CAR-MOUNTED SOUND DEVICE
IN EINEM FAHRZEUG MONTIERTES AUDIOGERÄT
DISPOSITIF AUDIO MONTE SUR UNE VOITURE

(84) Designated Contracting States:
DE FR GB

(30) Priority: 30.04.1993 JP 12816293
30.04.1993 JP 12816393

(43) Date of publication of application:

(73) Proprietor: SHINTOM CO., LTD
Yokohama-Shi, Kanagawa-ken (JP)

(72) Inventors:
• NAKAJIMA, Yukihiro,
Shintom Co., Ltd.
Yokohama-shi, Kanagawa 223 (JP)

• NOJIRI, Motoki,
Shintom Co., Ltd.
Yokohama-shi, Kanagawa 223 (JP)

• UCHIDA, Kazuhisa,
Shintom Co., Ltd.
Yokohama-shi, Kanagawa 223 (JP)

(56) References cited:
EP-A- 0 448 864
EP-A- 0 507 990
EP-A- 0 529 996
DE-A- 4 118 296
JP-A- 4 358 940
JP-U- 4 125 951
US-A- 4 083 620

EP-A- 0 513 795
DE-A- 4 008 536
JP-A- 4 271 938
JP-B- 4 057 076
JP-U- 5 090 674

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to an on-vehicle sound instrument comprising a main instrument body fixedly mounted on a vehicle, and a portable face plate detachably mounted on the instrument body.

[0002] On-vehicle sound instruments such as car radios are often stolen on parking. Various improvements for preventing thefts have been made on the instruments.

[0003] One improvement is that a car radio comprising a main body and a face plate integrally fixed to the main body is detachably mounted on a vehicle-side mount. Such an improvement is superior in that the integral unit of instrument body and face plate can be removed and carried from the car and thus preventing potential thefts. It is however inferior in that the instrument body is relatively heavy.

[0004] Another improvement is that an on-vehicle sound instrument comprises a main instrument body fixedly mounted on a vehicle and only a face plate is detachable from the instrument body. The face plate includes various operation keys and indicators disposed on its front panel. Thus, the interior of the face plate includes switches activated by the operation keys, display such as liquid-crystal elements, lamps for providing operational indications and guidance to a user and other elements. These electronic/electric parts are mounted, for example, on a single circuit board. In addition, various connectors are disposed on the backside of the face plate, and are connected to the circuit board of the face plate. On the other hand, the instrument body fixedly mounted on the vehicle includes counterpart connectors which are to be electrically connected to the connectors of the face plate, respectively.

[0005] As for the latter instrument, the instrument body fixed on the vehicle cannot be started, if the face plate superior in portability is removed from the vehicle. Thus, the instrument body can be prevented from being stolen.

[0006] Since the prior art sound instrument with the detachable face plate includes the electronic/electric circuits and circuit board mounted on the side of the face plate, the connectors in the face plate must be connected to or disconnected from those of the instrument body, each time the face plate is mounted on or dismounted from the instrument body. The connectors are connected and disconnected so often as the driver gets on and off the vehicle, and it may result in poor connections. Moreover, the face plate is not necessarily always mounted on the instrument body in the proper orientation. In general, as for the face plate holding mechanisms of such a type, the face plate is mounted on or dismounted from the holder of the instrument body while rotating the face plate around a point at which the right side of the face plate engages the holder. This causes a relatively large load to the holes and pins in the male and female connectors, leading to further deterioration of the quality of connections.

[0007] When the electronic/electric parts and circuit board are mounted on the face plate, an input section including various input switches as well as an output section including liquid-crystal displays and others are disposed on the face plate. This means that the instrument body is entirely separated from the input/output sections. Although such a structure can prevent potential thefts, it is very inconvenient for the manufacture of the on-vehicle sound instrument. This is because a performance test should be carried out in each manufacturing stage. Such a performance test can be made only when the face plate is actually mounted on the instrument body. This means that the face plate is frequently mounted on and dismounted from the instrument body throughout the manufacturing process.

[0008] The circuit board in the face plate must solely be subjected to its own performance test.

[0009] If the connectors are externally exposed from the face plate and instrument body, the following problems may be raised. When the portable face plate is solely carried or stored, the exposed pins, for example, in the face plate connectors may be damaged accidentally. In such a case, the sound instrument becomes unusable. Further, the exposed connectors may be broken intentionally by a thief.

[0010] Similarly, when the electronic-electric circuits and circuit board are mounted on the face plate, the following problems may be raised. The connectors in the face plate must be connected to or disconnected from those of the instrument body each time the face plate is mounted on or dismounted from the instrument body. Such connections and disconnections are repeated each time the driver gets on and off the vehicle. Further, the following problem is raised when the face plate is mounted on the instrument body.

[0011] A problem is raised when the driver turns OFF the ignition leaving the power of the car radio ON, and consecutively turns ON the ignition before mounting the face plate. In such a case, the instrument body may be started before all the terminals in the connectors of the instrument body and face plate are connected together. This is caused when the power switch terminals in the face plate are connected to the corresponding terminals in the instrument body before all the other terminals are completely connected to one another.

[0012] At this point, for example, a microcomputer in the instrument body is started immediately. A false signal other than normal signals may be input into the microcomputer since not all the terminals are connected. Thus, the microcomputer does not function properly even after all the terminals are in contact with one another. For example, even if the operation keys on the face plate are activated, the microcomputer does not operate at all. Further, the liquid-crystal display in the face plate is disturbed since it does not receive any normal drive signal.

[0013] Such a problem is raised when the face plate
is not mounted on the instrument body in the proper orientation. This is because the connector terminals are sequentially connected to one another, starting from one end in the connector array. This problem tends to occur depending on the mounting mechanism in the face plate, for example, a mounting mechanism in which the face plate is mounted on or dismounted from the instrument body while rotating the face plate around a point where one side of the face plate is engaged with the instrument body.

[0014] EP-A-0 529 996 discloses an on-vehicle sound instrument in accordance with the preamble of claim 1. There, the instrument body and the face plate each contain a connector comprising a plurality of terminals. One of the terminals is used for determining whether or not the face plate has been mounted. The instrument body comprises a microcomputer which allows an operation of the sound instrument only when it is detected that the face plate has been mounted.

[0015] EP-A-0 451 406 discloses an electronic device having a removable operating unit. The instrument body has a connection detection section formed by a limit switch which detects the connection of the face plate (operating section) to the instrument body. When the face plate is attached to the instrument body, contacts provided on the instrument body and the face plate are connected to each other and the limit switch is actuated.

[0016] It is an object of the present invention to provide an on-vehicle sound instrument comprising an instrument body fixedly mounted on a vehicle and a face plate detachably mounted on the instrument body. The mounting and dismounting of the face plate does not require any connector while the instrument body is startable only when the face plate is on the instrument body.

[0017] Another object of the present invention is to provide an on-vehicle sound instrument which can prevent any harmful influence from the sequence of connection between the connector terminals in the instrument body and face plate.

[0018] The present invention provides an on-vehicle sound instrument in accordance with claim 1.

[0019] According to the present invention, the terminals of the first connector in the instrument body are connected to the terminals of the second connector in the face plate so as to place the on-vehicle sound instrument in an usable state. At this point, the start setting means can place the instrument body in the startable state only when the terminals of said first and second connectors are connected to one another at the opposite ends in the direction of the arrays. When the instrument body is in the startable state, all the terminals other than those at the opposite ends of the terminals are connected to one another at all time.

[0020] Where the face plate includes a liquid-crystal display driven by drive signals from the instrument body, the first and the second connectors include liquid-crystal drive terminals disposed between the opposite ends in the direction of the arrays. Thus, the liquid-crystal display is not disturbed immediately after the power is ON in the instrument body.

[0021] The instrument body further comprises a microcomputer having a chip enable terminal. The start setting means may be formed to supply the power to the chip enable terminal of the microcomputer only when the terminals of the first and the second connectors are in contact with one another at the opposite ends. The microcomputer is started when the power is supplied to the chip enable terminal through the power supply line.

[0022] When the face plate is rotated around a point at which the engaging portion and the portion to be engaged are engaged with each other, the face plate can be mounted on or dismounted from the instrument body.

[0023] Although the terminals in the connectors are sequentially connected to one another starting from one end of the arrays, any failure can be avoided since the instrument body is not started until the terminals of the connectors are connected to each other at the opposite ends.

**BRIEF DESCRIPTION OF THE DRAWINGS**

[0024] Fig. 1 is a schematic view of an on-vehicle sound instrument constructed in accordance with an embodiment of the present invention with the face plate removed from the instrument body.

Fig. 2 is a back view of the face plate shown in Fig. 1 and Fig. 2B is a side view of the same face plate.

Fig. 3 is a schematic view illustrating the mounting and dismounting of the face plate on the instrument body.

Fig. 4 is a block diagram of the control system shown in Fig. 1, including the start setting means.

Fig. 5 is a schematic and perspective view of a hold lever for holding the face plate and its drive mechanism.

Fig. 6 is a perspective view of the assembly of the hold lever mechanism shown in Fig. 5.

Fig. 7 is a schematic view illustrating the face plate held by the hold lever shown in Fig. 5.

**General Layout of On-Vehicle Sound Instrument**

[0025] One embodiment of the present invention in which the on-vehicle sound instrument thereof is applied to a car radio including a cassette player is described in detail with reference to the drawings.

[0026] Referring to Fig. 1, a car radio generally comprises an instrument body 410 fixed on a vehicle and a portable face plate 430 detachable from the instrument body 410. The instrument body 410 includes
the face plate 430 and a removable holder 420 fixed thereon at the front face. The holder 420 comprises a holder plate 600 located opposite to the back side of the face plate 430 and a square-shaped frame portion 602 standing from the holder plate 600 at the edge portion thereof in the forward position relative to the holder plate 600.

[0027] As shown in Fig. 1, the face plate 430 includes a front panel 700 and a back lid panel 702, which are superposed with each other. The face plate 430 may also include a cassette insertion window 704 and a liquid-crystal display portion 706 disposed adjacent to the right side of the cassette insertion window 704. A liquid-crystal display device (LCD) which is described, is disposed behind the liquid-crystal display portion 706. The face plate 430 further includes a light guide 710 extending crosswise and a plurality of operation keys 720 arranged parallel to the light guide 710. The operation keys 720 activate various switches 760 which is described, these switches being disposed between the front panel 700 and the back lid panel 702. The operation keys 720 can be manipulated to activate these switches 102 for doing the power-on to the instrument body 10, the choice of preset and tuned frequencies, the switching between local and distance, the choice of bands, the input to various electronic tuning, note, tone and balance volumes and so on.

[0028] The face plate 430 may further include an ejection key 730a disposed on the left side of the cassette insertion window 704 and FF and REW keys 730b, 730c as adjacent the right side thereof. As shown in Fig. 2A, the keys 730a-730c can be used to drive shafts 734 integrally formed therewith. As shown in Fig. 2A, the back side of the face plate 430 includes apertures 732 through which the respective shafts 734 pass.

[0029] The face plate 430 further includes a release key 740 for releasing the face plate 430 from a holder 420. As shown in Fig. 2A, the release key 740 is used to drive a shaft 744 integrally formed therewith. The release key 740 includes an aperture 742 through which the shaft 743 passes.

[0030] As shown in Fig. 2A, the back side of the face plate 430 further includes a second connector 790 formed therein. The second connector 790 is connected to a first connector 500 in the instrument body 410, when the face plate 430 is mounted on the instrument body 410. The second connector 790 includes an array of terminals which includes a first terminal 502 at one end, a N-th terminal 504 at the opposite end and intermediate terminals 506 between the first and N-th terminals.

[0031] On the other hand, the holder plate 600 of the holder 420 includes a cassette insertion window 603 formed therethrough and a dust cover 604 for opening and closing the window 603. The holder plate 600 also includes a connector opening 606 through which the first connector 500 is exposed. The first connector 500 includes an array of terminals which includes a first terminal 602 at one end, a N-th terminal 604 at the opposite end and intermediate terminals 606 between the first and N-th terminals.

[0032] The holder plate 600 further includes openings 610, 612 and 614 formed therethrough. The opening 610 permits the shaft 734 to extend externally therethrough when the keys 730a-730c of the face plate 430 are activated. The opening 614 permits the shaft 744 to extend externally therethrough when the release key 740 of the face plate 430 is activated. The opening 612 permits a hold lever 530 for holding the face plate 430 to extend externally from the hold plate 600.

[0033] The holder 420 has two pawls 620 extending inwardly from the left side wall of the frame portion 602, for example. These pawls 620 co-operate with the hold lever 530 to form a structure for holding the face plate 430.

[0034] The mounting and dismounting of the face plate 430 through the holding structure is described with reference to Fig. 3. Fig. 3 shows the face plate 430 placed at its initial mounting state or at its final dismounting state. As shown in Fig. 2B, the face plate 430 includes engagement apertures 750 which are engaged with the pawls 620 in the frame portion 602 of the holder 420. The face plate 430 further includes a recess 800 formed therein at the back side. The recess 800 has one end in which a projection 802 is formed opposite to the bottom thereof. Thus, an undercut portion 804 is formed between the bottom of the recess 800 and the projection 802.

[0035] To mount the face plate 430 on the instrument body 410, the engagement apertures 750 of the face plate 430 are engaged with the pawls 620 of the holder 420. A pawl 530a formed in the tip of the hold lever 530 extending from the instrument body 410 is then inserted into the undercut 804 of the face plate 430 until the pawl 530a contacts the back side of the projection 802. Such a situation is shown in Fig. 3. The face plate 430 is then rotated toward the instrument body 410 around a fulcrum at which the engagement apertures 750 of the face plate 430 are engaged with the pawls 620 of the holder 420. As shown in Fig. 3, thus, the hold lever 530 is moved backward in the direction of an arrow and then locked in place to complete the mounting of the face plate 430 on the instrument body 410.

[0036] When the face plate 430 is to be dismounted from the instrument body 410, the release key 740 on the face plate 430 is manipulated. The shaft 744 is then extended to unlock the hold lever 530 which is in turn moved forward to the state of Fig. 3 by a spring which is described. By disengaging the pawls 620 of the holder 410 from the pawl 530a, it is possible to dismount the face plate 430 from the instrument body 410.

Control System including Start Setting Means

[0037] When the face plate 430 of this embodiment
is mounted on the instrument body 410 in the manner mentioned above, the first and the second connectors 500 and 790 are connected to each other. In this embodiment, start setting means is provided to avoid any disturbance produced depending on the sequence of connection between the terminals of the first and the second connectors 500 and 790 in the instrument body and the face plate 410, 430. A control system including such a start setting means is described with reference to Fig. 4.

[0038] Referring to Fig. 4, the instrument body 410 comprises a CPU 440 which is formed by a microcomputer for controlling the car radio. The CPU 440 has a power input terminal VDD to which a voltage of five volts, for example, is always applied through a battery supply line 452. The CPU 440 also has a chip enable terminal CE. The essential requirement of starting the CPU 440 is that a voltage (e.g., five volts) is applied to the chip enable terminal CE. The start setting means 450 of this embodiment can apply the voltage of five volts to the chip enable terminal CE of the CPU 440 only when the first terminals 502 and 792 of the first and the second connectors 500 and 790 are brought into contact with each other, while at the same time the N-th terminals 504 and 794 thereof are brought into contact with each other.

[0039] The chip enable terminal CE of the CPU 440 is connected to the battery supply line 452 through a first transistor 454 (e.g., PNP type). A second transistor 458 (e.g., NPN type) is also provided to turn the first transistor 454 on and off. The base of the second transistor 458 is connected to the accessory power supply line 456. The collector of the second transistor 458 is connected to the base of the first transistor 454. The emitter of the second transistor 458 is connected to the first terminal 502 of the first transistor 500 through an earth line 460a. In the second connector 790 of the face plate 430, the first and N-th terminals 792, 794 are connected to each other an earth line 470b. The N-th terminal 504 of the first connector 500 in the instrument body 410 is connected to the ground through an earth line 460c.

[0040] The first transistor 454 located in the power supply line of the chip enable terminal CE in the CPU 440 is turned on when its base potential becomes low. In this embodiment, the emitter potential of the second transistor 458 can be ground potential only when the first terminals 502, 792 of the first and the second connectors are connected with each other and at the same time the N-th terminals 504, 794 thereof are connected to each other. When the second transistor 458 is turned on by applying the power from the accessory power supply line 456 to the second transistor 458, the base potential of the first transistor 454 can be low. Only when the above requirements are fulfilled, the voltage of five volts can be applied to the chip enable terminal CE to start the CPU 440. In other cases where only the first terminals 502 and 792 are brought into contact with each other or where only the N-th terminals 504 and 794 are brought into contact with each other, the CPU 440 is not activated. When the first terminal 502 is brought into contact with the first terminal 792 and the N-th terminal 506 with the N-th terminal 794, the intermediate terminals 506 and 796 always contact each other unless there is any failure in connection. Therefore, there is no contact between the corresponding terminals after the CPU 440 has been placed at the startable state. This can avoid any disturbance produced depending on the sequence of connection between the terminals as in the prior art.

[0041] The terminal P1 of the CPU 440 outputs a light-on start command to a lamp controller 510 in the instrument body 410. The lamp controller 510 energizes lamps 770 and 772 in the face plate 430. The lamp 770 functions as a back-light source for a liquid-crystal display 780 while the lamp 772 is a source of illumination for energizing the light guide 710 in the face plate 430. Each of the lamps 770 and 772 is connected at one end to the lamp controller 510 through the two terminals in the respective terminals 506, 796 of the first and the second connectors 500, 790, the other end thereof being connected to the earth through the first terminal 792.

[0042] The CPU 440 can recognize the states of the switches 760 activated by the operation keys 720 through the four terminals in the respective terminal groups 506, 796 of the first and the second connectors 500, 790. The switches 760 are connected to one another in matrix, for example, of four columns and three lines, all the switches 760 being connected at one end to a common addressing ground line. Each of the switches 760 is further connected to three address lines for every line through a resistor. If a switch 760 is turned on, the resistance in the address line in which that switch is present changes so that the CPU 440 can recognize which switch is activated.

[0043] The four terminals in the respective terminal groups 506, 796 in the first and the second connectors 500, 790 are used to drive the liquid-crystal display 780. A liquid-crystal driver 782 is provided for driving the liquid-crystal display 780. The power input terminal VDD, chip enable terminal CE, clock input terminal CLK and data input terminal DATA are respectively connected to four terminals in the terminal group 796 of the second connector 790. The power input terminal VDD of the liquid-crystal driver 782 is adapted to be connected to the power supply line 452 through a third transistor 520 which is turned on by the output of the terminal P2 after the CPU 440 has been started.

[0044] Since the four terminals in the second connector 790 connected to the liquid-crystal driver 782 are not connected to the CPU 440 after the CPU 440 is started, any disturbance to the liquid-crystal display 780 can be avoided.

[0045] The start setting means 450 does not necessarily have to be in the condition to start the CPU 440,
as long as the instrument body 410 can be placed in the startable state after the first terminals 502, 792 in the first and the second connectors 500, 790 are brought into contact with each other and at the same time the N-th terminals 504, 794 thereof are brought into contact with each other. For example, the power switch signal line in the face plate 430 may be connected to the instrument body 410 only when the above conditions of connection in the first and the second connectors 500, 790 are fulfilled.

**Hold Lever Drive Mechanism**

**[0046]** A mechanism for driving the hold lever 530 maintains the face plate 430 at its mounted state, and to prevent the face plate 403 from falling when it is removed from the instrument body is described with reference to Figs. 5 to 7.

**[0047]** The mechanism generally comprises a lever holding fitting 540, first and second arms 550, 560, a stopper 580 and a release arm 590. The lever holding fitting 540 is fixed on the chassis of the instrument body 410 through three mounting pieces 540a-540c. The lever holding fitting 540 has a groove 542 for guiding the hold lever 530 for movement. The hold lever 530 is pin-jointed to the first arm 550, when a first pin 570 is passed through holes 532 and 542 formed therein and an E-shaped ring 570a is mounted on the pin 570 at its tip. The opposite ends of the first pin 570 is passed through the groove 542 in the lever holding fitting 540. The first pin 570 is also passed through a first spring 534 which in turn biases the hold lever 530 and the first arm 550 to increase the angle formed therebetween.

**[0048]** The first and the second arms 550, 560 are pin-jointed to each other, when a second pin 572 is passed through holes 554 and 562 formed therein and an E-shaped ring 572a is mounted on the second pin 572 at its tip. The second pin 572 is movable within the lever holding fitting 540.

**[0049]** The second pin 560 is pin-jointed to the lever holding fitting 540 by passing a third pin 574 through holes 544 and 564 formed therein and mounting an E-shaped ring 574a on the third pin 574 at its tip. Fig. 7 shows the face plate 430 after it is mounted and locked on the instrument body 410. The held lever 530 reduces the angle formed between the hold lever 530 and the first arm 550 and the force of the first spring 534 is increased as the hold lever 530 is moved toward the instrument body 410. This increases the force of engagement between the pawl 530a of the hold lever 530 and the projection 802 of the face plate 430.

**[0050]** This mechanism for driving the hold lever 530 includes a stopper 580 for locking the hold lever 530 at a position in which the hold lever 530 is closest to the instrument body 410. The stopper 580 is supported for rotation relative to the lever holding fitting 540 in the directions as shown by arrows A and B in Fig. 5. The stopper 580 includes a pawl 580a for stopping and maintaining the first pin 570 moved backward along the groove 542 of the lever holding fitting 540 in place, when the face plate 430 is mounted on the instrument body 410. The lever holding fitting 540 is pin-jointed to the stopper 580 when a fourth pin 576 is passed through holes 546 and 582 formed therein and an E-shaped ring 576a is mounted on the pin 576 at its tip. The fourth pin 576 is also passed through a second spring 584 which in turn biases the stopper 580 in the direction as shown by arrow A in Fig. 5.

**[0052]** A release arm 590 for disengaging the stopper 580 from the first pin 570 is provided. A fifth pin 578 is passed through a hole 592 formed in the release arm 590 and another hole 586 formed in the stopper 580 at a position a distance away from the pivot point thereof. An E-shaped ring 578a is mounted on the fifth pin 578 at its tip to pin-join the stopper 580 with the release arm 590. The release arm 590 includes an elongate slot-shaped groove 594 through which the third pin 574 can be passed.

**[0053]** The release arm 590 is biased toward the stopper 580 and held at a position near the opening 614 in the holder plate 600 under the action of the second spring 584. When a release key 740 in the face plate 430 is activated, a shaft 744 integrally formed in the key 740 urges the release arm 590. Thus, the release arm 590 can rotate the stopper 580 in the direction as shown by arrow B in Fig. 5 against the biasing force of the second spring 584. Therefore, the stopper 580 can be disengaged from the first pin 570. The first spring 574 forces the hold lever 530 to move forward and thus pushes the face plate 430 with the hold lever 530 as a unit. As a result, the face plate 430 is set to such a state as shown in Fig. 3. Under such a state, the entire face plate 430 can be moved leftward as viewed in Fig. 3 against the force of the first spring 534 to disengage the pawl 620 of the holder 420 from the face plate 430. As the face plate 430 is further moved rightward, the engagement between the hold lever 530 and the projection 802 of the face plate 430 can be released to separate the face plate 430 completely from the instrument body 410.

**[0054]** The present invention is not limited to the aforementioned embodiment, but may be applied to any other form such as a cassette player, digital audio tape player, CD player or its combination with a radio.

**Claims**

1. An on-vehicle sound instrument comprising:

- an instrument body (410) fixedly mounted on a vehicle;
- a portable face plate (430) detachably mounted on a holder (420) of said instrument body (410);
- said instrument body (410) having a first con-
ector (500) including a plurality of terminals (502, 504, 506) disposed in array; 
said face plate (430) comprising: 
a second connector (790) having a plurality of terminals (792, 794, 796) disposed in array 
each of which is connectable to the respective one of said terminals in said first connector (500); 
a plurality of operation keys (720) for activating 
said instrument body (410) in various operational modes; 
a plurality of switches (760) each of which is 
activated by the corresponding one of said operation keys (720); 
a circuit board on which said switches (760) are 
mounted, said circuit board connecting said switches (760) and said second connector (790); and 
start setting means (450) for placing said instrument body in a startable state; 
characterized in that 
said start setting means (450) places said 
instrument body (410) in a startable state only 
when both terminals (502, 504) of said first 
connectors (500) which are provided at both 
opposite ends of the array, are connected to the corresponding terminals (792, 794) provided at both opposite ends of the array of said second connector (790), and 
said holder (420) of said instrument body (410) 
includes an engaging portion (620) at one end in the direction parallel to that of said arrays 
and wherein said face plate (430) includes a portion (750) to be engaged with said engaging portion, said portion (750) to be engaged being formed in said face plate (430) at one end in the direction parallel to that of said array, whereby said face plate (430) can be mounted on or dismounted from said instrument body (410) when said face plate (430) is rotated around a point at which said engaging portion (620) and said portion (750) to be engaged are engaged with each other.

2. An on-vehicle sound instrument as defined in claim 1, wherein said face plate (430) includes a liquid-crystal display section (706) driven by signals from said instrument body (410) and wherein each of said first and second connectors (500, 790) includes liquid-crystal drive terminals located between said terminals (792, 794) at the opposite ends in the direction of the arrays.

3. An on-vehicle sound instrument as defined in claim 1 or 2, wherein said instrument body (410) includes a microcomputer (440) having a chip enable terminal (CE), said microcomputer (440) being started when a voltage is applied to said chip enable terminal (CE) through a power supply line and wherein said start setting means (450) can supply the power to said chip enable terminal (CE) only when said terminals (502, 504, 792, 794) of said first and second connectors (500, 790) are brought into contact with one another at the opposite ends in the direction of the arrays.

Patentansprüche

1. Audiogerät für Fahrzeugeinbau, das aufweist: 
einen Gerätekörper (410), der fest an einem Fahrzeug montiert wird; 
eine tragbare Frontplatte (430), die abnehmbar an einem Halter (420) des Gerätekörpers (410) montiert wird; 
wobei der Gerätekörper (410) an einen ersten Verbinde (500) aufweist, der eine Mehrzahl von Anschlüssen (502, 504, 506) enthält, die in einem Feld angeordnet sind; 
wobei die Frontplatte (430) aufweist: 
einen zweiten Verbinde (790), der eine Mehrzahl von Bedienungstasten (720) zum Aktivieren des Gerätekörpers (410) in verschiedenen Betriebsarten; 
eine Mehrzahl von Schalter (760), von denen jeder durch die entsprechende der Bedienungstasten (720) aktiviert wird; 
eine Platine, auf der die Schalter (760) montiert sind, wobei die Platine die Schalter (760) und den zweiten Verbinde (790) verbindet; und 
ein Starteinstellmittel (450) zum Setzen des Gerätekörpers in einen startbaren Zustand; 
dadurch gekennzeichnet, 
dafür das Starteinstellmittel (450) den Gerätekörper (410) in einem startbaren Zustand nur dann setzt, wenn beide Anschlüsse (502, 504) des ersten Verbinders (500), die auf den beiden entgegengesetzten Enden des Feldausschlosses (792, 794) sind, 
wobei der Halter (420) des Gerätekörpers (410) einen Eingriffsabschnitt (620) an einem Ende der Richtung, die parallel zu derjenigen der Felder ist, enthält und daß die Frontplatte (430) einen Abschnitt (750), der mit dem Eingriffsabschnitt in Eingriff zu bringen ist, enthält, wobei der in Eingriff zu bringende Abschnitt (750) in der Frontplatte (430) an einem Ende in der Richtung, die parallel zu derjenigen des Feldes.
ist, ausgebildet ist, wodurch die Frontplatte (430) auf dem Gerätekörper (410) montiert oder von dem Gerätekörper (410) abgenommen werden kann, wenn die Frontplatte (430) um einen Punkt, an dem der Eingriffsabschnitt (620) und der in Eingriff zu bringennde Abschnitt (750) miteinander in Eingriff gebracht werden, gedreht wird.

2. Audiogerät zum Fahrzeugeinbau nach Anspruch 1, bei dem

die Frontplatte (430) einen Flüssigkristallanzeigeabschnitt (706) enthält, der durch Signale von dem Gerätekörper (410) getrieben wird, und bei dem jeder der ersten und zweiten Verbinder (500, 790) Flüssigkristalltreiberanschlüsse enthält, die zwischen den Anschlüssen (792, 794) an den entgegengesetzten Enden in der Richtung der Felder befindlich sind.

3. Audiogerät zum Fahrzeugeinbau nach Anspruch 1 oder 2, bei dem

der Gerätekörper (410) einen Mikrocomputer (440) enthält, der einen Chipfreigabeanschluß (CE) aufweist, wobei der Mikrocomputer (440) gestartet wird, wenn eine Spannung an den Chipfreigabeanschluß (CE) über eine Stromversorgung angelegt wird, und bei dem das Starteinstellmittel (450) die Leistung an den Chipfreigabeanschluß (CE) nur liefern kann, wenn die Anschlüsse (502, 504, 792, 794) der ersten und zweiten Verbinder (500, 790) in Kontakt miteinander an den entgegengesetzten Enden in der Richtung der Felder gebracht sind.

Revendications

1. Instrument audio monté à bord d'un véhicule comportant :

- un corps (410) d'instrument monté fixe sur un véhicule ;
- une plaque (430) de face portative montée amovible sur un support (420) du corps (410) d'instrument ;
- le corps (410) d'instrument ayant un premier connecteur (500) incluant une pluralité de bornes (502, 504, 506) disposées en réseau ;
- la plaque (430) de face comportant : un second connecteur (790) ayant une pluralité de bornes (792, 794, 796) disposées en réseau, qui peuvent chacune être connectées à l'une respective des bornes dans le premier connecteur (500) ;
- une pluralité de touches (720) de fonctionnement destinées à activer le corps (410) d'instrument en divers modes opérationnels ;
- une pluralité de commutateurs (760) qui sont chacun activés par l'une correspondante des touches (720) de fonctionnement ;
- un panneau de circuit sur lequel les commutateurs (760) sont montés, le panneau de circuit connectant les commutateurs (760) et le second connecteur (790) ; et
des moyens (450) de réglage de démarrage destinés à placer le corps d'instrument dans un état pouvant être démarré ; caractérisé en ce que les moyens (450) de réglage de démarrage placent le corps (410) d'instrument dans un état où il peut être démarré uniquement lorsque les deux bornes (502, 504) du premier connecteur (500) qui sont disposées aux deux extrémités opposées du réseau, sont connectées aux bornes (792, 794) correspondantes prévues aux deux extrémités opposées du réseau du second connecteur (790), et le support (420) du corps (410) d'instrument comporte une partie (620) de coopération à une extrémité suivant la direction parallèle à celle des réseaux et dans lequel la plaque (430) de face comporte une partie (750) destinée à coopérer avec la partie de coopération, la partie (750) destinée à coopérer étant formée dans la plaque (430) de face à une extrémité suivant la direction parallèle à celle du réseau, grâce à quoi la plaque (430) de face peut être montée sur le corps (410) d'instrument ou démontée du corps (410) d'instrument lorsque la plaque (430) de face est tournée par rapport à un point auquel la partie (620) de coopération et la partie (750) destinée à coopérer mutuellement.

2. Instrument audio monté à bord d'un véhicule tel que défini à la revendication 1, dans lequel la plaque (430) de face comporte une section (706) d'affichage à cristaux liquides attaquée par des signaux provenant du corps (410) d'instrument et dans lequel chacun des premier et second connecteurs (500, 790) comportent des bornes d'attaque à cristaux liquides situées entre les bornes (792, 794) aux extrémités opposées suivant la direction des réseaux.

3. Instrument audio monté à bord d'un véhicule tel que défini aux revendications 1 ou 2, dans lequel le corps (410) d'instrument comporte un micro-ordinateur (440) ayant une borne (CE) d'activation de puce, le micro-ordinateur (440) étant démarré lorsqu'une tension est appliquée à la borne (CE) d'activation de puce par l'intermédiaire d'une ligne.
d'alimentation en courant et dans lequel les moyens (450) de réglage de démarrage peuvent fournir le courant à la borne (CE) d'activation de puce uniquement lorsque les bornes (502, 504, 792, 794) des premier et second connecteurs (500, 790) sont amenées en contact les unes avec les autres aux extrémités opposées suivant la direction des réseaux.