FASCICULE DE BREVET EUROPEEN

(54) Procédé et installation de production d’au moins un gaz de l’air sous pression
Verfahren und Einrichtung zur Herstellung von wenigstens einem durch Zerlegung von Luft gewonnenem Gas unter Druck
Process and installation for the production of at least a gas from air under pressure

(84) Etats contractants désignés:
DE ES FR GB IT

(72) Inventeur: Rieth, Norbert
I-75014 Paris (FR)

(30) Priorité: 01.09.1993 FR 9310418

(74) Mandataire: Mercey, Fiona Susan et al
L’Air Liquide,
Service Brevets et Marques,
75, quai d’Orsay
75321 Paris Cédex 07 (FR)

(43) Date de publication de la demande: 08.03.1995 Bulletin 1995/10

(56) Documents cités:

(73) Titulaire: L’AIR LIQUIDE, SOCIETE ANONYME
POUR
L’ETUDE ET L’EXPLOITATION DES PROCEDES
GEORGES CLAUDE
75321 Paris Cédex 07 (FR)

Il est rappelé que: Dans un délai de neuf mois à compter de la date de publication de la mention de la délivrance du brevet européen, toute personne peut faire opposition au brevet européen délivré, auprès de l’Office européen des brevets. L’opposition doit être formée par écrit et motivée. Elle n’est réputée formée qu’après paiement de la taxe d’opposition. (Art. 99(1) Convention sur le brevet européen).
Description

La présente invention est relative à un procédé de production d’oxygène gazeux et/ou d’azote gazeux sous pression, du type dans lequel :

- on distille de l’air dans une installation comprenant un compresseur principal d’air, une double colonne de distillation comprenant une colonne basse pression fonctionnant sous une pression dite basse pression, et une colonne moyenne pression fonctionnant sous une pression dite moyenne pression, et une ligne d’échange thermique servant à refroidir l’air traité ;
- on comprime la totalité de l’air à distiller jusqu’à au moins une hauteur pression d’air nettement supérieure à la moyenne pression ;
- on refroidit l’air comprimé jusqu’à une température intermédiaire, et on en détend une partie dans une turbine jusqu’à la moyenne pression, avant de l’introduire dans la colonne moyenne pression ;
- on liquéfie l’air non turbined, puis on l’introduit, après détente, dans la double colonne ;
- on amène au moins un produit liquide soutiré de la double colonne à la pression de production, et on vaporise ce produit liquide par échange de chaleur avec l’air et
- on réchauffe le gaz résiduaire de tête de la colonne basse pression jusqu’au bout chaud de la ligne d’échange thermique.

Les pressions dont il est question dans le présent mémoire sont des pressions absolues. De plus, l’expression « liquéfaction » doit être entendue au sens large, c’est-à-dire incluant la pseudo-liquéfaction dans le cas de pressions sous-critiques.

Un procédé du type ci-dessus est décrit dans le FR-A-2 674 011. Dans ce procédé, la production gazeuse sous pression s’accompagne inévitablement d’une production de liquide, laquelle n’est pas souhaitable dans toutes les applications industrielles.

L’invention a pour but de permettre une réduction de la production de liquide pour une capacité de production donnée d’oxygène et/ou d’azote gazeux sous pression, ce de manière économique du point de vue des performances énergétiques.

A cet effet, l’invention a pour objet un procédé du type précité, caractérisé en ce que :

- on fait fonctionner la colonne basse pression sous 1,7 à 5 bars environ, et la colonne moyenne pression sous une pression correspondante de 6,5 à 16 bars environ ; et
- on détend dans une seconde turbine le gaz résiduaire de tête de la colonne basse pression, après l’avoir réchauffé jusqu’au bout chaud de la ligne d’échange thermique.

Suivant des modes particuliers de réalisation de l’invention :

- le gaz résiduaire est surchauffé, avant sa détente, par échange de chaleur avec de l’air issu d’un étage intermédiaire du compresseur principal ;
- le gaz résiduaire détendu est utilisé pour refroidir l’air issu du dernier étage du compresseur principal, avant l’épuration en eau et en anhydride carbonique de cet air ;
- le produit liquide est de l’oxygène impur, et on produit en outre du gaz liquide plus pur, que l’on envoie à un stockage.

L’invention a également pour objet une installation destinée à la mise en œuvre d’un tel procédé. Cette installation, du type comprenant une double colonne de distillation comprenant une colonne basse pression fonctionnant sous une pression dite basse pression et produisant en tête un gaz résiduaire, et une colonne moyenne pression fonctionnant sous une pression dite moyenne pression, des moyens de compression pour amener la totalité de l’air à distiller à au moins une hauteur pression nettement supérieure à la moyenne pression, ces moyens comprenant un compresseur principal, des moyens de soutirage de la double colonne et de pompage d’au moins un produit liquide résultant de la distillation ; une ligne d’échange thermique mettant en relation d’échange thermique l’air et le produit liquide ; et une turbine de détente d’une partie de cet air, l’admission de cette turbine étant reliée à un point intermédiaire de la ligne d’échange thermique et son échappement étant relié à la colonne moyenne pression, est caractérisée en ce qu’elle comprend une seconde turbine de détente dont l’admission est reliée à la sortie de passages de réchauffement du gaz résiduaire de la ligne d’échange thermique, au bout chaud de celle-ci.

Un exemple de mise en œuvre de l’invention va maintenant être décrit en regard du dessin annexé, sur lequel la Figure unique représente schématiquement une installation conforme à l’invention.

L’installation représentée à la Fig 1 est destinée à produire de l’oxygène gazeux sous une haute pression de 10 à 100 bars environ, de l’oxygène liquide et de l’azote liquide.

Cette installation comprend essentiellement : un compresseur principal d’air 1 comprenant lui-même au moins un étage moyenne pression 1A et un étage haute pression 1B, un appareil 2 d’épuration par adsorption, un ensemble soufflante-turbine comprenant une soufflante 3 et une turbine 4 dont les roues sont calées sur le même arbre ; un réfrigérant atmosphérique ou à eau 5 pour la soufflante ; une ligne d’échange thermique 6,
un premier échangeur de chaleur auxiliaire 7 et un se-
cond échangeur de chaleur auxiliaire 8 ; une seconde
 turbine de détente 9 freinée par un alternateur 10, une
double colonne de distillation 11 comprenant une colon-
ne moyenne pression 12 et une colonne basse pression
13 couplées par un vaporiseur-condenseur 14 qui met
en relation d'échange thermique l'azote de tête de la col-
onne 12 et l'oxygène liquide de cuve de la colonne 13;
une pompe d'oxygène liquide 15, un stockage 16 d'oxy-
gène liquide à la pression atmosphérique ; un stockage
17 d'azote liquide à la pression atmosphérique ; un pot
séparateur 18, et un sous-refroidisseur 19.

En fonctionnement, la colonne 13 est sous une pression de
1,7 à 5 bars environ, et la colonne 11 sous la pression correspondante de 6,5 à 16 bars environ.

La totalité de l'air à distiller est comprimé en 1A, re-
frodi en 7, comprimé de nouveau en 1B, refrodi en 8
vers + 5 à 15°C, épuré en eau et en CO2 en 2 et sur-
pressé en 3 à la haute pression. Après pré-refroidisse-
ment en 5 puis refroidissement partiel en 6 jusqu'à une
température intermédiaire T1, une partie de l'air sous la
haute pression poursuit son refroidissement dans la li-
gne d'échange thermique, est liquéfié puis divisé en
deux fractions. Chaque fraction est détendue dans une
vanne de détente respective 20, 21 puis introduite dans
la colonne 12, 13 respective.

A la température T1, le reste de l'air sous la haute
pression est sorti de la ligne d'échange thermique, tur-
biné en 4 à la moyenne pression et introduit en cuve de
la colonne 12.

De façon habituelle, du "liquide riche" (air enrichi en
oxygène) soutiré en cuve de la colonne 12 et du "liquide
pauvre" (azote à peu près pur) soutiré de la région su-
périeure de cette colonne sont, après sous-refroidisse-
ment en 19 et détente dans des vannes de détente res-
pectives 22 et 23, introduits à un niveau intermédiaire
et en tête, respectivement, de la colonne 13.

De l'oxygène liquide est soutiré en cuve de la co-
lonne 13. Une fraction va directement, après sous-ref-
roidissement en 19 et détente à la pression atmosphé-
rique dans une vanne de détente 24, dans le stockage
16, tandis que le reste est amené par la pompe 15 à la
haute pression de production désirée, puis vaporisé et
réchauffé à la température ambiante dans la ligne
d'échange thermique avant d'être récupéré via une con-
duite 25.

Par ailleurs, de l'azote liquide sous la moyenne
pression, soutiré en tête de la colonne 12, est sous-re-
 frodi en 19, détendu à la pression atmosphérique dans
une vanne de détente 26, et introduit dans le pot sépa-
rateur 18. La phase liquide est envoyée dans le stocka-
ge 17, tandis que la phase vapeur est réunie à l'azote
impu de tête de la colonne 13, puis le mélange est ré-
chauffé en 19 puis en 6.

Le gaz résiduel ainsi réchauffé à la tempéra-
ture ambiante est surchauffé en 7 puis détendu à peu près
à la pression atmosphérique en 9, puis le gaz détendu
est réchauffé en 8. Il peut ensuite, avant d'être évacué

de l'installation, servir à régénérer l'absorbant de l'appa-
reil 2.

On peut ainsi produire de l'oxygène gazeux haute
pression, ayant une pureté donnée, avec une énergie
spécifique de production réduite, un ratio production de
liquide/capacité de séparation en oxygène réduit, et un
rendant d'extraction élevé.

Le fonctionnement sous pression de la colonne 13 a pour conséquence une baisse de pureté de l'oxygène
produit. Ainsi, l'oxygène gazeux haute pression et l'oxy-
gène liquide stocké en 16 ont typiquement une pureté
d'ordre de 95%. Cependant, il est possible de prévoir
qu'au moins quelques plateaux de distillation entre les soutirages d'oxygène liquide destinés d'une part au stockage 16, d'autre part à la pompe 15, et de produire ainsi une frac-
tion, par exemple 20% de l'oxygène, sous forme d'oxy-
gène liquide à pureté élevée, typiquement à 99,5% de
pureté.

L'invention s'applique également à la production
da zote gazeux sous haute pression, porté par une pom-
pe (non représentée) à la haute pression désirée puis
vaporisé dans la ligne d'échange thermique, et/ou à la
production d'oxygène et/ou d'azote sous plusieurs pres-
sions, en utilisant plusieurs haute pressions d'air. De
plus, la vaporisation du ou des liquides peut s'effectuer
de façon non concomitante à la liquéfaction d'air, avec
un genou de liquéfaction de l'air au-dessous de la tem-
pérature de vaporisation de l'oxygène, ou de façon con-
comitante à cette liquéfaction.

Revendications

1. Procédé de production d'oxygène gazeux et/ou
da zote gazeux sous pression, du type dans lequel :

- on distille de l'air dans une installation compre-
nant un compresseur principal d'air (1), une
double colonne de distillation (11) comprenant
une colonne basse pression (13) fonctionnant
sous une pression dite basse pression, et une
colonne moyenne pression (12) fonctionnant
sous une pression dite moyenne pression, et
une ligne d'échange thermique (6) servant à re-
frorid l'air traité ;

- on comprime (en 1, 3) la totalité de l'air à distiller
jusqu'à au moins une haute pression d'air net-
tement supérieure à la moyenne pression ;

- on refroidit l'air comprimé jusqu'à une tempéra-
ture intermédiaire, et on en détend une partie
dans une rueine (4) jusqu'à la moyenne pres-
sion, avant de l'introduire dans la colonne
moyenne pression (12) ;

- on liquéfie l'air non turbiné, puis on l'introduit,
après détente (en 20, 21), dans la double co-
lonne ;

- on amène (en 15) au moins un produit liquide
soutiré de la double colonne à la pression de
production, et on vaporise ce produit liquide par échange de chaleur avec l'air, et
- on réchauffe le gaz résiduaire de tête de la colonne basse pression jusqu'au bout chaud de la ligne d'échange thermique,
caractérisé en ce que :
- on fait fonctionner la colonne basse pression (13) sous 1,7 à 5 bars environ, et la colonne moyenne pression (11) sous une pression correspondante de 6,5 à 16 bars environ; et
- on détend dans une seconde turbine (9) le gaz résiduaire de tête de la colonne basse pression, après l'avoir réchauffé jusqu'au bout chaud de la ligne d'échange thermique (6).

2. Procédé suivant la revendication 1, caractérisé en ce que le gaz résiduaire est surchauffé, avant sa détente, par échange de chaleur (en 7) avec de l'air issu d'un étage intermédiaire (1A) du compresseur principal (1).

3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que le gaz résiduaire détendu est utilisé pour refroidir (en B) l'air issu du dernier étage (1B) du compresseur principal (1), avant l'épuration en eau et en anhydride carbonique de cet air.

4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit produit liquide est de l'oxygène impur, et en ce qu'on produit en outre de l'oxygène liquide plus pur, que l'on envoie à un stockage (16).

5. Installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression, du type comprenant une double colonne de distillation (11) comprenant une colonne basse pression (13) fonctionnant sous une pression dite basse pression et produisant en tête un gaz résiduaire, et une colonne moyenne pression (12) fonctionnant sous une pression dite moyenne pression; des moyens de compression (1, 3) pour amener la totalité de l'air à distiller à au moins une haute pression nettement supérieure à la moyenne pression, ces moyens comprenant un compresseur principal (1); des moyens (15) de soutirage de la double colonne et de pompage d'air au moins un produit liquide résultant de la distillation; une ligne d'échange thermique (6) mettant en relation d'échange thermique l'air et ledit produit liquide; et une turbine (4) de détente d'une partie de cet air, l'admission de cette turbine étant reliée à un point intermédiaire de la ligne d'échange thermique et son échappement étant relié à la colonne moyenne pression (12), caractérisée en ce qu'elle comprend une seconde turbine de détente (9) dont l'admission est reliée à la sortie de passages de réchauffement du gaz résiduaire de la ligne d'échange thermique (6), au bout chaud de celle-ci.

6. Installation suivant la revendication 5, caractérisée en ce qu'elle comprend un échangeur de chaleur (7) mettant en relation d'échange thermique le gaz circulant entre ladite sortie et la seconde turbine (9) et l'air issu d'un étage intermédiaire (1A) du compresseur principal (1).

7. Installation suivant la revendication 5 ou 6, caractérisée en ce qu'elle comprend un second échangeur de chaleur (8) mettant en relation d'échange thermique le gaz issu de la seconde turbine (9) et l'air issu du dernier étage (1B) du compresseur principal (1).

8. Installation suivant l'une quelconque des revendications 5 à 7, caractérisée en ce que la colonne basse pression (13) comporte un tronçon de distillation entre un soutirage inférieur d'oxygène liquide destiné à être stocké et un soutirage d'oxygène liquide relié à l'aspiration de la pompe (15).

Patentansprüche

1. Verfahren zur Herstellung von gasförmigem Sauerstoff und/oder gasförmigem Stickstoff unter Druck, bei dem
- Luft in einer Vorrichtung destilliert wird, die einen Hauptluftverdichter (1), eine Destillations- doppelsäule (11) mit einer unter einem sogenannten Niederdruck arbeitenden Niederdrucksäule (13) und einer unter einem sogenannten Mitteldruck arbeitenden Mitteldrucksäule (12) und eine Wärmeaustauschleitung (8) zum Abkühlen von behandelter Luft aufweist;
- (in 1, 3) die Gesamtheit der zu destillierenden Luft mindestens auf einen Hochdruck der Luft verdichtet wird, der deutlich höher als der Mitteldruck ist;
- die verdichtete Luft auf eine Zwischen temperatur abgekühlt wird und davon ein Teil vor dem Einleiten in die Mitteldrucksäule (12) in einer Turbine (4) auf den Mitteldruck entspannt wird;
- die nicht entspannte Luft verflüssigt, dann nach Entspannung (in 20, 21) in die Doppelsäule eingeleitet wird;
- (in 15) mindestens ein der Doppelsäule unter dem Produktionsdruck entnommenes, flüssiges Produkt zugeführt und dieses flüssige Produkt mittels Wärmeaustausch mit Luft verdampft wird, und
- das Restgas aus dem Kopf der Niederdrucksäule bis zum warmen Ende der Wärmeaus-
tauschleitungen erwärmt wird, dadurch gekennzeichnet, daß
- die Niederdrucksäule (13) unter einem Druck von ungefähr 1.7 bis 5 bar und die Mitteldrucksäule (11) unter einem ungefähr 6.5 bis 11 bar entsprechenden Druck betrieben werden; und
- das Restgas aus dem Kopf der Niederdruckkolonne nach Erwärmung bis zum warmen Ende der Wärmeaustauschleitung (6) in einer zweiten Turbine (9) entspannt wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Restgas vor seiner Entspannung mittels Wärmeaustauscher (in 7) mit aus einer Zwischenstufe (1A) des Hauptverdichters (1) stammender Luft angewärmt wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das entspannte Restgas (in 8) zum Kühlen der aus der letzten Stufe (1b) des Hauptverdichters (1) stammenden Luft vor der Befreiung dieser Luft von Wasser und Kohlendioxid verwendet wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das flüssige Produkt Rohsauerstoff ist, und daß zudem flüssiger Sauerstoff höherer Reinheit hergestellt wird, der in einen Behälter (16) geleitet wird.

6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß sie einen Wärmeaustauscher (7) umfaßt, der den Wärmeaustausch zwischen dem von dem Auslaß zur zweiten Turbine (9) fließenden Gas und der aus einer Zwischenstufe (1A) des Hauptverdichters (1) stammenden Luft bewirkt.

7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß sie einen zweiten Wärmeaustauscher (8) umfaßt, der den Wärmeaustausch zwischen dem aus der zweiten Turbine (9) stammenden Gas und der aus der letzten Stufe (1B) des Hauptverdichters (1) stammenden Luft bewirkt.

Claims

1. Process for producing gaseous oxygen and/or gaseous nitrogen under pressure, of the type in which:

- air is distilled in an installation comprising a main air compressor (1), a double distillation column (11) comprising a low pressure column (13) operating under a pressure described as "low pressure" and a medium pressure column (12) operating under a pressure described as "medium pressure", and a heat-exchanging line (6) serving to cool the treated air;
- the whole of the air to be distilled is compressed (at 1, 3) until at least a high air pressure which is distinctly higher than medium pressure is reached;
- the compressed air is cooled to an intermediate temperature and part of it is relieved of pressure in a turbine (4) until medium pressure is reached, before introducing it into the medium pressure column (12);
- the air which has not been turbined is liquefied and then introduced, after the relief of pressure (at 20, 21), into the double column;
- at least one liquid product drawn off from the double column is brought (at 15) to production pressure, and the said liquid product is vaporized by exchange of heat with the air, and
- the residuary gas from the head of the low pressure column is reheated as far as the hot end of the heat-exchanging line, characterised in that:

- the low pressure column (13) is operated under about 1.7 to 5 bars, and the medium pressure
column (11) under a corresponding pressure of about 6.5 to 16 bars; and
- the residuary gas from the head of the low pressure column is relieved of pressure in a second turbine (9), after having reheated it as far as the hot end of the heat-exchanging line (6).

2. Process according to claim 1, characterised in that the residuary gas is superheated, before being relieved of pressure, by exchange of heat (at 7) with air emanating from an intermediate stage (1A) of the main compressor (1).

3. Process according to claim 1 or 2, characterised in that the residuary gas which has been relieved of pressure is used to cool (at 8) the air emanating from the last stage (1B) of the main compressor (1), before purification of the said air in water and in carbon dioxide.

4. Process according to any one of claims 1 to 3, characterised in that the said liquid product is impure oxygen, and in that purer liquid oxygen, which is sent to a stockpiling system (16), is additionally produced.

5. Installation for producing gaseous oxygen and/or gaseous nitrogen under pressure, of the type comprising a double distillation column (11) comprising a low pressure column (13) operating under a pressure described as "low pressure" and producing, at the head, a residuary gas, and a medium pressure column (12) operating under a pressure described as "medium pressure"; compression means (1, 3) for bringing the whole of the air to be distilled to at least a high pressure which is distinctly higher than medium pressure, the said means comprising a main compressor (1); means (15) for drawing off from the double column and for pumping at least one liquid product resulting from distillation; a heat-exchanging line (6) bringing the air and the said liquid product into heat-exchanging communication; and a turbine (4) for relieving the pressure of part of the said air, the inlet of the said turbine being connected to an intermediate point in the heat-exchanging line and its exit being connected to the medium pressure column (12), characterised in that it comprises a second pressure-relieving turbine (9), the inlet of which is connected to the outlet of passages for reheating the residuary gas from the heat-exchanging line (6), at the hot end of the latter.

6. Installation according to claim 5, characterised in that it comprises a heat-exchanger (7) bringing the gas circulating between the said outlet and the second turbine (9) and the air emanating from an intermediate stage (1A) of the main compressor (1) into heat-exchanging communication.

7. Installation according to claim 5 or 6, characterised in that it comprises a second heat-exchanger (8) bringing the gas emanating from the second turbine (9) and the air emanating from the last stage (1B) of the main compressor (1) into heat-exchanging communication.

8. Installation according to any one of claims 5 to 7, characterised in that the low pressure column (13) has a distillation section between a lower offtake for liquid oxygen intended to be stockpiled and a liquid oxygen offtake connected to the intake of the pump (15).