Antimigraine cyclobutenedione derivatives of tryptamines

Antimigrane Zyklobutendion-Derivate von Tryptaminen

Dérivés antimitragaines de cyclobutenedione-tryptamines

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

Priority: 16.09.1993 US 122112

Date of publication of application:
22.03.1995 Bulletin 1995/12

Proprietor:
BRISTOL-MYERS SQUIBB COMPANY
Princeton, NJ 08543-4000 (US)

Inventors:
• Gyls Jonas A.
 Southington, Connecticut 06489 (US)
• Ruediger Edward H.
 Greenfield Park, Quebec J4V2K3 (CA)

Representative:
Durand, Yves Armand Louis et al
CABINET WEINSTEIN
20, Avenue de Friedland
75008 Paris (FR)

References cited:
EP-A- 0 426 379
GB-A- 2 162 522

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Background of the Invention

This invention generally pertains to heterocyclic carbon compounds having drug and bio-affecting properties and to their preparation and use. In particular the invention is concerned with cyclobutenedione-substituted tryptamine derivatives. These compounds possess a unique serotonergic profile that renders them useful in treatment of vascular headaches such as migraine or cluster type.

Dowie, et al. disclosed a series of 3-alkylaminoindole derivatives as being potentially useful for the treatment of migraine in a published patent application, GB 2,124,210. One member of this series of compounds was specifically claimed in a later patent application of Oxford, GB 2,162,522, published February 5, 1986. This particular compound is known in the literature as sumatriptan(i).

![Formula (i) Sumatriptan]

A series of substituted cyclic sulfamidindole derivatives have been disclosed in EP 0501568A as being potentially usefully in treating migraine and associated conditions. One of the compounds specifically claimed is formula (ii).

![Formula (ii)]

Migraine is a member of a broader class of headache that also comprises cluster headaches and other headaches believed to have a vascular implication in their etiology. These headaches are often classified as vascular headaches. For a current summary of headache and its treatment see: Chapter 13: "Drugs Used to Treat Migraine and Other Headaches" in Drug Evaluations, 6th Edn., 1986, pages 239-253 American Medical Association, W.B. Saunders Co., Philadelphia, PA.

Frequent irregularly occurring episodes of headache afflict a large number of people but are usually acute in nature and of short duration. Relief of this type of headache is typically provided by mild analgesics such as aspirin or acetaminophen. Such headaches are quite common and, while painful and perhaps annoying, are seldom incapacitating and debilitating. Chronic recurrent headaches of the vascular category, however, usually lead to patient consultation with a physician due to pain severity which is often incapacitating.

Although there is no universally accepted classification system for headache, vascular headache, for the purposes of the present invention, refers mainly to migraine and cluster headaches. Migraine includes the common or classical type as well as migraine variants which would be familiar to one skilled in the art. Other subtypes such as toxic vascular and hypertensive headaches, chronic paroxysmal hemicrania, as well as some muscle-contraction and combined or mixed vascular-muscle headaches may also fall into a vascular-related headache category and be treatable by the present invention. It is appreciated by one skilled in the art that no single therapy is effective in all patients diagnosed with the same subtype of headache, thereby raising further uncertainties about headache classification.

Drugs most commonly used in treatment of headache fall into the following groups:
Ergot Alkaloids,
Beta-blocking Agents,
Calcium Channel Blocking Agents,
Antidepressants, and
Mixtures of these.

Management of recurring vascular headache is complicated by the lack of a single therapy which is effective in all patients with the same headache type and by the need to select either an abortive or prophylactic method of treatment for these headaches. Further complication involves the current use of drugs that cause dependence with extended use, such as ergotamine. Another important consideration for the present invention is that the more effective antimigraine agents in current use, e.g., the ergots, and methysergide, produce severe use-limiting side-effects with long term usage.
Thus there is a need for a safe and effective drug for the treatment of migraine and related disorders which can be used either prophylactically or to alleviate an established headache.

The objectives of the present invention relate to the use of novel cyclobutenedione-substituted 5 tryptamines to provide treatment of vascular headaches, particularly migraine and cluster-types; to processes for their preparation; and to their pharmaceutical compositions and medical usage.

Summary and Detailed Description of the Invention

The method of the present invention is intended for the alleviation of vascular or vascular-related headache of which migraine and cluster are the best known specific examples. The method essentially involves administration of a cyclobutenedione-substituted tryptamine derivative or a pharmaceutically acceptable salt and/or solvate thereof, to a human in need of such treatment. For use in the instant method, oral and transnasal administration of pharmaceutical compositions containing the subject antimigraine agents are preferred.

In a broad aspect, the present invention is concerned with cyclobutenedione derivatives of tryptamine having useful antimigraine serotonergic properties and characterized by Formula I.

\[
\begin{align*}
\text{I} & \quad \text{Formula I}
\end{align*}
\]

In Formula I, \(R^1 \) is a substituent selected from hydrogen, halogen and lower alkyl. \(R^2 \) and \(R^3 \) are independently selected from hydrogen and lower alkyl. \(R^4 \) is selected from hydrogen, lower alkyl, lower acyl, and lower alkylsulfonyle. The symbol \(m \) is the integers 1 to 3 or zero while the symbol \(n \) can be the integers 1 to 5. In preferred compounds, \(m \) is zero and \(n \) is 2.

\(X \) is selected from \(-\text{NR}^2\text{R}^3\), \(-\text{OR}^2\), and \(-\text{R}^5\), with \(\text{R}^5 \) being hydrogen, lower alkyl, cycloalkyl, aryl, or aryl-lower alkyl.

Additionally, compounds of Formula I also encompass all pharmaceutically acceptable acid addition salts and/or solvates thereof. The present invention is also considered to include stereoisomers as well as optical isomers, e.g., mixtures of enantiomers as well as individual enantiomers and diastereomers, which arise as a consequence of structural asymmetry in certain compounds of the instant series. Separation of the individual isomers is accomplished by application of various methods which are well known to practitioners in the art.

The term "lower alkyl" refers to both straight and branched chain carbon radicals of from 1 to 4 carbon atoms inclusive. Illustrative of these radicals are carbon chains which can be methyl, ethyl, propyl, isopropyl, 1-butyl, 1-methylpropyl, 2-methylpropyl. The term "lower acyl" denotes an acyl group containing from 1 to 4 carbons, e.g., a formyl group, a butyryl group, etc. "Cycloalkyl" refers to cyclopentyl, cyclohexyl or cycloheptyl groups and "aryl-lower alkyl" refers to phenyl groups having alkyl links of from 1 to 4 carbons.

The pharmaceutically acceptable acid addition salts of the invention are those in which the counter-ion does not contribute significantly to the toxicity or pharmacological activity of the salt and, as such, they are the pharmacological
 equivalents of the bases of Formula I. They are generally preferred for medical usage. In some instances, they have physical properties which makes them more desirable for pharmaceutical formulation such as solubility, lack of hygroscopicity, compressibility with respect to tablet formation and compatibility with other ingredients with which the substance may be used for pharmaceutical purposes. The salts are routinely made by admixture of a Formula I base with the selected acid preferably by contact in solution employing an excess of commonly used inert solvents such as water, ether, benzene, methanol, ethanol, ethyl acetate and acetonitrile. They may also be made by metathesis or treatment with an ion exchange resin under conditions in which the anion of one salt of the substance of the Formula I is replaced by another anion under conditions which allow for separation of the desired species such as by precipitation from solution or extraction into a solvent, or elution from or retention on an ion exchange resin. Pharmaceutically acceptable acids for the purposes of salt formation of the substances of Formula I include sulfuric, phosphoric, hydrochloric, hydrobromic, hydroiodic, citric, acetic, benzoic, cinnamic, fumaric, mandelic, phosphoric, nitric, mucic, isethionic, palmitic, heptanoic, and others.

Serotonin has been linked to the pathophysiology of migraine by accumulating evidence including increased excretion of serotonin metabolites following a migraine attack and a reduction in the serotonin content of blood platelets during the migraine headache. This latter effect appears to be specific for migraine and not a result of pain or stress. (Anthony, et al., “Plasma serotonin in migraine and stress”, Arch. Neurol., 1967, 16: 544-552). More importantly, intramuscular injection of reserpine lowers plasma serotonin and induces a typical migraine-type headache in migraine sufferers. This induced headache can be alleviated by slow I.V. injection of serotonin creatinine sulfate. (Kimball, et al., “Effect of serotonin in migraine patients”, Neurology N.Y., 1960, 10: 107-111).

Although serotonin has been shown to be effective in treating migraine attacks, its use in migraine is precluded by its side-effects such as restlessness, nausea, faintness, hyperpnea, facial flushing and parasthesias. (Lance, et al., “The control of cranial arteries by humoral mechanisms and its relation to the migraine syndrome”, Headache, 1967, 7: 93-102). For this reason more specific serotonin agents, which would treat the migraine without all of the other actions, are potentially useful antimigraine medicaments. Accumulating findings have led to the perception that compounds with selectivity for the 5-HT₁D sub-type of serotonin receptors would be clinically efficacious in the treatment of migraine. In this regard the compounds of the instant invention demonstrate potent affinity and agonist activity at the 5-HT₁D site. Formula I compounds of interest have potencies wherein IC₅₀ values of these compounds are less than 100 nM. Preferred compounds have IC₅₀ values below 10 nM.

Determination of 5-HT₁D binding properties was accomplished employing methodology as such as described by Heuring and Peroutka, J. Neurosci., 7(3), 1987, 894-903; with only minor modifications. In vitro IC₅₀ (nM) test values were determined for the compounds of this invention employing tritiated serotonin.

In addition to the 5-HT₁D binding test data, ability of the compounds of this invention to elicit contraction in a canine saphenous vein model further indicates usefulness in treating vascular headaches. Another aspect then of the instant invention provides a method for treating a migraine sufferer which comprises systemic administration to the sufferer of a therapeutically effective amount of a compound of Formula I or a pharmaceutically acceptable salt thereof.

The administration and dosage regimen of compounds of Formula I is considered to be done in the same manner as for the reference compound sumatriptan, cf. Oxford, GB 2,162,522A. Although the dosage and dosage regimen must in each case be carefully adjusted, utilizing sound professional judgment and considering the age, weight and condition of the recipient, the route of administration and the nature and gravity of the illness, generally the daily dose will be from about 0.5 to about 10 mg/kg, preferably 0.1 to 2 mg/kg, when administered parenterally and from about 1 to about 50 mg/kg, preferably about 20 mg/kg, when administered orally. In some instances, a sufficient therapeutic effect can be obtained at lower doses while in others, larger doses will be required. Systemic administration refers to oral, intra-nasal, rectal and parenteral (i.e. intramuscular, intravenous and subcutaneous). Generally, it will be found that when a compound of the present invention is administered orally, a larger quantity of the active agent is required to produce the same effect as a smaller quantity given intra-nasally or parenterally. In accordance with good clinical practice, it is preferred to administer the instant compounds at a concentration level that will produce effective antimigraine effects without causing any harmful or untoward side effects.

The compounds of the present invention may be administered for antimigraine purposes either as individual therapeutic agents or as mixtures with other therapeutic agents. Therapeutically, they are generally given as pharmaceutical compositions comprised of an antimigraine amount of a compound of Formula I or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier. Pharmaceutical compositions which provide from about 1 to 500 mg of the active ingredient per unit dose are preferred and are conventionally prepared as tablets, lozenges, capsules, powders, aqueous or oily suspensions, syrups, elixirs, and aqueous solutions.

The nature of the pharmaceutical composition employed will, of course, depend on the desired route of administration. For example, oral compositions may be in the form of tablets or capsules and may contain conventional excipients such as binding agents (e.g. starch) and wetting agents (e.g. sodium lauryl sulfate). Solutions or suspensions of a Formula I compound with conventional pharmaceutical vehicles are employed for intra-nasal and parenteral compositions such as an aqueous solution for intravenous injection or an oily suspension for intramuscular injection.
The compounds of Formula I can be prepared by adaptation of the synthetic processes shown in Scheme A. Processes for syntheses of some intermediate compounds are outlined in Scheme C. In addition, certain compounds and their syntheses will be set forth in more detail in the Specific Embodiments section, infra.

In the synthetic schemes, R¹ through R⁵, X, m and n are as defined supra. The symbol Q represents a synthetic organic leaving group moiety such as tosyl, mesyl, halide, sulfate, phosphate, and so forth. Tosylate is also denoted Ts when it is the specified moiety. The symbol i-Pr denotes isopropyl and TIPS refers to the triisopropylsilyl group (\(-Si(i-Pr)₃\)).

Scheme A sets out the processes for synthesizing compounds of Formula I. The processes proceed either via a 5-amino-substituted intermediates of formulas (2 and 6). Selection of the preferred synthetic route mainly depends on the nature of the desired X-substituent on the square moiety.

Scheme B deals with synthetic pathways for intermediate compounds.

The reactions employed in Schemes A and B and their applications are familiar to the practitioner skilled in organic synthesis and modifications of conditions and reagents would be readily understood. The skilled synthetic chemist would know how to adapt these processes for preparation of specific Formula I compounds including other compounds embraced by this invention but not specifically disclosed. Variations of the methods to produce the same compounds in somewhat different fashion will also be evident to one skilled in the art. To provide greater detail in description, representative synthetic examples are provided infra in the "Specific Embodiments" section.

Description of Specific Embodiments

The compounds which constitute this invention, their methods of preparation and their biologic actions will appear more fully by consideration of the following examples, which are given for the purpose of illustration only and are not be construed as limiting the invention in sphere or scope. In the following examples, used to illustrate the foregoing synthetic processes, temperatures are expressed in degrees Celsius and melting points are uncorrected. The nuclear magnetic resonance (NMR) spectral characteristics refer to chemical shifts (δ) expressed as parts per million (ppm) versus tetramethylsilane (TMS) as reference standard. The relative area reported for the various shifts in the \(^1H\) NMR spectral data corresponds to the number of hydrogen atoms of a particular functional type in the molecule. The nature of the shifts as to multiplicity is reported as broad singlet (bs), singlet (s), multiplet (m), heptet (hept), quartet (q), triplet (t) or doublet (d). Abbreviations employed are DMSO-d₆ (deuterodimethylsulfoxide), CDCl₃ (deuterochloroform) and are otherwise conventional. The infrared (IR) spectral descriptions include only absorption wave numbers (cm\(^{-1}\)) having functional group identification value. The IR determinations were employed either neat or using potassium bromide (KBr) as diluent. The elemental analyses are reported as percent by weight.

The following examples describe in detail the preparation of compounds of Formula I, as well as certain synthetic intermediates. It will be apparent to those skilled in the art that modifications, both of materials and methods, will allow preparation of other compounds disclosed herein. From the foregoing description and the following examples it is believed that one skilled in the art is able to use the invention to the fullest extent.

A. Preparation of Intermediate Compounds

Some representative procedures for preparation of synthetic intermediate compounds contained in the processes of the schemes are given hereinbelow. Most starting materials and certain intermediates are either commercially available or procedures for their synthesis are readily available in the chemical literature allowing their full utilization by one skilled in the art of organic synthetic chemistry.

Example 1

5-[(5-Nitro-1H-indol-3-yl)methyl]-2,2-dimethyl-1,3-dioxane-4,6-dione (10)

An adaptation of the procedure of Flaugh\(^1\) was used. Thus, a solution of 5-nitroindole (50.0 g, 0.32 mol), Meldrum's acid (46.0 g, 0.32 mol), 37% aqueous formaldehyde (26.0 mL, 0.32 mol) and proline (1.8 g, 0.016 mol) in 200 mL of acetonitrile was stirred at room temperature for 18 h. The resulting thick yellow slurry was filtered and the filtrate was washed with acetonitrile, then acetone and finally with ether. This material was dried \textit{in vacuo} to give the title compound (80.0 g, 81%) as a bright yellow solid, mp 182\(^{\circ}\) C (dec). The mother liquor was concentrated and then diluted with H₂O, and the resulting solid was collected, washed and dried as before to give a second crop of the product (7.0 g) as a darker yellow solid. Total yield= 87.0 g (89%): IR (KBr) 3330, 1767, 1732 cm\(^{-1}\); \(^1H\) NMR (DMSO-d₆, 200 MHz) δ 11.64 (s, 1H), 8.63 (d, J= 2.2 Hz, 1H), 7.96 (dd, J= 9.0, 2.2 Hz, 1H), 7.49 (d, J= 9.0 Hz, 1H), 7.33 (d, J= 2.2 Hz, 1H), 4.84 (t,

Example 2

Ethyl 5-nitro-3-(1H-indole)proponate

To a solution of [5-(5-nitroindol-3-yl)methyl]-2,2-dimethyl-1,3-dioxane-4,6-dione (10.0 g, 0.031 mol) in a mixture of pyridine (80 mL) and absolute ethanol (20 mL) was added 0.1 g of copper powder and the mixture was heated to reflux under Ar for 2 h. The cooled mixture was filtered and the filtrate was evaporated. The resulting residue was triturated with ether:chloromethane to give the title compound (7.3 g, 89%) as a solid, mp 118-121°C: IR (KBr) 3330, 1730 cm⁻¹; ¹H NMR (DMSO-d₆, 200 MHz) δ 11.59 (s, 1H), 8.53 (d, J = 2.2 Hz, 1H), 7.97 (dd, J = 9.0, 2.3 Hz, 1H), 7.49 (d, J = 9.0 Hz, 1H), 7.40 (d, J = 2.1 Hz, 1H), 4.03 (q, J = 7.1 Hz, 2H), 3.02 (t, J = 7.4 Hz, 2H), 2.67 (t, J = 7.4 Hz, 2H), 1.13 (t, J = 7.1 Hz, 3H).

Example 3

5-Nitro-3-(3-hydroxypropyl)-1H-indole (5)

To a suspension of 95% LiAlH₄ (2.20 g, 0.058 mol) in 60 mL of dry THF was added a solution of ethyl 5-nitro-3-indoleproponate (7.30 g, 0.028 mol) in 100 mL of dry THF, at 0°C under Ar. After stirring for 20 min, the mixture was quenched by the cautious addition of 3 mL of H₂O. The resulting suspension was stirred for 10 min and then it was filtered and the filtrate was washed with additional THF. The filtrate was evaporated and the residue was taken up in ether, dried (Na₂SO₄) and evaporated, and the resulting solid was triturated with hexane to give the title compound (4.30 g, 70%) as a yellow solid, mp 107-110°C: IR (KBr) 3480, 3180, 1625 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 8.60 (d, J = 2.1 Hz, 1H), 8.35 (br s, 1H), 8.11 (dd, J = 9.0, 2.2 Hz, 1H), 7.38 (d, J = 8.9 Hz, 1H), 7.16 (m, 1H), 3.75 (t, J = 6.2 Hz, 2H), 2.91 (t, J = 7.2 Hz, 2H), 2.07-1.93 (m, 2H), 1.37 (br s, 1H).

Example 4a

3-(3-Bromopropyl)-5-nitro-1H-indole (4)

To a solution of triphenylphosphosphate (6.70 g, 0.025 mol) in 80 mL of acetonitrile was added a solution of 5-nitro-3-(3-hydroxypropyl)indole (4.30 g, 0.020 mol) in 75 mL of acetonitrile, followed by a solution of CBr₄ (9.00 g, 0.027 mol) in 25 mL of acetonitrile, at 0°C under Ar. The mixture was stirred at room temperature for 3 h and then it was evaporated and the residue was chromatographed (SiO₂/ethyl acetate-hexane, 1:9 then 1:4) to give the title compound (4.60 g, 84%) as a solid, mp 92-95°C: IR (neat) 3420, 1330 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 8.59 (d, J = 2.1 Hz, 1H), 8.40 (br s, 1H), 8.13 (dd, J = 9.0, 2.2 Hz, 1H), 7.40 (d, J = 9.1 Hz, 1H), 7.21 (d, J = 2.2 Hz, 1H), 3.45 (t, J = 6.4 Hz, 2H), 2.99 (t, J = 7.2 Hz, 2H), 2.26 (m, 2H).

Example 4b

3-[3-Iodopropyl]-5-nitro-1H-indole. (4)

A solution of 3-[3-hydroxypropyl]-5-nitro-1H-indole (1.13 g, 5.06 mmol) in 20 mL of acetonitrile was cooled to 0°C and treated sequentially with triethylamine (1.05 mL, 7.59 mmol) and methanesulfonfyl chloride (0.43 mL, 5.6 mmol) and the mixture stirred for 30 min. The reaction mixture was quenched with 30 mL of water and the organic material was extracted into ethyl acetate. The organic extracts were dried (MgSO₄) and concentrated in vacuo. The crude residue was dissolved in 20 mL of acetonitrile containing KI (1.7 g, 10.1 mmol) and heated to reflux for 3 h. The reaction mixture was cooled and the solvent removed in vacuo. The residue was dissolved in 100 mL of ethyl acetate and washed with water. The ethyl acetate layer was dried (MgSO₄) and concentrated and the residue was purified by flash column chromatography (20% ethyl acetate in hexanes) to give the title compound 1.37 g, 4.20 mmol, 83%) as a yellow solid: mp 95-98°C: ¹H NMR (DMSO-d₆, 300 MHz) δ 8.53 (d, J = 2.3 Hz, 1H), 7.97 (dd, J = 2.3, 9.0 Hz, 1H), 7.51 (d, J = 9.0 Hz, 1H), 7.43 (s, 1H), 3.30 (t, J = 6.7 Hz, 2H), 2.84 (t, J = 7.7 Hz, 2H), 2.11 (m, 2H); IR (KBr) 1330, 1510, 810 cm⁻¹; MS (m/z) 330 (M⁺). Anal. Calcd for C₁₄H₁₁N₂O₃: C, 40.02, H, 3.36, N 8.48. Found: C, 40.26; H, 3.27; N, 8.51.
Example 5

5-Bromo-3-(3-hydroxypropyl)-1H-indole (11)

A modification of a procedure reported by Grandberg (Chem. Abstr. 1973, 79, 918995) was used. Thus, to a suspension of 4-bromophenylhydrazine hydrochloride (56.0 g, 0.25 mol) in 200 mL of 2-methoxyethanol was added 3,4-dihydro-2H-pyran (25.5 mL, 0.28 mol) over ca. 5 min and the resulting mixture was heated to reflux under Ar for 3.5 h. The cooled reaction mixture was evaporated and the residual oil was poured into 500 mL of cold water. The aqueous mixture was extracted with ether (2x250 mL) and the ethereal extract was washed with H2O (250 mL), 1N HCl (2x250 mL) and brine (250 mL). The organic phase was then dried (Na2SO4) and evaporated to give a dark orange-brown oil. This oil was purified on a 10x15 cm SiO2 pad (elution with CH2Cl2 then CH2Cl2-ethyl acetate, 1:1) to give the title compound (43.7 g, 69%) as a viscous orange-brown oil: IR (neat) 3570, 3430, 3300 (br), 1460 cm⁻¹; ¹H NMR (CDCl3, 200 MHz) δ 11 (br s, 1H), 7.73 (d, J=1.8 Hz, 1H), 7.30-7.18 (m, 2H), 6.97 (s, 1H), 3.72 (t, J=6.4 Hz, 2H), 2.80 (t, J=7.5 Hz, 2H), 2.03-1.89 (m, 2H), 1.68 (br s, 1H).

Example 6

5-Aminomethyl-3-(3-hydroxypropyl)indole (6)

To a solution of 5-cyano-3-(3-hydroxypropyl)indole (1.00 g, 0.005 mol) in 30 mL of absolute ethanol was added 10% palladium-on-charcoal (1.0 g) and the mixture was hydrogenated on a Parr shaker at 40 psi for 6 h. The mixture was then filtered, through Celite, the filtrate was washed with additional ethanol and the filtrate was evaporated to give a colourless gum. Flash chromatography (SiO2/MeCN-MeOH, 9:1 then MeCN-MeOH-NH4OH, 90:9:1) afforded the essentially pure title compound (0.67 g, 70%) as a colourless gum: IR (neat) 3250 cm⁻¹; ¹H NMR (DMSO-d6, 200 MHz) δ 10.60 (s, 1H), 7.41 (s, 1H), 7.23 (d, J=8.2 Hz, 1H), 7.04 (s, 1H), 7.02 (d, J=8.1 Hz, 1H), 4.4 (br s, 1H), 3.75 (s, 2H), 3.46 (t, J=6.5 Hz, 2H), 3.3 (br s, 2H), 2.68 (m, 2H), 1.78 (m, 2H).

Example 7

5-(1,2-Dioxo-4-methyl-3-cyclobuten-3-yl)aminomethyl-3-(3-hydroxypropyl)indole (8a)

To a solution of 5-aminomethyl-3-(3-hydroxypropyl)indole (0.65 g, 0.0032 mol) in 12 mL of absolute ethanol was added 3-(1-methylethoxy)-4-methylcyclobut-3-ene-1,2-dione (0.56 g, 0.0036 mol) and the mixture was stirred at room temperature under Ar for 20 h. Evaporation of the resulting mixture gave a brown gum which was chromatographed (SiO2/CH2Cl2 the CH2Cl2-MeOH, 95:5) to give the title compound (0.49 g, 51%) as an off-white foam: IR (neat) 3300 (br), 1785, 1720, 1600 (br) cm⁻¹; ¹H NMR (DMSO-d6, 200 MHz) δ 10.75 (s, 1H), 9.45 (m, 0.3H), 9.18 (m, 0.7H), 7.44 (s, 1H), 7.33 (d, J=8.4 Hz, 1H), 7.10 (s, 1H), 6.98 (d, J=8.4 Hz, 1H), 4.77 (s, 1H), 4.61 (m, 1H), 4.42 (m, 1H), 3.43 (m, 2H), 2.66 (m, 2H), 2.14 (s, 1.2H), 2.05 (s, 1.8H), 1.77 (m, 2H).

Example 8

5-(1,2-Dioxo-4-methyl-3-cyclobuten-3-yl)aminomethyl-3-(3-methanesulfonyloxypropyl)indole (9)

To a solution of 5-(1,2-dioxo-4-methyl-3-cyclobuten-3-yl)aminomethyl-3-(3-hydroxypropyl)indole (0.48 g, 0.0016 mol) in 45 mL of dichloromethane-THF (4:1), cooled at -20°C under Ar, was added triethylamine (0.28 mL, 0.002 mol) followed by methanesulfonyl chloride (0.16 mL, 0.002 mol). The resulting solution was stirred at -20°C for 1.5 h and then it was washed (brine), dried (Na2SO4) and evaporated to give a brown gum. This material was chromatographed (SiO2/ethyl acetate) to give the title compound (0.50 g, 83%) as a beige foam: IR (neat) 3320 (br), 1785, 1727, 1600 (br), 1350 (br) cm⁻¹; ¹H NMR (DMSO-d6, 200 MHz) δ 10.86 (s, 1H), 9.45 (m, 0.5H), 9.21 (m, 0.5H), 7.48 (s, 1H), 7.33 (d, J=8.3 Hz, 1H), 7.17 (s, 1H), 7.03 (d, J=8.3 Hz, 1H), 4.78 (d, J=5.9 Hz, 1.2H), 4.62 (d, J=6.0 Hz, 0.8H), 4.23 (m, 2H), 3.80 (s, 3H), 3.06 (m, 2H), 2.76 (m, 2H), 2.14 (s, 1.2H), 2.05 (s, 1.8H).

Example 9

2-Iodo-4-nitroaniline (12)

To a solution of 4-nitroaniline (27.6 g, 0.2 mol) in 200 mL of dry acetonitrile was added a solution of ICl (31.0 g, 0.19 mol) in 50 mL of acetonitrile and the mixture was stirred at room temperature for 18 h. The reaction mixture was then poured into ethyl acetate, washed (20%aq. Na₂S₂O₃ brine), dried (Na₂SO₄) and evaporated to give a brown solid. Chromatography (SiO₂/CH₂Cl₂-hexane, 6:4 to 7:3) afforded the title compound (18.0 g, 36%) as a yellow solid, mp 104-106° C: IR (neat) 3480, 3380, 1610, 1300 cm⁻¹; ¹H NMR (DMSO-d₆, 200 MHz) δ 8.38 (d, J= 2.6 Hz, 1H), 7.97 (dd, J= 9.0, 2.6 Hz, 1H), 6.75 (d, J= 9.0, 1H), 6.73 (s, 2H).

Example 10

1-(Trimethylsilyl)-4-(t-butyldimethylsiloxyl)-1-butyne (13)

To a solution of 3-butyne-1-ol (21.0 g, 0.3 mol) in 100 mL of DMF was added imidazole (41.3 g, 0.6 mol), followed by a solution of t-butyldimethylsilane chloride (48.0 g, 0.32 mol) in 25 mL of DMF. After stirring at room temperature under Ar for 18 h, the reaction mixture was poured into 10% aqueous NaHCO₃ (150 mL) and extracted with hexane (3x250 mL). The organic phase was washed (brine), dried (Na₂SO₄) and evaporated to give 1-(t-butyldimethylsiloxyl)-3-butyne (49.0 g, 89%) as a colourless oil: IR (neat) 3320, 2125 (w), 1260, 1110, 840 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 3.74 (t, J= 7.2 Hz, 2H), 2.40 (dt, J= 7.1, 2.6 Hz, 2H), 1.96 (t, J= 2.6 Hz, 1H), 0.90 (s, 9H), 0.07 (s, 6H).

To a solution of 1-(t-butyldimethylsiloxyl)-3-butyne (49.0 g, 0.27 mol) in 250 mL of THF, at -78° C under Ar, was added a solution of n-butyl lithium (1.6 M in hexane, 170 mL, 0.27 mol) over ca. 45 min. The mixture was stirred at -78° C for 30 min and then at 0° C for 1.5 h. The resulting solution was recooled at -78° C and then trimethylsilyl chloride (34.0 mL, 0.27 mol) was added dropwise. After the addition the mixture was allowed to warm to room temperature over 18 h and then it was diluted with hexane, washed (H₂O, sat. aq. NaHCO₃, brine), dried (Na₂SO₄) and evaporated to give an oil. Distillation at reduced pressure afforded the title compound (60.0 g, 88%) as a colourless oil, bp 70-75° C/0.1 mm: IR (neat) 2180, 1253, 1112, 841 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 3.72 (t, J= 7.0 Hz, 2H), 2.43 (t, J= 7.0 Hz, 2H), 0.90 (s, 9H), 0.14 (s, 9H), 0.07 (s, 6H).

Example 11

5-Nitro-2-trimethylsilyl-3-(2-t-butyldimethylsiloxeyethyl)indole (14)

A mixture of 2-iodo-4-nitroaniline (7.92 g, 0.030 mol), 1-(trimethylsilyl)-4-(t-butyldimethylsiloxyl)-1-butyne (15.36 g, 0.060 mol), potassium acetate (14.70 g, 0.15 mol), lithium chloride (1.27 g, 0.030 mol) and palladium (II) acetate (0.675 g, 0.003 mol) in 100 mL of dry DMF was heated at 70° C (oil-bath temperature) under Ar for 2.5 h. The cooled reaction mixture was diluted with ether and the aqueous phase was separated and extracted with ethyl acetate. The combined organic phases were washed (H₂O, brine), dried (Na₂SO₄) and evaporated. The resulting residue was chromatographed (SiO₂/hexane-ethyl acetate, 4:1) to give a dark orange solid which was rechromatographed (SiO₂/hexane-CH₂Cl₂, 4:1 to 6:4) to give the title compound (5.00 g, 42%) as a yellow solid: IR (neat) 3414, 1328, 1253, 845 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 8.63 (d, J= 2.2 Hz, 1H), 8.21 (br s, 1H), 8.09 (dd, J= 9.0, 2.2 Hz, 1H), 7.35 (d, J= 9.0 Hz, 1H), 3.84 (t, J= 7.2 Hz, 2H), 3.09 (t, J= 7.2 Hz, 2H), 0.85 (s, 9H), 0.42 (s, 9H), -0.01 (s, 6H).

Example 12

5-Nitro-3-(2-hydroxyethyl)indole (5)

To a solution of 5-nitro-2-trimethylsilyl-3-(2-t-butyldimethylsiloxeyethyl)indole (7.30 g, 0.019 mol) in 125 mL of acetonitrile was added 48% HF (3.0 mL, 0.084 mol) and the mixture was stirred at room temperature for 1 h. Another 2.5 mL (0.07 mol) of 48% HF was added and stirring was continued for 18 h. The mixture was then cautiously basified with saturated aqueous Na₂CO₃ and extracted with ethyl acetate. The organic extract was washed (brine), dried (Na₂SO₄) and evaporated to give a gum. This material was triturated with ether and the supernatant was evaporated to give a gum. Chromatography (SiO₂/hexane-ethyl acetate, 1:1) of this gum gave the title compound (2.24 g, 57%) as a solid, mp 90° C: IR (neat) 3380 (br), 1622, 1330 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 8.60 (d, J= 1.7 Hz, 1H), 8.48 (br s, 1H), 8.12 (dd, J= 9.0, 1.7 Hz, 1H), 7.40 (d, J= 9.0 Hz, 1H), 3.96 (t, J= 6.3 Hz, 2H), 3.07 (t, J= 6.3 Hz, 2H), 1.56 (s, 1H).
Example 13

5-Nitro-3-(2-bromoethyl)indole (4)

To a solution of triphenylphosphine (2.83 g, 0.011 mol) in 100 mL of acetonitrile was added a solution of 5-nitro-3-(2-hydroxyethyl)indole (2.00 g, 0.0097 mol) in 25 mL of acetonitrile, followed by a solution of CBr₄ (3.60 g, 0.011 mol) in 25 mL of acetonitrile, at 0°C under Ar. The mixture was stirred at room temperature for 18 h and then another 0.283 g (1.1 mmol) of triphenylphosphine and 0.360 g (1.1 mmol) of CBr₄ were added. After 2.5 h the mixture was diluted with ethyl acetate, washed (H₂O, brine), dried (Na₂SO₄) and evaporated and the residue was chromatographed (SiO₂/ethyl acetate-hexane, 1:4) to give the title compound (2.27 g, 87%) as a yellow solid: IR (neat) 3370, 1334 cm⁻¹; ¹H NMR (DMSO-d₆, 200 MHz) δ 11.69 (s, 1H), 8.60 (d, J = 2.1 Hz, 1H), 7.98 (dd, J = 9.0, 2.2 Hz, 1H), 7.54-7.49 (m, 2H), 3.76 (t, J = 7.2 Hz, 2H), 3.32 (t, J = 7.2 Hz, 2H).

Example 14

5-Nitro-3-[2-(dimethylamino)ethyl]indole (3)

Into 50 mL of absolute ethanol cooled at 0°C was bubbled dimethylamine for 30 min. To this solution was added a solution of 5-nitro-3-(2-bromoethyl)indole (0.50 g, 1.86 mmol) in 50 mL of absolute ethanol and the mixture was transferred to a pressure vessel and heated at 80°C for 2 h. The cooled mixture was then evaporated and the residue was partitioned between 1 N NaOH and ethyl acetate. The organic phase was separated, washed (brine), dried (Na₂SO₄) and evaporated to give the title compound (0.40 g, 92%) as a yellow solid, mp 132-135°C: IR (neat) 1330 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 9.23 (s, 1H), 8.54 (s, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.26-7.10 (m, 2H), 2.98 (m, 2H), 2.71 (m, 2H), 2.37 (s, 6H).

Example 15

5-Amino-3-[2-(dimethylamino)ethyl]indole (2)

A mixture of 5-nitro-3-[2-(dimethylamino)ethyl]indole (0.650 g, 2.79 mmol) and 10% palladium-on-charcoal (0.150 g) in 60 mL of ethanol was hydrogenated on a Parr shaker at 40 psi for 30 min. The mixture was then filtered through Celite and the catalyst was washed with additional ethanol. Evaporation of the filtrate gave the essentially pure title compound (0.510 g, 90%) as a light brown gum: IR (neat) 3410, 1630, 1588, 1464 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 7.84 (br s, 1H), 7.15 (d, J = 8.5 Hz, 1H), 6.94 (d, J = 2.2 Hz, 1H), 6.90 (d, J = 2.1 Hz, 1H), 6.66 (dd, J = 8.5, 2.2 Hz, 1H), 3.44 (br s, 2H), 2.88 (m, 2H), 2.60 (m, 2H), 2.34 (s, 6H).

B. Preparation of Formula I Compounds

In general, Formula I compounds can be readily prepared by reaction of formula (2) intermediates with appropriate cyclobutene diones or by reacting formula (8b) or (9) compounds with appropriate secondary amines.

Example 16

5-(1,2-Dioxo-4-methyl-3-cyclobuten-3-yl)amino-3-[2-(dimethylamino)ethyl]indole

A solution of 5-amino-3-[2-(dimethylamino)ethyl]indole (0.250 g, 1.23 mmol) and 3-(1-methylethoxy)-4-methylcyclobut-3-ene-1,2-dione (0.200 g, 1.30 mmol) in 8 mL of absolute ethanol was stirred at room temperature under Ar for 24 h. Evaporation of the resulting mixture gave a gum which was chromatographed (SiO₂/CH₂Cl₂-MeOH, 95:5 then CH₂Cl₂-MeOH-NH₄OH, 95:4.5:0.5 to 90:9:1) to give the title compound (0.200 g, 55%) as a yellow gum. This gum was taken up in excess methanolic HCl and the solution was concentrated. The resulting solid was filtered, washed with ether and dried in vacuo to give the hydrochloride (0.180 g) as a pale yellow solid, mp 135-140°C: IR (KBr) 3330, 3260, 1781, 1711, 1598, 1577 cm⁻¹; ¹H NMR (DMSO-d₆, 200 MHz) δ 11.19 (s, 0.5H), 11.08 (s, 0.5H), 10.95 (s, 0.5H), 10.86 (s, 0.5H), 7.61-7.02 (m, 4H), 3.33 (m, 2H), 3.08 (m, 2H), 2.84 (s, 6H), 2.26 (s, 1.6H), 1.99 (s, 1.4H). Anal. Calcd for C₁₂H₁₇N₂O₄: HCl 1.2 H₂O: C, 57.44; H, 6.35; N, 11.82. Found: C, 57.24; H, 6.20; N, 11.75.

Example 17

Alternatively, compounds of Formula 1 may be prepared as depicted in Sequence 2, Scheme A. For example the
3-(3-methanesulfonyl oxypropyl)indole derivative 9, can be treated with an excess of an N,N-dialkylamine in a suitable
solvent such as ethanol to afford compounds of type 1 where R4=H. Conversion of intermediate 6 to 15 may be achieved
by mono-N-alkylation employing the appropriate alkyl halide (R6Q) in an aprotic solvent such as acetonitrile or dimeth-
ylformamide in the presence of an HCl scavenger such as potassium carbonate. Another possible route to 15 entails
N-acylation of 6 with an acyl halide (R6COQ) followed by reduction of the acylated intermediate with lithium aluminum
hydride or diborane in ether or tetrahydrofuran. Reaction of 15 with a suitably-substituted cyclobutane-1,2-dione in eth-
anol would provide 8b which could then be converted to 9 (R6=alkyl) via reaction with methanesulfonyl chloride. Dis-
placement of the methanesulfonyloxy leaving group by an N,N-dialkylamine would provide Formula 1 compounds in
which R4=alkyl.

Example 18

Pharmacologic Studies in the Canine Lateral Saphenous Vein

The lateral saphenous vein is obtained from an anesthetized dog and trimmed of adherent material. The vessel is
then cut into 2-3 mm ring segments and mounted between stainless steel wires in tissue baths containing 20mL of mod-
ified Kreb’s buffer which is continuously aerated with 5% CO2/95%O2 and maintained at 37°C. Resting tension is man-
ually adjusted to 1 gram and maintained until a stable baseline is achieved for an equilibration period of 1 h. Tissue bath
solution is replaced every 15 min during this equilibration.

Ketanserin, atropine and pyrilamine are added to the baths at a concentration of 1 μM to block 5-HT2, cholinergic
and histaminic effects. After 15 min, with the antagonists in place, a serotonin concentration response curve is con-
ducted in a cumulative fashion. At the conclusion the baths are washed out several times, tension is readjusted to 1
gram and the tissue is allowed to return to equilibrium over a period of 45-60 min. The antagonists are again added to
the baths and after 15 min, concentration response curves are generated for selected test compounds. Individual ves-
sel segments are only exposed to one test compound.

The activity of test compounds is expressed in terms of relative potency and efficacy compared with 5-HT (arbitrar-
ily assigned a value of 1.0) in the same vascular preparation.
SCHEME A
Synthesis of Formula I Compounds

Sequence 1.

(5) \[\xrightarrow{\text{R}^1, \text{R}^2, \text{R}^3} \] (4)

(2) \[\xrightarrow{\text{R}^1, \text{R}^2, \text{R}^3} \] (3)

(7) \[\xrightarrow{\text{R}^4, \text{X}} \] (5)

(1) \[\text{R}^4 \times \text{H} \]
Sequence 2.

Scheme B
Synthesis of Intermediate Compounds

The following synthetic reactions are intended to provide examples of some of the available methods of preparing chemical intermediate compounds for use in the process of Scheme A.
1. A compound of Formula I or a pharmaceutically acceptable acid addition salt and/or solvate thereof.
EP 0 644 187 B1

wherein

R¹ is selected from hydrogen, halogen and lower alkyl;
R² and R³ are independently selected from hydrogen and lower alkyl;
R⁴ is selected from hydrogen, lower alkyl, lower acyl and lower alkylsulfonyl;
X is selected from -NR⁵R³, -OR², and R⁶, wherein R⁵ can be hydrogen, lower alkyl, cycloalkyl, phenyl, and phenyl-lower alkyl;
m is selected from zero and the integers 1 to 3; and
n is selected from the integers 1 to 5; the term "lower alkyl" refers to both straight and branched chain carbon radicals of from 1 to 4 carbon atoms inclusive.

2. The compound of Formula I wherein m is zero and n is 2.

3. The compound of Formula I, 5-(1,2-Dioxo-4-methyl-3-cyclobuten-3-yl)amino-3-[2-(dimethylamino)ethyl]indole.

4. Use of a compound as claimed in claim 1 in the manufacture of a medicament for treating vascular headache in a person suffering from a vascular headache.

5. A method for preventing vascular headache by administering a prophylactically effective amount of a compound claimed in claim 1 to a person suffering the onset of a vascular headache.

6. A pharmaceutical composition in unit dosage form suitable for systemic administration to a person at risk of or suffering a vascular headache, the composition comprising a pharmaceutical carrier and from 1 to 500 mg of a compound claimed in claim 1.

Patentansprüche

1. Verbindung der Formel I oder ein pharmazeutisch akzeptables Säureadditionssalz und/oder Solvat davon

![Chemical structure diagram]

I

worin

R¹ ausgewählt ist unter Wasserstoff, Halogen und Niedrigalkyl;
R² und R³ unabhängig voneinander ausgewählt sind unter Wasserstoff und Niedrigalkyl;
R⁴ ausgewählt ist unter Wasserstoff, Niedrigalkyl, Niedrigacyl und Niedrigalkylsulfonyl;
X ausgewählt ist unter -NR⁵R³, -OR² und R⁶, wobei R⁵ für Wasserstoff, Niedrigalkyl, Cycloalkyl, Phenyl und Phenyl-Niedrigalkyl stehen kann;
m ausgewählt ist unter 0 und den ganzen Zahlen von 1 bis 3; und
n ausgewählt ist unter den ganzen Zahlen von 1 bis 5; der Ausdruck "Niedrigalkyl" geradkettige und verzweigte Kohlenstoffreste mit 1 bis einschließlich 4 Kohlenstoffatomen betrifft.

2. Verbindung der Formel I, worin m für 0 und n für 2 stehen.

3. Verbindung der Formel I, nämlich 5-(1,2-Dioxo-4-methyl-3-cyclobuten-3-yl)amino-3-[2-(dimethylamino)ethyl]indol.
EP 0 644 187 B1

4. Verwendung einer Verbindung nach Anspruch 1 zur Herstellung eines Medikamentes zur Behandlung von vaskulären Kopfschmerz bei einer Person, die unter vaskulärem Kopfschmerz leidet.

5. Verfahren zur Prävention von vaskulärem Kopfschmerz, wobei man eine prophylaktisch wirksame Menge einer Verbindung nach Anspruch 1 einer Person verabreicht, die am Beginn von vaskulärem Kopfschmerz steht.

6. Pharmazeutisches Mittel in Dosiseinheitsform, das geeignet ist zur systemischen Verabreichung an eine Person, die Gefahr läuft, vaskulären Kopfschmerz zu bekommen oder darunter leidet, wobei das Mittel einen pharmazeutischen Träger und 1 bis 500 mg einer Verbindung nach Anspruch 1 umfaßt.

Revendications

1. Composé de Formule I ou un sel d'addition d'un acide et/ou solvate pharmaceutiquement acceptable de celui-ci

\[
\begin{align*}
\text{X} & \quad \text{N-(CH}_{3}\text{)}_{m} \quad \text{R}^{1} \quad \text{R}^{2} \\
\text{Y} & \quad \text{CH}_{2}\text{n} \quad \text{NR}^{3} \quad \text{R}^{3}
\end{align*}
\]

où

- R\(^{1}\) est sélectionné parmi l'hydrogène, un halogène et un alkyle inférieur ;
- R\(^{2}\) et R\(^{3}\) sont indépendamment sélectionnés parmi un hydrogène et un alkyle inférieur ;
- R\(^{4}\) est sélectionné parmi l'hydrogène, un alkyle inférieur, un acyle inférieur et un alkylsulfonyle inférieur ;
- X est sélectionné parmi -NR\(^{3}\)R\(^{3}\), -OR\(^{3}\), et R\(^{3}\), où R\(^{5}\) peut être un hydrogène, un alkyle inférieur, un cycloalkyle, un phényle, et phényl-alkyle inférieur ;
- m est sélectionné parmi zéro et les entiers de 1 à 3 ; et
- n est sélectionné parmi les entiers de 1 à 5 ; le terme "alkyle inférieur" se réfère à la fois aux radicaux carbonés à chaîne linéaire et ramifiée de 1 à 4 atomes de carbone inclus.

2. Composé de Formule I où m vaut zéro et n vaut 2.

3. Composé de Formule I, le 5-(1,2-Dioxo-4-méthyl-3-cyclobutén-3-yl)amino-3-[2-(diméthylamino)éthyl]indole.

4. Utilisation d'un composé selon la revendication 1 pour la fabrication d'un médicament pour traiter une céphalée vasculaire chez une personne souffrant d'une céphalée vasculaire.

5. Utilisation d'un composé selon la revendication 1 pour la fabrication d'un médicament pour traiter une céphalée vasculaire chez une personne souffrant d'un début de céphalée vasculaire.

6. Composition pharmaceutique sous la forme d'un dosage unitaire approprié pour une administration systématique à une personne à risque de ou souffrant d'une céphalée vasculaire, la composition comprenant un porteur pharmaceutique et de 1 à 500 mg d'un composé selon la revendication 1.