and the second signal path;
- a multiplier (20) for obtaining a correlation coefficient between a signal of the second signal path, subjected to equalization processing by said equalizing amplifier (10) and delay amount adjustment by said phase shifter (17), and a signal of the second signal path, subjected to said differentially combining or simply combining by said combiner (19 or 23);
- a control circuit (21,22) connected to said multiplier (20) and said attenuator (18) of said second path for performing said amplitude adjustment in the second signal path in accordance with the polarity and intensity of said correlation coefficient to minimize the components of said main signal in the differentially or simply combined output; and
- a filter (9) connected to an output of said combiner (19 or 23) for thereby extracting said supervisory signal.

3. A supervisory signal receiving apparatus according to claim 2, in which said discriminating and regenerating circuit (12) regenerates the main signal non-inverted, and in which said combiner comprises a differential combiner (19) for differentially combining output signals from the first signal path and the second signal path.

4. A supervisory signal receiving apparatus according to claim 2, in which said discriminating and regenerating circuit (12) regenerates the main signal inverted, and in which said combiner comprises a combiner (23) for simply combining output signals from the first signal path and the second signal path.

Patentansprüche

1. Empfangsverfahren für Überwachungssignale für ein Übertragungssystem für Zwischenregenerator-Überwachungssignale, wobei ein Zwischenregenerator-Überwachungssignal eines optischen Verstärkungs-Zwischenregeneratorsystems einem optischen Hauptsignal überlagert wird und an ein Endamt übertragen wird, wobei das Verfahren folgendes umfasst:
Wandeln des optischen Hauptsignals in ein elektrisches Signal mittels eines Fotodetektors und Verzweigen des elektrischen Signals in einen ersten Signalpfad und einen zweiten Signalpfad,

Ausführen von Entzerrverstärkung, Taksrückgewinnung und diskriminierender Regenerierung eines im zweiten Signalpfad verzweigten Signal enthaltenen Hauptsignals,

Ausführen von Entzerrungsverarbeitung, Verzögerungsbetraganpassung, und Amplitudenanpassung sowohl im ersten Signalpfad als auch im zweiten Signalpfad, um eine Angleichung von Signalform, Phasenlage und Amplitude zwischen dem ersten, nicht regenerierten, Hauptsignal im ersten Signalpfad und dem regenerierten Hauptsignal im zweiten Pfad zu erhalten,

differenzielles oder einfaches Kombinieren der Ausgangssignale aus dem ersten Signalpfad und dem zweiten Signalpfad,

Ermitteln eines Korrelationskoeffizienten zwischen einem Signal des zweiten Signalpfads, das der Entzerrungsvorgang durch den Entzerrverstärker (10) und der Verzögerungsbetraganpassung durch den Phasenschieber (17) unterzogen wurde und einem Signal des zweiten Signalpfads, das der differentiellen bzw. einfachen Kombination durch den Kombinator (19 bzw. 23) unterzogen wurde,

Filtern (13, 16), Phasenschiebern (14, 17) und Abschwächen (15, 18), die sowohl im ersten als auch im zweiten Signalpfad eingesetzt werden, um ein Angleichen von Signalform, Phasenlage und Amplitude zwischen einem nicht regenerierten Hauptsignal im ersten Signalpfad und dem regenerierten Hauptsignal im zweiten Signalpfad zu erhalten,

einem Kombinator (19 oder 23) zum differentiellen (19) oder einfachen (23) Kombinieren der Ausgangssignale vom ersten Signalpfad und dem zweiten Signalpfad,

einer Multiplikationsschaltung (20) zum Ermitteln eines Korrelationskoeffizienten zwischen einem Signal des zweiten Signalpfads, das dem Entzerrungsvorgang durch den Entzerrerstärker (10) und der Verzögerungsbetraganpassung durch den Phasenschieber (17) unterzogen wurde und einem Signal des zweiten Signalpfads, das der differentiellen bzw. einfachen Kombination durch den Kombinator (19 bzw. 23) unterzogen wurde,

einer Steuerschaltung (21, 22), die mit der Multiplikationsschaltung (20) und dem Abschwächer (18) des zweiten Pfads verbunden ist, um die Amplitudenanpassung im zweiten Signalpfad gemäß der Polarität und der Intensität des Korrelationskoeffizienten auszuführen und die Komponenten des Hauptsignals im differentiell bzw. einfach kombinierten Ausgang zu minimieren, und

einem Filter (9), der an einen Ausgang des Kombinators (19 oder 23) angeschlossen ist, um so das Überwachungssignal auszuziehen.

2. Empfangsvorrichtung für Überwachungssignale, bestehend aus:

einer Fotodetektorschaltung (6, 7) zum Empfangen eines optischen Signals mit einem dem Hauptsignal überlagerten Überwachungssignal und zum Wandeln dieses optischen Signals in ein elektrisches Signal,

einem elektrischen Signalverzweiger (8) zum Verweigern des elektrischen Signals in ein erstes Zweigsignal in einem ersten Signalpfad (13, 14, 15) und ein zweites Zweigsignal in einem zweiten Signalpfad (10, 12, 16, 17, 18),

einem Entzerrverstärker (10), einer Taksrückgewinnungsschaltung (11) sowie einer diskriminierenden und regenerierenden Schaltung (12) eines im zweiten Zweigsignal enthaltenen Hauptsignals, die im zweiten Signalpfad miteinander verbunden sind, um ein Hauptsignal zu regenerieren,

4. Empfangsvorrichtung für Überwachungssignale nach Anspruch 2, wobei die diskriminierende und regenerierende Schaltung (12) das Hauptsignal invertiert regeneriert und wobei der Kombinator aus
Revendications

1. Procédé de réception de signal de supervision pour un système de transmission de signal de supervision de répéteur, dans lequel un signal de supervision de répéteur d'un système répéteur amplificateur optique est superposé à un signal optique principal et transmis à un bureau d'extrémité,
 ledit procédé comprenant :
 la conversion du signal optique principal par un photodétecteur en un signal électrique et la séparation du signal électrique en un premier chemin de signal et un second chemin de signal ;
 l'exécution d'une amplification d'égalisation, d'une extraction de synchronisation et d'une régénération de discrimination d'un signal principal inclus dans le signal séparé vers le second chemin de signal ;
 l'exécution d'un traitement d'égalisation, d'un réglage de quantité de retard et d'un réglage d'amplitude à la fois dans le premier chemin de signal et dans le second chemin de signal pour obtenir une correspondance de forme d'onde, position de phase et amplitude entre le signal principal non régénéré dans le premier chemin de signal et le signal principal régénéré dans le second chemin ;
 la combinaison différentielle ou la combinaison simple des signaux de sortie du premier chemin de signal et du second chemin de signal ;
 l'obtention d'un coefficient de corrélation entre un signal du second chemin de signal, soumis à un traitement d'égalisation et audit réglage de quantité de retard et un signal du second chemin de signal, soumis à ladite combinaison différentielle ou combinaison simple ;
 le contrôle dudit réglage d'amplitude dans le second chemin de signal en fonction de la polarité et de l'intensité dudit coefficient de corrélation pour minimiser les composantes dudit signal principal dans la sortie combinée de façon différentielle ou simple ;
 et
 un filtre connecté à une sortie dudit combinateur (19 ou 23) pour en extraire ledit signal de supervision.

2. Appareil récepteur de signal de supervision, comprenant :
 un circuit photodétecteur (6, 7) pour recevoir un signal optique comportant un signal de supervision superposé à un signal principal et pour convertir ledit signal optique en un signal électrique ;
 un séparateur de signal électrique (8) pour séparer ledit signal électrique en un premier signal de séparation dans un premier chemin de signal (13, 14, 15) et un second signal de séparation dans un second chemin de signal (10, 12, 16, 17, 18) ;
 un amplificateur égaliseur (10), un circuit d'extraction de synchronisation (11) et un circuit discriminateur et régénératrice (12) d'un signal principal inclus dans ledit second signal de séparation, qui sont connectés dans ledit second chemin de signal pour régénérer un signal principal ;
 des filtres (13, 16), des déphaseurs (14, 17) et des atténuateurs (15, 18), utilisés à la fois dans le premier chemin de signal et le second chemin de signal pour obtenir une correspondance de forme d'onde, position de phase et amplitude entre un signal principal non régénéré dans le premier chemin de signal et le signal principal régénéré dans le second chemin de signal ;
 un combinateur (19 ou 23) pour combiner de façon différentielle (19) ou simple (23) les signaux de sortie provenant du premier chemin de signal et du second chemin de signal ;
 un multiplicateur (20) pour obtenir un coefficient de corrélation entre un signal du second chemin de signal, soumis à un traitement d'égalisation par ledit amplificateur égaliseur (10) et un réglage de quantité de retard par ledit déphaseur (17) et un signal du second chemin de signal, soumis à ladite combinaison différentielle ou combinaison simple par ledit combinateur (19 ou 23) ;
 un circuit de commande (21, 22) connecté audit multiplicateur (20) et audit atténuateur (18) dudit second chemin pour exécuter ledit réglage d'amplitude en fonction de la polarité et de l'intensité dudit coefficient de corrélation pour minimiser les composantes dudit signal principal dans la sortie combinée de façon différentielle ou simple ;
 et
 un filtre (9) connecté à une sortie dudit combinateur (19 ou 23) pour en extraire ledit signal de supervision.

3. Appareil récepteur de signal de supervision selon la revendication 2, dans lequel, ledit circuit discriminateur et régénératrice (12) régénère le signal principal non inversé et dans lequel ledit combinateur comprend un combinateur différentielle (19) pour combiner de façon différentielle les signaux de sortie provenant du premier chemin de signal et du second chemin de signal.

4. Appareil récepteur de signal de supervision selon la revendication 2, dans lequel, ledit circuit discr-
minateur et régénérateur (12) régénère le signal principal inversé et dans lequel ledit combineur comprend un combineur (23) pour combiner de façon simple les signaux de sortie provenant du premier chemin de signal et du second chemin de signal.
Fig. 2

Non-regenerated signal (input of Diff. (comb. 19)

Disc. & regen. signal (input of Diff. (comb. 19)

A \cdot B (output of Diff. (comb. 19)

Disc. & regen. signal (output of phase (shifter 17)

C \times D (output of multiplier 20)

In case of high level of optical signal input

In case of usual level of optical signal input

In case of low level of optical signal input

A

B

C

D

E

(+) → (0) → (-)
Fig. 4

HIGH FREQUENCY

OUTPUT POWER (dBm)

FREQUENCY (MHz)