EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 09.09.1998 Bulletin 1998/37

Application number: 933916839.9

Date of filing: 29.06.1993

Int. Cl.6: B41J 2/155, B41J 2/16

International application number: PCT/US93/06173

International publication number: WO 94/01285 (20.01.1994 Gazette 1994/03)

METHOD AND APPARATUS FOR PAGE WIDE INK JET PRINTING

VERFAHREN UND VORRICHTUNG ZUM SICH ÜBER DIE BREITE DES BLATTES ERSTRECKENDEM TINTENSTRAHLDRUCKEN

PROCEDE ET APPAREIL D’IMPRESSION A JET D’ENCRE A TETE DE LA LARGEUR D’UNE PAGE

Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

Priority: 06.07.1992 US 909026

Date of publication of application: 19.04.1995 Bulletin 1995/16

Inventor: GOOD, Lowell, M. Cypress, TX 77429 (US)

Representative: Brunner, Michael John et al GILL JENNINGS & EVERY Broadgate House 7 Eldon Street London EC2M 7LH (GB)

Proprietor: Compaq Computer Corporation Houston Texas 77070 (US)

References cited:

EP-A- 0 485 241
US-A- 536 097
US-A- 4 312 009
US-A- 4 510 509

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The invention relates to a method and apparatus for ink jet printing, and, more particularly, to a method and apparatus for ink jet printing by a page wide ink jet printhead.

Printers are one of the most popular computer peripherals. Not surprisingly, therefore, the rapid growth in acceptance, use, and numbers of computers during the past fifteen years has fueled the demand for, and interest in the development of, printers.

Presently employed printing techniques may generally be categorized as either impact printing or non-impact printing depending upon whether some portion of the printer "strikes" the print medium upon which characters are being printed. In an impact printer, some portion of the printer does strike the medium, e.g., paper. In a non-impact printer, on the other hand, only ink contacts the medium.

One of the most widely used types of non-impact printers at the present time is the so-called "ink jet printer." In ink jet printing, ink is ejected, most commonly by pressure, through a tiny nozzle to form an ink droplet that may be deposited on a paper medium. Ink jet printers have been developed that are capable of producing highly reproducible and controllable droplets. Using those printers, it is now possible for a droplet to be deposited at a location specified by digitally stored data.

Most commercially available ink jet printing systems may be generally classified as either "continuous jet" or "drop on demand" type. In a "continuous jet" type ink jet printing system, ink droplets are continuously ejected from a printer printhead and either directed to or away from a paper medium depending on the desired image to be produced. In such a continuous jet system, uniform ink droplets are formed from a stream of liquid continuously issuing from an orifice. A mechanism, often of an electromechanical material, such as piezoelectric material, oscillates in response to an applied voltage to cause break-up of the continuous stream into uniform droplets of ink and to impart an electrostatic charge to the droplets. High voltage deflection plates located in the vicinity of the ejected ink droplets selectively control the trajectory of the ink droplets causing the droplets to hit a desired spot on the paper medium. Since a continuous flow of ink is employed in this type system, it is referred to as continuous.

In a "drop on demand" type ink jet printing system, ink droplets are intermittently ejected from a printhead in response to a specific command related to the image to be produced. "Drop on demand" ink droplets are produced as a result of electromechanically induced pressure waves. The pressure waves are induced by applying a voltage pulse to an electromechanical material, e.g., a piezoelectric material, which is directly or indirectly coupled to a stored fluid. The pressure waves cause pressure/velocity transients to occur in the ink and these transients are directed so as to produce a droplet that issues from a reservoir or channel in the printhead, typically through an orifice. Since voltage is applied only when a droplet is desired, these types of ink jet printing systems are referred to as drop-on-demand.

As may be gathered from the discussion above, the use of piezoelectric materials in ink jet printers is well known. Most commonly, the piezoelectric materials are used in the form of a piezoelectric transducer by which electric energy is converted into mechanical energy. This conversion is caused by application of an electric field across the piezoelectric material, thereby causing the piezoelectric material to deform. This ability to distort piezoelectric material by application of an electric field has often been utilized in order to distort ink flow in continuous type systems and to force the ejection of ink in drop on demand type systems.

One drop on demand type ink jet printer configuration which utilizes the distortion of a piezoelectric material to eject ink includes a printhead forming an ink channel array in which the individual channels of the array each have side walls formed of a piezoelectric material. Typically, with respect to such arrays, the channels are micro-sized and are arranged so that the spacing between adjacent channels is relatively small. In operation of this type of printhead, ink is directed to and resides in the channels until selectively ejected therefrom. Ejection of ink from select channels is effected due to the electromechanical nature of the piezoelectric side walls of the channels. Because piezoelectric material deforms when an electric field is applied thereacross, the side walls of select channels may be caused to deform by applying an electric field thereacross. The electric field may be so selectively applied by digital or other means. This deformation of side walls of select channels reduces the volume of the respective channels creating a pressure pulse in the ink residing in those channels. The resultant pressure pulse then causes the ejection of a droplet of ink from the particular channel across which the electric field is applied.

In printing, the ink jet printhead in a typical ink jet printer is mechanically caused to move across the print medium, selectively ejecting ink from particular ink channels of the printhead in its movement thereacross, to print a particular line of print characters. Once the line is completed, the print medium mechanically progresses through the printer to position the printhead at the next line of the print medium. At the next line of the print medium the process is repeated with the printhead moving across the print medium to print the particular line of print characters, the print medium thereafter progressing to position the printhead at the next line. These steps of printhead movement across the print medium followed by progression of the print medium to position the printhead are repeated in the printing process until the entire print medium passes through the printer.

Printhead movement across the print medium in
printing a line of characters is necessary in the typical ink jet printer arrangement because the printhead in such an arrangement has been generally narrow in width. Printhead width has generally been narrow due to a number of factors, including, among others, the integrated circuitry necessary to activate and drive the printhead, the minimal spacing required between ink ejection ports to create desired uniform print quality in each line of print characters, and the limited space available for printhead movement and operation in most printers. Such a typical printhead of narrow width restricts printing speed since two mechanical steps, printhead movement across print medium and print medium progression, are required. A trade-off design limitation to printing speed in the typical ink jet printer is print quality. Because the narrow printhead of the typical ink jet printer must be caused by digital or other means to selectively eject ink as the print medium is progressing through the printhead, the printhead is simultaneously moving across the paper medium, print quality obtainable with such a printhead may be affected due to difficulties of timing ink ejection in coordination with print medium and printhead mechanical movement. There is, therefore, a trade-off between two limitations, printing speed and print quality, in the design of a narrow width printhead. It would be an improvement to overcome these limitations in ink jet printheads so that both printing speed and print quality could be increased in the same design without such trade-off limitations.

Attempts have been made to overcome these limitations by placing individual ones of the narrow printheads in a page wide alignment. In such an arrangement, individual ones of the narrow printheads are linked together to perform like a single-piece printhead. Ten to twenty individual printheads, instead of one united printhead, are required. Accuracy in alignment of the individual printhead nozzles in such an arrangement is critical to the quality of print from such a device, however, accuracy in alignment has heretofore been limited due to difficulties of linking the printheads to effect accurate alignment. Problems encountered in such an alignment of individual printheads include reduced print quality due to spacing requirements in aligning the printheads, a multiplicity of parts, for example, printheads and connector circuitry, leading to spacing limitations and increased malfunction risk, an involved manufacturing process comprising numerous steps with respect to each individual printhead and the integration thereof, and lack of positional accuracy due to limited means available to link the printheads and position printhead nozzles.

The present invention, being a page wide ink jet printhead comprising a single, united assembly integrating print nozzles, circuit connections and flip chip integrated circuits, and the method for manufacture thereof and printing thereby, overcomes these problems previously encountered.

The invention relates to a page wide ink jet printhead for a printer, for printing characters across the width of a print medium which progresses through the printer, the printhead being arranged for printing without movement of the printhead, the printhead including:

- a slab of electrically deformable material having a plurality of grooves formed in a surface thereof;
- circuitry coupled to said slab for selectively deforming one or more of said grooves to force ink through respective nozzles in use; and
- a plurality of nozzles in communication with respective grooves for ejecting ink generally normal to said surface, wherein said nozzles are offset in the direction of the grooves at a predetermined resolution across the width of said printhead, and being characterised by:
 - a plurality of channels formed in said slab, each of said channels being associated with a plurality of said grooves and formed at an acute angle thereto, for communicating ink to said grooves.

More particularly, the invention includes the improvement comprising the piezoelectric material being configured as an elongate slab and having segregated sections of microgrooves, the sections being independently fed with ink and the sidewalls of the microgrooves within the sections being independently actuated, the sections being disposed across the print medium generally perpendicular to the path of the print medium, and a multiplicity of nozzles, single ones of the nozzles being located in communication with single ones of the microgrooves, the nozzles serving as orifices for ejection of ink droplets from the printhead.

The invention also relates to a method for page wide printing by means of a stationary printhead according to claim 1, the printhead being employed in a printer for printing characters on a print medium, the print medium progressing in a path through the printer during printing. More particularly, such method comprises the steps of aligning a multiplicity of nozzles in select positions across the print medium generally perpendicular to the path of the print medium, and ejecting ink through select ones of the nozzles.

The invention additionally relates to a method for manufacturing a page wide ink jet printhead according to claim 1, with the invention comprises the steps of cutting parallel microgrooves longitudinally in a PZT slab, the microgrooves having sidewalls which serve as actuators for ejection of ink from the microgrooves in response to an electrical pulse applied to the
sidewalls, and segregating the microgrooves into sections, the sections to be independently fed with ink and sidewalls of microgrooves within the sections to be independently actuated.

In another aspect, the invention includes the above described method wherein the step of segregating includes cutting ink channels generally across the microgrooves of the PZT slab and forming an ink dam along one edge of each of the ink channels.

In another aspect, the invention includes the above described method further comprising the steps of coating metallized ridges separating the microgrooves with a metallic conductive layer, bonding a polymer sheet to the metallized ridges to cover the microgrooves, forming nozzles in the polymer sheet in communication with the microgrooves, and connecting the metallized ridges with flip chips for delivering select electrical pulse to select ones of the metallized ridges.

The invention also relates to a method for page wide ink jet printing which includes the steps of progressing a print medium past a stationary printhead according to claim 1, the printhead formed with a multiplicity of nozzles aligned in selected positions across the print medium generally perpendicular to the path of the print medium, and ejecting ink through selected ones of the nozzles.

For a more complete understanding of the present invention and for further objects and advantages thereof, reference may now be had to the following description in conjunction with the accompanying drawings, in which:

FIG. 1 is a front view of the page wide ink jet printhead;
FIG. 2 is a right side view of the page wide ink jet printhead;
FIG. 3 is a right side view of the page wide ink jet printhead of FIG. 1 taken along lines 3-3, illustrating the microgrooves of the printhead;
FIG. 4 is an enlarged, partial cross sectional view of the page wide ink jet printhead of FIG. 1 taken along lines 4-4, illustrating an ink channel and the relationship of the channel with microgrooves of the printhead; and
FIG. 5 is an enlarged, sectional front view taken at circle 5 of FIG. 1, showing the relationship of orifices, microgrooves, and an ink channel of the printhead.

In order to fully understand the technology and novelty of the page wide printhead of the present invention, it is helpful to consider the operation characteristics of a typical "drop on demand" type ink jet printhead. Such a typical ink jet printhead is formed, at least in part, of a ceramic material, which is electromechanically active, for example, a piezoelectric material. At least one surface of the printhead is coated with gold or some other suitable metallic conductive layer. An array of closely spaced, longitudinally extending microgrooves is then cut in the metallized surface. Due to this manufacturing method, the microgrooves of the printhead are separated by ridges. Since the surface of the printhead was coated with a metallic conductive layer before the microgrooves were cut, these resulting ridges are surface coated with the metallic conductive layer. In the microgroove channels, however, the surfaces of the channels are not so coated. The metallic layered ridges between the microgrooved channels allow select application of electrical pulse to particular metallized ridges to create electrical field across particular microgroove channels. Because the microgroove channel walls are formed of an electromechanically activated material, the select application of electrical field causes deformation of the walls of select microgrooves. In operation of the typical printhead, ink is fed and resides within the microgroove channels. The wall deformation caused by select application of electric pulse to particular ridges creates a pressure pulse in the ink fluid resting in the microgroove channels adjacent the particular ridges and ink is ejected from the particular microgrooves out of the printhead.

Referring first to FIG. 1, a front view of the page wide printhead 2 of the present invention is shown. The page wide printhead operates in a manner similar to the operation of the typical drop on demand ink jet printhead just described, however, the page wide printhead allows for simultaneous ink ejection across the entire width of a page of print medium from a multiplicity of microgroove channels segregated into separate sections of microgroove arrays. Still referring to FIG. 1, the page wide printhead is formed on a printed circuit board ("PCB") 6. Typical materials and manufacturing methods are used in manufacturing and constructing the PCB 6. The PCB 6 is a generally elongate structure of approximately the length of a print medium page, for example, 20.3 cm to 30.5 cm (eight to twelve inches), and a width of 3.8 cm to 5.1 cm (one and one-half to two inches). The PCB 6 has a midsection extension 5 extending from the mid length of the PCB 6. The midsection extension 5 may be approximately 10.2 cm to 12.7 cm (four to five inches) in length and 2.54 cm to 5.1 cm (one to two inches) in width and sufficient for attachment therewith of a standard connector 4. The dimensions may differ from those described herein, as the dimensions are to be tailored in light of the printer size and printing application. Other dimensions may be suitable in particular applications and the invention includes printheads of other dimensions. The connector 4, for example, a 20-pin connector or other connector suitable to the particular application, should be suitable for mating with an external source of select digital pulse or other electrical signal, for example, a printed circuit board connector in a printer (not shown in FIG. 1).

Still referring to FIG. 1, the page wide printhead 2 further includes a multiplicity of flip chips 18, for exam-
ple, nineteen flip chips, bonded to the PCB 6 in an array along the top edge of the elongate portion thereof. As used herein, "flip chip" refers to a standard computer chip mounted upside down in a manner such that the chip directly interconnects by metallized bumps thereon with circuitry of the PCB. Flip chips are preferable due to the compactness thereof when installed in a PCB arrangement such as that described herein. A preferred flip chip 18 for use in the printhead 2 is manufactured by or licensed from International Business Machines Corporation (IBM) according to what has been termed C4 technology. An Application Specific Integrated Circuit (ASIC) chip is preferable, although other computer chips, including standard chips having suitable circuitry, may be employed. The flip chips 18 are electrically connected, by methods hereinbefore described, with the connector 4 and the metallized ridges 22 (shown in FIG. 3) of select microgrooves 10 within a particular section 11, as also hereinbefore described, to activate select ink ejection throughout the entire length of the printhead 2 across the width of a page of paper medium. In a preferred arrangement of the printhead 2, the flip chips 18 are each located close to the metallized ridges 22 of select microgrooves 10 within a particular section 11 in order to limit signal crossover and optimize the electrical circuitry performance in the printhead 2.

Bonded along the lower edge of the elongate section of the PCB 6 is a piezoelectric slab ("PZT slab") 8. The PZT slab 8 includes an array of microgrooves 10 therein. The microgrooves 10 serve as channel reservoirs for holding ink until select ejection therefrom in response to electrical impulse. The microgrooves 10 extend for the entire length of the PZT slab 8. The PZT slab 8 is of approximately the same length as the PCB 6.

Located intermittently throughout the length of the PZT slab 8 and extending across the width thereof is located a series of ink channels 12. The ink channels 12 may be angled in relation to the width of the PZT slab 8. This angling allows for angled location of nozzles 26 (shown in FIG. 5) as later described herein. The ink channels 12 separate the microgrooves 10 into distinct sections 11. The number of sections 11 corresponds with the number of flip chips 18. As later more fully described, each flip chip 18 is electrically connected with the connector 4 and particular metallized ridges 22 (shown in FIG. 3) of the microgrooves 10 so as to selectively direct formation of electric field across particular microgrooves 10 within a single section 11 of the PZT slab 8 in response to electrical direction acting at the connector 4 from the external source of select digital pulse or other electrical signal.

The ink channels 12 are each separately fed by individual ink feeds 14. Ink from an external source, preferably incorporated in a printer with which the printhead 2 is used (not shown), flows through the ink feeds 14 into the ink channels 12. Each ink channel 12 connects with microgrooves 10 in a particular section 11 between the ink channel 12 and the next successive ink channel 12 along the PZT slab 8 to feed ink to the microgrooves 10 in the section 11. The ink feeds 14 of particular or all ink channels 12 may be connected by a common system, which system may include a common channel formed in the PZT slab 8 or separate channels or tubing systems which interconnect to feed the ink channels 12.

Referring now to FIG. 2, a left side view of the printhead 2 is shown. The side view shows the relation of the connector 4, flip chips 18 and PZT slab 8 as mounted on the PCB 6. The particular arrangement of the connector 4, flip chips 18 and PZT slab 8 are purely a matter of choice dictated by the particular printer in which the printhead 2 is to be used, including space and configuration design parameters thereof. The connector 4 is electrically connected with the various flip chips 18 so that digital electrical pulse selectively applied to the pins of the connector 4, through the mated connection of the connector with an external source of select digital pulse or other electrical signal, for example, a printed circuit board connector incorporated in a printer, directs a select pulse response to particular ones of the flip chips 18. The flip chips 18 are further selectively electrically connected with metallized ridges 22 (shown in FIG. 3) of particular microgrooves 10 within a section 11 of the PZT slab 8 in a manner such that each flip chip 18 controls and sends electrical pulse directed to select metallized ridges 22 of particular microgrooves 10 within the section 11.

Referring now to FIG. 3, a detailed cross sectional view of several of the microgrooves 10 of the PZT slab 8 is shown. The PZT slab 8 should be of generally uniform thickness, greater than the depth of the microgrooves 10 cut therein. Prior to cutting the microgrooves 10, the PZT slab 8 is coated upon at least one surface with a metallic conductive layer, for example, a gold coating. The microgrooves 10 are then cut in the coated surface of the PZT slab 8. The microgrooves 10 are preferably formed longitudinally along the PZT slab 8 from end to end thereof. The microgrooves could be formed by any of a number of methods, including laser, water jet, chemical milling, or sawing, however, a preferred method includes cutting the surface of the PZT slab 8 by use of a dicing saw, for example, a Disco® High Precision Dicing Saw, Model No. DAC-25P/86. The microgrooves are typically quite small, for example, on the order of about 80-90 μm in width, having channel depths, for example, of about 300-500 μm, and are closely spaced, for example, to within about a 100-200 μm pitch, in an array across the width of the PZT slab 8.

After the microgrooves 10 are cut in the PZT slab 8, the PZT slab 8 then includes at least one surface having an array of microgrooves 10, the channels of which are exposed piezoelectric material. The metallized ridges 22 between the microgrooves 10 remain surface layered with the metallic conductive coating. The metallic conductive coating along the metallized ridges 22.
serves as an electric circuit to conduct electrical pulse therealong.

Referring now to FIG. 4, a cross section illustrating interconnection of an ink channel 12 and microgrooves 10 of a section 11 of the PZT slab 8 is shown. Once the microgrooves 10 are formed in the PZT slab 8, wider cuts are made generally diagonally across the width of the PZT slab 8 to form ink channels 12. The ink channels 12 serve as ink feed conduits to the microgrooves 10. The ink channels 12 are preferably cut to approximately the same depth in the surface of the PZT slab 8 as the microgrooves 10. As previously described, each ink channel 12 is fed by an ink feed 14. The ink feed 14 serves to flow ink into the ink channel 12 to feed microgrooves 10 of a particular section 11 of the PZT slab 8.

After the microgrooves 10 and ink channels 12 are formed in the PZT slab 8, the PZT slab 8 is bonded to the PCB 6, for example, by solder or conductive or epoxy adhesive. The PZT slab 8 is preferably bonded so that the surface of the PZT slab 8 having the microgrooves 10 therein faces away from the PCB 6. This bonding arrangement allows for formation of nozzles 26 at such surface, as hereinafter described, so that ink is ejected from select microgrooves 10 in a direction normal to the PZT slab 8 onto a paper medium located relative to the microgrooved surface thereof.

Referring now to FIG. 5, an enlarged partial section taken from the front view of the printhead 2 of FIG. 1 is shown. The figure illustrates that, due to the manufacturing methods previously described herein, the microgrooves 10 are separated into two distinct sections 11 by the ink channel 12. Along one edge of the ink channel 12 is placed an ink dam 24. The ink dam 24 may be poured or spread along such edge of the ink channel 12 and should be formed of an impervious material, resistant to ink, which hardens after application, for example, an epoxy or adhesive, to permanently restrict ink flow within the ink channel 12 from crossing the ink dam 24. The ink dam 24, by restricting flow from the ink channel 12, limits flow of ink directed into the ink channel 12 into microgrooves 10 of only one section 11 adjacent the ink channel 12. Each ink channel 12 includes such an ink dam 24 and, therefore, feeds only a single, particular section 11 of microgrooves 10 adjacent to the ink channel 12.

Still referring to FIG. 5, the metallized ridges 22 are shown situated between adjacent microgrooves 10. As previously described, the metallized ridges 22 are, due to the manufacturing method, surface layered with conductive metallic coating. The metallized ridges 22 of a particular section 11 correspond and electrically communicate with a single flip chip 18 due to electrical interconnection therewith. Due to such communication, a pulse received through the connector 4 of the PCB 6, having been directed to a particular flip chip 18, is then, due to such flip chip's 18 interconnection with metallized ridges 22 of a particular section 11 of microgrooves 10, directed by the flip chip 18 to particular ones of the metallized ridges 22 within the section 11 causing deformation of walls of select microgrooves 10 adjacent the particular metallized ridges 22. This electrical connection of flip chips 18 with particular metallized ridges 22 of particular sections 11 of the microgrooves 10 allows select creation of electric fields across particular ones of the microgrooves 10 within the section 11. As previously described, the PZT slab is formed of a piezoelectric material, thus, the walls of the microgrooves 10 are also formed of such material. The creation of electric field between particular microgrooves 10 due to electric pulse directed along adjacent metallized ridges 22 causes deformation of the particular microgroove 10 walls and creation of a pressure pulse within the microgroove 10 channel. In operation, ink stored within the microgroove 10 channel is ejected from the channel due to the pressure pulse caused by the wall deformation.

Once the microgrooves 10 and ink channels 12 are cut in the PZT slab 8 and the ink dam 24 is placed along one side of each ink channel 12, the PZT slab 8 is covered on the microgrooved surface by a polymer sheet 20 (shown in detail in FIGS. 3 and 4) formed of a polymer such as kapton. This polymer sheet 20 is bonded to the surface of the PZT slab 8 by a thermoplastic polyimide or epoxy adhesive. The polymer sheet 20 serves to encapsulate the microgrooves 10 and the ink channels 12 to prevent leakage of ink fed thereto.

Electrical interconnects between the flip chips 18 and metallized ridges 22 are preferably formed after bonding of the polymer sheet 20. Once the polymer sheet 20 is bonded, holes in the polymer sheet 20 for electrical interconnect vias may be formed by laser ablation at select points at the metallized ridges 22. These holes allow for electrical connection of the metallized ridges 22 with the flip chips 18 to form select circuitry connecting select metallized ridges 22 of a particular section 11 with a particular flip chip 18. After the electrical interconnect vias are formed, metal electrical connections are formed by plating or sputtering metal into the vias. Then, a photo resist mask followed by exposure to a sputter metal pattern and removal of the photo resist is employed to create a desired circuitry on the PCB 6 for interconnecting flip chips 18 with metallized ridges 22 of particular sections 11. These electrical interconnects could alternatively be formed by incorporating all necessary circuitry into the PCB 6 and retaining exposed metallized areas at select locations for flip chip 18 interconnection. The flip chips 18 may then be positioned and fixed by solder or a conductive adhesive, for example, a Z-axis adhesive, at these select locations to complete the circuitry.

Also as shown in FIG. 5, each microgroove 10 is in communication with a nozzle 26. The nozzle 26 serves to allow ejection of ink from the particular microgroove 10. The nozzles 26 are preferably formed at the segments of the microgrooves 10 opposite the ink channel 12 feeding the particular section 11 of microgrooves 10. The nozzles 26 are further preferably formed at an
angle to the width of the PZT slab 8, for example, a 0 to 90 degree angle, to vary the distance between adjacent nozzles 26 along the length of the PZT slab 8, thereby allowing variation of the dot per inch capability of the printhead 2 due to the particular angle. The angle variation changes the distance between adjacent nozzles 26 if, as is the preferred arrangement, the nozzles 26 are arranged across the print medium generally perpendicular to the path of the print medium through the printer. The nozzles may further be staggered in relation to microgrooves 10 to increase print quality in certain applications. Such staggering can be employed to eliminate the effects on adjacent microgrooves 10 of deformation of walls of select microgrooves 10. The nozzles 26 may be formed by creating nozzle holes in the polymer sheet 20, for example, by a laser ablation technique. A typical nozzle 26 hole size is about 40 µm in diameter, although any of a variety of other hole sizes and/or shapes may be employed. Forming the nozzles 26 in such manner allows for ejection of ink through the nozzles 26 in a direction normal to the microgrooved surface of the PZT slab 8. This configuration of the nozzles 26 with respect to the PZT slab 8 allows for ink to be directed in a direction normal to a print medium placed in front of the printhead 2.

The circuitry of the PCB 6 formed as previously described may be connected with particular flip chips 18 by a number of methods. A preferred method of interconnecting the PCB 6 circuitry at the flip chips 18 includes forming metallization vias through the polymer at each flip chip 18 by laser ablation, then forming a bond pad area thereon by photo resist masking, and then plating or sputtering metal into the vias to complete the electrical connection. Alternatively, electrical circuitry could be incorporated in the PCB 6 and exposed metallized areas at select locations for flip chip 18 interconnection could be formed or retained in the PCB 6 to allow for solder or conductive adhesion of the flip chips 18 at such locations.

In operation, the page wide printhead 2 of the present invention is connected by the connector 4 with a mating connector of a printer or other source of select electrical signal. The printhead 2 is preferably positioned so that the print medium is located parallel to the surface of the microgrooved PZT slab 8 of the printhead 2 and progresses through the printer along a path perpendicular to the length of the PZT slab 8. When positioned in this manner, ink ejected from particular microgrooves 10 through nozzles 26 formed in the polymer sheet 20 disposed across the surface of the PZT slab 8 are directed towards the print medium in a normal direction thereto. The ejected ink droplets are thereby deposited on the print medium in select configurations to form print characters. The printhead 2 can, by varying the nozzle 26 configuration and arrangement, have a varying range of resolution. In a preferred embodiment, the nozzles 26 are configured to provide a 300 dot per inch resolution, although other resolutions are possible ranging, for example, from about 75 dots per inch or less to in excess of 1200 dots per inch. The printhead 2 may be either stationary in relation to the width of the print medium or the printhead 2 could be mechanically movable across the width of the print medium to the extent necessary to print characters throughout the entire width of the print medium. In a preferred embodiment, the printhead 2 does not move across the width of the print medium, thereby limiting the necessary mechanics of the printer to progression of the print medium lengthwise past the printhead 2. In such a preferred embodiment, printing speed is increased due to the single mechanical movement of the print medium progressing through the printer and increased dot per inch resolution capability is achievable without loss of print quality since the printhead 2 may print page wide without movement across the print medium.

As is seen, the present invention overcomes the problems presented by the prior art narrow printhead which moves across the print medium during printing and of the prior attempts at page wide printing by linking individual, narrow printheads. In particular, the present invention provides for simplified construction of a page wide printhead requiring minimal parts and incorporating appropriate alignment of nozzles through the manufacturing process for the printhead. The page wide printhead exhibits significantly improved positional accuracy of the nozzles due to the manufacturing method and the fixed securement of the nozzles in such positioning.

Claims

1. A page wide ink jet printhead (2) for a printer, for printing characters across the width of a print medium which progresses through the printer, the printhead being arranged for printing without movement of the printhead, the printhead including: a slab (8) of electrically deformable material having a plurality of grooves (10) formed in a surface thereof; circuitry coupled to said slab for selectively deforming one or more of said grooves to force ink through respective nozzles in use; and a plurality of nozzles (26) in communication with respective grooves for ejecting ink generally normal to said surface, wherein said nozzles are offset in the direction of the grooves at a predetermined resolution across the width of said printhead; and being characterised by: a plurality of channels (12) formed in said slab, each of said channels being associated with a plurality of said grooves (10) and formed at an acute angle thereto, for communicating ink to said grooves.

2. The ink jet printer of claim 1, wherein said grooves
(10) are separated into sections by said ink channels (12) formed in said slab, each of said ink channels interconnecting with adjacent sections of said grooves on one side and having an ink dam along the opposite side to inhibit ink flow between the ink channel and the sections of the groove on said opposite side.

3. The ink jet printer of claim 1 or claim 2, wherein said nozzles (26) comprise a material layer (20) formed over said slab (8) and having holes formed therein to communicate with respective grooves (10).

4. The ink jet printhead of any of claims 1 to 3, wherein said slab (8) comprises a slab of piezoelectric material.

5. The ink jet printhead of claim 3, wherein said material layer (20) comprises a polymer material.

6. The ink jet printhead of any of claims 1 to 5, further comprising a printed circuit board (6) coupled to said slab (8).

7. The ink jet printhead of any of claims 1 to 6, wherein said circuitry includes metal ridges (22) disposed on said slab (8) adjacent said grooves (10).

8. The ink jet printhead of claim 2 or any claim dependent thereon, wherein said channels (12) are formed such that an uppermost groove of a first section longitudinally overlaps a lowermost groove of a second, adjacent section.

9. A method of manufacturing a page wide ink jet printhead (2) according to claim 1, the method including the steps of:

 cutting parallel grooves (10) longitudinally in a PZT slab (8), said grooves having sidewalls which serve as actuators for ejection of ink from said grooves in response to an electrical pulse applied to said sidewalls; and
 segregating said grooves (10) into sections, whereby said sections can be independently fed (12) with ink and said sidewalls of grooves within said sections independently actuated in use.

10. The method of claim 9, wherein said step of segregating includes cutting ink channels (12) generally across said grooves of said PZT slab and forming an ink dam (24) along one side of each of said ink channels.

11. The method of claim 10, further comprising the steps of:

 coating metallized ridges (22) separating said grooves (10) with a metallic conductive layer;
 bonding a polymer sheet (20) to said metallized ridges to cover said grooves;
 forming nozzles (26) in said polymer sheet in communication with said grooves; and
 connecting said metallized ridges with flip chips (18) for delivering selected electrical pulses to selected ones of said metallized ridges in use.

12. A method of ejecting ink, from a printhead according to any of claims 1 to 8, comprising the steps of:

 communicating ink with said grooves (10); and
 electrically deforming selected ones of said grooves (10) to force ink in said selected grooves through respective nozzles (26).

13. The method of claim 12, wherein the flow of ink through one end of each groove is prevented.

Patentansprüche

1. Seitenbreiter Tintenstrahldruckkopf (2) für einen Drucker zum Drucken von Druckzeichen über die Breite eines Druckmediums, das durch den Drucker hindurchgeht, wobei der Druckkopf für ein Drucken ohne Bewegung des Druckkopfs angeordnet ist und wobei der Druckkopf enthält:

 eine Platte (8) aus einem elektrisch verformbaren Material mit einer Vielzahl von auf der Oberfläche derselben ausgebildeten Rillen (10),

 eine mit der Platte verbundene Schaltungsanordnung zum selektiven Verformen einer oder mehrerer Rillen, um während des Betriebs Tinte durch entsprechende Düsen auszuspritzen,

 eine Vielzahl von Düsen (26), die mit den entsprechenden Rillen kommunizieren, um Tinte im wesentlichen normal zu der genannten Oberfläche auszuspritzen, wobei die Düsen in der Richtung der Rillen mit einer vorbestimmten Auflösung über die Breite des Druckkopfs zueinander versetzt sind,

 eine Vielzahl von in der Platte ausgebildeten Kanälen (12), wobei die Kanäle mit einer Vielzahl von Rillen (10) verbunden und mit einem Winkel zu diesen gebildet sind, um Tinte zu den Rillen zu führen.

2. Tintenstrahldrucker nach Anspruch 1, wobei die Rillen (10) durch die in der Platte ausgebildeten Tintenkanäle (12) in Abschnitte unterteilt sind, und
wobei jeder der Kanäle mit benachbarten Abschnitt-

ten der Rillen auf einer Seite verbunden ist und
einen Tintendamm entlang der gegenüberliegen-
den Seite aufweist, um einen Tintenfluß zwischen
dem Tintenkanal und den Abschnitten der Rillen
auf der gegenüberliegenden Seite zu verhindern.

3. Tintentrahldruckkopf nach Anspruch 1 oder 2, wobei
die Düsen (26) eine über der Platte (8) gebildete
Materialschicht umfassen, durch die hindurch
Löcher ausgebildet sind, um mit entsprechenden
Rillen (10) zu kommunizieren.

4. Tintentrahldruckkopf nach Anspruch 1 bis 3,
wobei die Platte (8) eine Platte aus piezoelektri-
schem Material umfaßt.

5. Tintentrahldruckkopf nach Anspruch 3, wobei die
Materialschicht (20) ein Polymermaterial umfaßt.

6. Tintentrahldruckkopf nach einem der Ansprüche 1
til 5, der weiterhin eine mit der Platte (8) verbun-
dene Leiterplatte (6) aufweist.

7. Tintentrahldruckkopf nach einem der Ansprüche 1
til 6, wobei die Schaltungsanordnung Metallrippen
(22) umfaßt, die auf der Platte (8) neben den Rillen
(10) angeordnet sind.

8. Tintentrahldruckkopf nach Anspruch 2 oder einem
davon abhängigen Anspruch, wobei die Kanäle
(12) derart gebildet sind, daß die oberste Rille
eines ersten Abschnitts in der Längsrichtung
eine unterste Rille eines zweiten benachbarten
Abschnitts überlappt.

9. Verfahren zum Herstellen eines seitenbreiten Tin-
tenstrahlendruckkopfs (2) nach Anspruch 1, wobei
das Verfahren folgende Schritte aufweist:

 das Schneiden von parallelen Rillen (10) in
 der Längsrichtung einer piezoelektrischen Platte,
wobei die Rillen Seitenwände aufweisen, die
 als Aktuatoren für das Ausspritzen von Tinte
 aus den Rillen in Übereinstimmung mit einem
 an den Seitenwänden angelegten elektrischen
 Impuls dienen, und
 das Unterteilen der Rillen (10) in Abschnitte,
wobei die Abschnitte unabhängig voneinander
 mit Tinte versorgt werden können und die
 Seitenwände der Rillen in den Abschnitten währ-
 end des Betriebs unabhängig voneinander
 betätigt werden können.

10. Verfahren nach Anspruch 9, wobei der Schritt zum
 Unterteilen das Schneiden von Tintenkanälen (12)
 im wesentlichen quer zu den Rillen der piezoelektri-
 schen Platte und das Bilden einen Tintendamms

(24) jeweils entlang einer Seite der Tintenkanäle
umfaßt.

11. Verfahren nach Anspruch 10, das weiterhin fol-
gende Schritte aufweist:

 das Beschichten der metallisierten Rippen
 (22), die die Rillen (10) voneinander trennen,
 mit einer metallischen Leitschicht,
 das Auftragen einer Polymerschicht (20) auf
den metallisierten Rippen, um die Rillen zu ver-
derken,
 das Bilden von Düsen (26) in der Polymerschicht,
die mit den Rillen kommunizieren, und
das Verbinden der metallisierten Rippen mit
Flipchips (18) zum Leiten von ausgewählten
elektrischen Impulsen zu ausgewählten meta-
lisierten Rippen während des Betriebs.

12. Verfahren zum Ausspritzen von Tinte von einem
Druckkopf nach einem der Ansprüche 1 bis 8, das
folgende Schritte aufweist:

 Zuführen von Tinte zu den Rillen (10) und elek-
trisches Deformieren von ausgewählten Rillen
(10), um Tinte in den entsprechenden Rillen
durch entsprechende Düsen (26) zu zwingen.

13. Verfahren nach Anspruch 12, mit dem der Tinten-
fluß durch jeweils ein Ende jeder Rille verhindert
wird.

Revidications

1. Tête d’impression (2) à jet d’encre de la largeur
d’une page, pour imprimante, servant à imprimer
des caractères sur toute la largeur d’un support
d’impression qui défie à travers l’imprimante, la tête
d’impression étant agencée pour imprimer sans
déplacement de la tête d’impression, la tête
d’impression comprenant:

 une plaque (8) déformable par effet piezéo-élec-
 trique, dans une surface de laquelle sont for-
mées plusieurs rainures (10);
 des circuits couplés à ladite plaque pour défor-
mer de manière sélective une ou plusieurs des-
dites rainures afin, pendant le fonctionnement,
d’injecter de l’encre par des buses respectives;
et
 plusieurs buses (26) communiquant avec des
rainures respectives pour expulser de l’encre
d’une manière globalement perpendiculaire à
ladite surface, lesdites buses étant décalées
da la direction des rainures suivant une réso-
lution prédéterminée sur toute la largeur de ladite tête d'impression; et étant caractérisée par:
plusieurs cannelures (12) formées dans ladite plaque, chacune desdites cannelures étant associée à plusieurs desdites rainures (10) et formant un angle aigu avec celles-ci, pour transmettre de l'encre auxdites rainures.

2. Imprimante à jet d'encre selon la revendication 1, dans laquelle lesdites rainures (10) sont séparées en sections par lesdites cannelures (12) d'encre formées dans ladite plaque, chacune desdites cannelures d'encre étant mutuellement reliée, sur un premier côté, aux sections adjacentes desdites cannelures d'encre et ayant sur le côté opposé un relief de retenue d'encre servant à empêcher le passage d'encre entre la cannelure d'encre et les sections de la rainure sur ledit côté opposé.

3. Imprimante à jet d'encre selon la revendication 1 ou la revendication 2, dans laquelle lesdites buses (26) sont constituées par une couche (20) de matière formée sur ladite plaque (8) et traversée par des trous assurant une communication avec des rainures respectives (10).

4. Tête d'impression à jet d'encre selon l'une quelconque des revendications 1 à 3, dans laquelle ladite plaque (8) est constituée par une plaque en matière piézo-électrique.

5. Tête d'impression à jet d'encre selon la revendication 3, dans laquelle ladite couche (20) de matière est constituée par une matière polymère.

6. Tête d'impression à jet d'encre selon l'une quelconque des revendications 1 à 5, comprenant en outre une carte (6) à circuit imprimé couplée à ladite plaque (8).

7. Tête d'impression à jet d'encre selon l'une quelconque des revendications 1 à 6, dans laquelle lesdits circuits comportent des crêtes métalliques (22) disposées sur ladite plaque (8) au voisinage immédiat desdites rainures (10).

8. Tête d'impression à jet d'encre selon la revendication 2 ou l'une quelconque des revendications dépendant de celle-ci, dans laquelle lesdites cannelures sont formées de façon qu'une rainure supérieure d'une première section chevauche longitudinalment une rainure inférieure d'une deuxième section adjacente.

9. Procédé de fabrication d'une tête d'impression (2) à jet d'encre de la largeur d'une page selon la revendication 1, le procédé comprenant les étapes consi-
sistant à:
découper longitudinalment des rainures parallèles (10) dans une plaque (8) en PZT, lesdites rainures ayant des parois latérales qui servent à induire l'expulsion d'encre depuis lesdites rainures en réponse à une impulsion électrique appliquée auxdites parois latérales; et séparer lesdites rainures (10) en sections, ce par quoi lesdites sections peuvent être alimentées en encre d'une manière indépendante et lesdites parois latérales des rainures dans lesdites sections peuvent être sollicitées d'une manière indépendante.

10. Procédé selon la revendication 9, dans lequel ladite étape de séparation comporte le découpage de cannelures (12) d'encre d'une manière globalement transversale par rapport auxdites rainures de ladite plaque en PZT et à former un relief de retenue (24) d'encre sur un premier côté de chacune desdites cannelures d'encre.

11. Procédé selon la revendication 10, comprenant en outre les étapes consistant à:
revêtir les crêtes métallisées séparant lesdites rainures (10) avec une couche métallique conductrice;
fixer une feuille de polymère (20) sur lesdites crêtes métallisées pour couvrir lesdites rainures;
former dans ladite feuille de polymère des buses (26) communiquant avec lesdites rainures; et connecter lesdites crêtes métallisées à des puce(s) (18) à bosses pour appliquer, pendant le fonctionnement, des impulsions électriques sélectionnées à certaines desdites crêtes métallisées.

12. Procédé d'expulsion d'encre, depuis une tête d'impression selon l'une quelconque des revendications 1 à 8, comprenant les étapes consistant à:
transmettre de l'encre auxdites rainures (10); et déformer par effet piézo-électrique des rainures sélectionnées parmi lesdites rainures (10) pour expulser par des buses respectives (26) l'encre présente dans lesdites rainures sélectionnées.

13. Procédé selon la revendication 12, dans lequel une extrémité de chaque rainure est infranchissable par l'encre.