EUROPEAN PATENT SPECIFICATION

INHIBITORS OF 5-ALPHA-TESTOSTERONE REDUCTASE

INHIBITOREN VON TESTOSTERON-5-ALPHA REDUCTASE

INHIBITEURS DE LA 5-ALPHA-TESTOSTERONE REDUCTASE

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

Priority:
26.06.1992 US 905262
13.08.1992 US 930101
11.12.1992 US 31381

Date of publication of application:
08.03.1995 Bulletin 1995/10

Proprietor: GLAXO WELLCOME INC.
Research Triangle Park,
North Carolina 27709 (US)

Inventors:
• FRYE, Stephen, Vernon
 Durham, NC 27713 (US)
• CRIBBS, Cynthia, Markert
 Raleigh, NC 27614 (US)
• HAFFNER, Curt, Dale
 Cary, NC 27513 (US)

Representative: Learoyd, Stephanie Anne et al
Glaxo Wellcome plc,
Glaxo Wellcome House,
Berkeley Avenue
Greenford, Middlesex UB6 0NN (GB)

References cited:
EP-A-0 004 949
EP-A-0 200 859

• CANADIAN JOURNAL OF CHEMISTRY vol. 58,
 no. 23, 1 December 1980, OTTAWA CA pages
 2666 - 2678 D. VINOD ET AL 'Resolution of
 Conflicting Migratory Reports in Ring Expansion
 of 3-Keto Steroids to Oxygen and Nitrogen'
• TETRAHEDRON, (INCL. TETRAHEDRON
 REPORTS) vol. 24, no. 2, January 1968, OXFORD
 GB pages 845 - 857 J. P. KUTNEY ET AL 'Aza
 Steroids - VII. Synthesis of Ring A-Oxygenated
 6-Aza Steroids'

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
DESCRIPTION

The present invention relates to certain substituted 17β-substituted 6-azaandrost-4-en-3-ones and their use as 5α-testosterone reductase inhibitors.

BACKGROUND OF THE INVENTION

Androgens are responsible for many physiological functions in both males and females. Androgen action is mediated by specific intracellular hormone receptors expressed in androgen responsive cells. Testosterone, the major circulating androgen, is secreted by Leydig cells of the testes under the stimulation of pituitary-derived luteinizing hormone (LH). However, reduction of the 4,5 double bond of testosterone to dihydrotestosterone (DHT) is required in some target tissues, such as prostate and skin, for androgen action. Steroid 5α-reductase in target tissues catalyzes conversion of testosterone to DHT in an NADPH dependent fashion as shown in Scheme A.

The requirement for DHT to act as an agonist in these target tissues has been highlighted by studies of steroid 5α-reductase deficient individuals who have vestigial prostate glands and do not suffer from acne vulgaris or male pattern baldness (see McGinley, J., et al., J. Steroid Biochem., 11, 637-648, (1979)). Thus, inhibition of the conversion of testosterone to DHT in these target tissues is anticipated to be useful in the treatment of a variety of androgen responsive diseases, e.g., benign prostatic hypertrophy, prostate cancer, acne, male pattern baldness and hirsutism.

Because of their valuable therapeutic potential, testosterone 5α-reductase inhibitors [hereinafter "5α-reductase inhibitors"] have been the subject of active research worldwide. For example, see: Hsia, S. and Voight, W., J. Invest. Derm., 62, 224 (1973); Robaire, B., et al., J. Steroid Biochem., 8, 307 (1977); Petrow, V., et al., Steroids, 38, 121 (1981); Liang, T., et al., J. Steroid Biochem., 19, 395 (1983); Holt, D., J. Med. Chem., 33, 937 (1990); U.S. Patent No. 4,377,584 and U.S. Patent No. 5,017,568. Two particularly promising 5α-reductase inhibitors currently in clinical trials are MK-906 (Merck) and SKF-105657 (SmithKline Beecham), shown in Scheme B.

SUMMARY OF THE INVENTION

One aspect of the present invention are the compounds of formula (I).
wherein

R^1 and R^2 are,

i) independently hydrogen or lower alkyl and the bond between the carbons bearing R^1 and R^2 is a single or a double bond, or

ii) taken together are a -CH$_2$- group to form a cyclopropane ring, and the bond between the carbons bearing R^1 and R^2 is a single bond;

R^3 is hydrogen, -Alk1-H optionally substituted with one or more halogen atoms, lower cycloalkyl, lower cycloalkyl-

lower alkyl, halogen, -(Alk1)$_n$-CO$_2$H, -(Alk1)$_n$-CO$_2$R7, -(Alk1)$_n$-Ar1, -(Alk1)$_n$-CONR8R9, -(Alk1)$_n$-S

(O)$_n$R7, -(Alk1)$_n$-CN, -(Alk1)-OH or -(Alk1)$_n$-OR7;

wherein

Alk1 is lower alkylene, lower alkenylene or lower alkynylene;

n is 0 or 1;

r is 0, 1 or 2,

R7 is -Alk1-H, -(Alk1)$_n$-Ar1 or lower cycloalkyl;

R8 and R9 are independently hydrogen, -Alk1-H or lower cycloalkyl;

Ar1 is an aromatic group of 6 to 14 carbons;

R4 is hydrogen, -Alk1-H, lower cycloalkyl, lower cycloalkyl-lower alkyl, -(Alk1)$_n$-S(O)$_n$R7, -(Alk1)$_n$-phthalimidyl,

-(Alk1)-CO$_2$H, -(Alk1)$_n$-CO$_2$R7, -(Alk1)$_n$-Ar1, -(Alk1)$_n$-CONR8R9, -(Alk1)$_n$-NR8R9, -(Alk1)$_n$-OH or -(Alk1)$_n$-OR7;

X is,

\[
\begin{align*}
&\text{(CR10R11)$_n$} \\
&\text{(CR12R13)$_n$}
\end{align*}
\]

wherein

R10, R11, R12 and R13 are independently hydrogen or lower alkyl,

p and q are independently either 0 or 1;

Y is hydrogen;

Z is -(Alk2)$_n$-COR5, -(Alk2)$_n$-CO$_2$R5, -(Alk2)$_n$-CO-thiopyridinyl or -(Alk2)$_n$-CONR14R15;

wherein

Alk2 is (C$_1$-13) alkylene, (C$_2$-12) alkenylene or (C$_2$-12) alkynylene;

R5 is hydrogen, -Alk1-H, lower cycloalkyl or adamantyl;

R14 and R15 are,
a) independently, hydrogen, -Alk₂-H, lower cycloalkyl, lower alkoxy, adamantyl, -Ar¹, benzyl, diphenylethyl, triphenylmethyl or -(Alk¹)ₙ-norbomyl; or

b) taken together with the linking nitrogen to form a 4 to 8 atom heterocyclic group

\[\text{N} \quad \text{Het} \]

wherein;

Het represents -O-, -CH₂-, -S(O)₂-, -NH- or -N-(Alk¹-H)-;

optionally substituted with one or more lower alkyl groups;

R⁶ is hydrogen or methyl;

and pharmaceutically acceptable salts thereof.

A second aspect of the invention is a method of inhibiting testosterone-5α-reductase comprising contacting testosterone-5α-reductase with a compound of formula (I).

A further aspect comprises pharmaceutical formulations containing a compound of formula (I) as an active ingredient. Novel chemical intermediates used in the synthesis, as taught herein, of the compounds of formula (I) are also within the scope of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Compounds

As used herein the term "lower" in reference to alkyl and alkoxy means 1-6 carbons, straight or branched chain, *i.e.*, methyl, ethyl, propyl, butyl, pentyl and hexyl, and methoxy, ethoxy, propoxy, butoxy, pentoxy and hexoxy respectively. In reference to alkenyl or alkylnyl "lower" means 2-6 carbons, straight or branched chain *i.e.*, ethenyl, propenyl, butenyl, pentenyl and hexenyl; and ethenyl, propynyl, butynyl, pentynyl and hexynyl respectively. In reference to cycloalkyl "lower" means 3-6 carbons, *i.e.*, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "lower cycloalkyl-lower alkyl" means a lower alkyl bearing a lower cycloalkyl, *e.g.*, cyclopropylmethyl which may also be named methylene-cyclopropyl.

The term "alkanoyl of 2-6 carbons" refers to alkyl, straight or branched, carboxylic acid groups with a total of 2-6 carbons attached to the structure of formula (I) at a carbon of the alkyl portion of the group, *e.g.*, -CH₂COOH, -(CH₂)₂COOH, -(CH₂)₃COOH and -(CH₂)₄COOH.

The term "halogen" means fluoro, chloro, bromo and iodo. Halogenated alkyl groups are preferably fluorinated e. g. trifluoromethyl.

The term "aromatic group" means homocyclic aromatic groups having 6 to 14 carbons and includes, but is not limited to, phenyl, naphthyl and anthracenyl.

Where R¹⁴ and R¹⁵ when taken together with the linking nitrogen form a 4 to 8 atom heterocyclic group, such groups which may be formed include, but are not limited to, pyrroldinyl, imidazolidinyl, pyrazolidinyl, piperidinyl, piperazinyl, morpholinyl or thiomorpholinyl each optionally substituted with one or more lower alkyl groups.

In one preferred group of compounds of formula (I) Z is -COR⁶, -CO₂R⁶, -CO-thiopyridinyl, -CONR¹⁴R¹⁵ or -CH=CHCOHR⁶, especially -COOH, -COOCH₃, adamantylcarbamoyl, t-butylcarbamoyl, dimethylcarbamoyl, diethylcarbamoyl, di-iso-propylcarbamoyl, di-t-butylcarbamoyl, 2-methylpropylcarbamoyl, pyridinylthiocarbonyl, diphenylmethylcarbamoyl, triphenylmethylcarbamoyl, diphenylcarbamoyl, naphthylcarbamoyl, antracylcarbamoyl, carboxyadamantoxyl, acrylydiethylamide, exonorborylmethylcarbamoyl, endonorborylmethylcarbamoyl, or benzylcarbamoyl.

In another preferred group of compounds of formula (I) R² is hydrogen, lower alkyl, trifluoromethyl, halogen, -[(lower alkyl)ₙ-NR⁶R⁶], -[(lower alkyl)ₙ-CN, especially hydrogen, methyl, ethyl, cyano, iodo, bromo, chloro or dimethylaminomethyl.

In a further preferred group of compounds of formula (I) R⁴ is hydrogen, lower alkyl, lower cycloalkyl, lower cycloalkyl-lower alkyl, -[(lower alkyl)ₙ-phthalimidyl, -[(lower alkyl)-CO₂H, -[(lower alkyl)ₙ-CO₂R⁷, -[(lower alkyl)ₙ-Ar¹ (e.g. benzyl), -[(lower alkyl)ₙ-OR⁷], wherein R⁷ is lower alkyl, and Ar¹ is an aromatic group of 8 to 14 carbon atoms (e.g. phenyl, naphthyl, anthracenyl), especially hydrogen, methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, hexyl, 3-hydroxypropyl, propenyl, methylene-cyclopropyl, benzyl, 2-methoxyethyl, 2-acetic acid, 3-propanoic
acid, 4-butanoic acid, 5-pentanoic acid, 6-hexanoic acid, methyl-5-pentanoate, ethyl-6-hexanoate, 3-phthalimidylpropyl or 4-phthalimidylbutyl.

In a further preferred group of compounds of formula (I) Alk² is Alk¹. Preferably Alk¹ is C₁₋₄alkylene or C₁₋₄alkenylene, especially -CH₂-, -CH₂CH₂- or -CH=CH-. Particular compounds of formula (I) are those wherein R¹ and R² are,

i) independently hydrogen or lower alkyl and the bond between the carbons bearing R¹ and R² is a single or a double bond, or

ii) taken together are a -CH₂- group to form a cyclopropane ring, and the bond between the carbons bearing R¹ and R² is a single bond;

R² is hydrogen, -Alk¹-H, perfluorinated lower alkyl, lower cycloalkyl, lower cycloalkyl-lower alkyl, halogen, -(Alk¹)_n-NR⁸NR⁹ or -(Alk¹)_n-ON;

wherein

Alk¹ is lower alkylene or lower alkenylene;

n is 0 or 1; and

R⁸ and R⁹ are independently hydrogen, -Alk¹-H or lower cycloalkyl;

R⁴ is hydrogen, -Alk¹-H, lower cycloalkyl, lower cycloalkyl-lower alkyl, -(Alk¹)_n-S(O)₂R⁷, -(Alk¹)_n-phthalimidyl, -(Alk¹)_n-CO₂H₂, -(Alk¹)_n-CO₂H₇, -(Alk¹)_n-Ar₁, -(Alk¹)_n-OH or -(Alk¹)_n-OR₇;

wherein

r is 0, 1 or 2;

R⁷ is -Alk¹-H, -(Alk¹)_n-Ar₁ or lower cycloalkyl; and

Ar₁ is an aromatic group of 6 to 14 carbons;

X is.

\[
\begin{align*}
\text{(CR¹⁰R¹¹)<sub>p} \\
\text{(CR¹²R¹³)<sub>q}
\end{align*}
\]

wherein

R¹⁰, R¹¹, R¹² and R¹³ are independently hydrogen or lower alkyl;

p and q are independently either 0 or 1;

Y is hydrogen;

Z is -(Alk²)_n-COR₅, -(Alk²)_n-CO₂R₅, -(Alk²)_n-CO-thiopyridinyl or -(Alk²)_n-CONR¹⁴R¹⁵,

wherein

Alk² is (C₁₋₁₂) alkyne, (C₂₋₁₂) alkenylene or (C₂₋₁₂) alkyneylene;

R⁵ is hydrogen, Alk¹, lower cycloalkyl or adamantyl;

R¹⁴ and R¹⁵ are,

a) independently, hydrogen, -Alk²-H, lower cycloalkyl, lower alkoxy, adamantyl, -Ar₁, benzyl, diphenylmethy-

thyl, triphenylmethyl or -(Alk¹)_n-norbornyl; or

b) taken together with the linking nitrogen to form a 5 to 7 atom heterocyclic group

N

Het

5
wherein;

Het represents -O-, -S-, -NH- or -N(alkyl); or optionally substituted with one or more lower alkyl groups; R6 is hydrogen or methyl;

and pharmaceutically acceptable salts thereof.

Preferred compounds of formula (I) are those wherein R1 and R2 are,

i) hydrogen and the bond between the carbon bearing R1 and R2 is a single or a double bond, or

ii) taken together are a CH2- group to form a cyclopropane ring, and the bond between the carbon bearing R1 and R2 is a single bond;

R3 is hydrogen, lower alkyl, trifluoromethyl, halogen, -(lower alkyl)NR6R9, or -(lower alkyl)CN;

wherein

n is 0 or 1;

R6 and R9 are independently hydrogen or lower alkyl;

R4 is hydrogen, lower alkyl, lower cycloalkyl, lower cycloalkyl-lower alkyl, -(lower alkyl)O-phenyl-

idyl, -(lower alkyl)-CO2H, -(lower alkyl)O-CO2R7, -(lower alkyl)Ar1 (e.g, benzyl), -(lower alkyl)Ar3 or -(lower alkyl)-OR7;

wherein

R7 is lower alkyl; and

Ar1 is an aromatic group of 6 to 14 carbon atoms (e.g. phenyl, naphthyl, anthacyl);

X is CH2- or -CH2CH2-;

Y is hydrogen;

Z is -(alkyl)COR6, -(alkyl)OCOR6, -(alkyl)CO-thiopyridyl or (alkyl)CONH14R15;

wherein

alk2 is (C1-12) alkylene or (C2-12) alkenylene;

R6 is hydrogen, lower alkyl or adamantyl;

R14 and R15 are,

a) independently, hydrogen, (C1-12) alkyl, lower alkoxyl, adamantyl, Ar1, benzyl, diphenylmethyl, triphenyl-
methyl or -(lower alkyl)-norbornyl or

b) taken together with the linking nitrogen to form a 5 to 7 atom heterocyclic group

N

wherein;

Het represents -O-, -S-, -NH- or -N(Alk1); or optionally substituted with one or more lower alkyl groups (e.g. morpholino, thiomorpholino, piperazine);

R6 is hydrogen or methyl;

and pharmaceutically acceptable salts thereof.

Particular groups of compounds of formula (I) are the compounds of formulas (IA), (IB), (IC) and (ID)
The compounds of formula (I) include the compounds of formula (IE)

wherein

R¹, R², R⁶, R⁷, R¹³, p, q, Ar and X are as defined for formula (I);
R³a is hydrogen, lower alkyl, lower cycloalkyl, lower cycloalkyl-lower alkyl, lower alkenyl, lower alkynyl, alkanoyl of 2-6 carbons, halogen, -(CH₂)ₘ⁻CO₂R⁷, -(CH₂)ₙ⁻Ar, -(CH₂)ₙ⁻CONR⁸R⁹, -(CH₂)ₙ⁻NR⁸R⁹, -(CH₂)ₙ⁻CN or -(CH₂)ₙ⁻OH³

wherein

n’ is 0 or an integer from 1 to 5;
R⁴a is hydrogen, lower alkyl, lower cycloalkyl, lower cycloalkyl-lower alkyl, cycloalkyl, lower alkenyl, lower alkynyl, (CH₂)ₘ⁻phthalimidyl, -(CH₂)ₘ⁻CO₂R⁷, -(CH₂)ₙ⁻Ar, -(CH₂)ₙ⁻CONR⁸R⁹, -(CH₂)ₙ⁻NR⁸R⁹ or -(CH₂)ₙ⁻OH³.

wherein

m is an integer from 1 to 5;
R⁵a is lower alkyl, lower alkenyl, lower cycloalkyl, lower alkoxy, thiopyridinyl, adamantyl, NR¹⁴aR¹⁵a or Ar-NR¹₂aR¹³a wherein
R¹⁴a and R¹⁵a are

i) independently, hydrogen or lower alkyl, lower alkenyl, lower alkynyl, lower cycloalkyl, lower alkoxy, adamantyl, aryl, benzyl, diphenylmethyl, norbornyl or

ii) taken together with the linking nitrogen to form a 4 to 8 atom heterocyclic group
wherein;

Heta represents O, CH\textsubscript{2}, NH or N(lower alkyl)
optionally substituted with one or more lower alkyl groups;

R6 is hydrogen or methyl;

and pharmaceutically acceptable salts thereof.

The compounds of formula (I) also include the compounds of formula (IF)

wherein

R1, R2, R6, R9, p, q, Ar are as defined for Formula (I);

R3b is hydrogen, lower alkyl, lower cycloalkyl, lower cycloalkyl-lower alkyl, lower alkenyl, lower alkynyl, alkanoyl of 2-6 carbons, halogen, -(CH\textsubscript{2})nCO\textsubscript{2}R7, -(CH\textsubscript{2})nAr, -(CH\textsubscript{2})nCONR8R9, -(CH\textsubscript{2})nNR8R9, -(CH\textsubscript{2})nCN or -(CH\textsubscript{2})nOR7

wherein

n' is 0 or an integer from 1 to 5;

R4b is hydrogen, lower alkyl, lower cycloalkyl, lower cycloalkyl-lower alkyl, lower alkenyl, lower alkynyl, (CH\textsubscript{2})m phthalimidyl, -(CH\textsubscript{2})nCO\textsubscript{2}R7, -(CH\textsubscript{2})nAr, -(CH\textsubscript{2})nCONR8R9, -(CH\textsubscript{2})nNR8R9 or -(CH\textsubscript{2})nOR7,

wherein

m is an integer from 1 to 5;

Xa is

\begin{align*}
(CR10R11)_p \\
(CR10R11)_c
\end{align*}

wherein

R10 and R11 are independently hydrogen or lower alkyl;

R5b is lower alkyl, lower alkenyl, lower cycloalkyl, lower alkoxy, thiopyridinyl, adamantyl, NR14bR15b or Ar-

NR14bR15b

wherein

R14b and R15b are
i) independently, hydrogen or lower alkyl, lower alkenyl, lower alkynyl, lower cycloalkyl, lower alkoxy, adamantyl, aryl, benzyl, diphenylmethyl, norbornyl or

ii) taken together with the linking nitrogen to form a 4 to 8 atom heterocyclic group

R^6 is hydrogen or methyl, and pharmaceutically acceptable salts thereof.

The compounds of formula (I) also include the compounds of formula (IG)

R^1 and R^2 are as defined for Formula (I);

R^{3c} is hydrogen;

R^{4c} is hydrogen, lower alkyl, lower cycloalkyl, lower alkenyl, alkanoyl of 2-6 carbons, -(CH$_2$)$_m$CO$_2$R16, -(CH$_2$)$_m$-Ar$_n$, -(CH$_2$)$_n$CONR17R18, -(CH$_2$)$_n$-N$^+$R17R18 or -(CH$_2$)$_n$O$^-$R16,

wherein

R^{16} is hydrogen, lower alkyl or lower alkenyl;

R^{17} and R^{18} are independently hydrogen, lower alkyl lower cycloalkyl or lower alkenyl;

A^+_n is an aromatic group of 6 to 12 carbons ;

n' is 0 or an integer from 1 to 5;

m is an integer from 1 to 5;

R^{19} and R^{20} are independently hydrogen or lower alkyl,

or taken together

R^{19} and R^{20} form a carbonyl group(=O);

R^{6c} is lower alkyl, lower alkenyl, lower cycloalkyl, lower alkoxy, or NR21R22,

wherein

R^{21} and R^{22} are independently hydrogen, lower alkyl or lower alkenyl;

and pharmaceutically acceptable salts thereof.

Specific compounds of formula (I) are:

<table>
<thead>
<tr>
<th>Compound / Example Number</th>
<th>Compound Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-4-en-3-one</td>
</tr>
<tr>
<td>2.</td>
<td>17β-N,N-Diethylcarbamoyl-6-methyl-6-azaandrost-4-en-3-one</td>
</tr>
<tr>
<td>3.</td>
<td>17β-N-t-Butyldcarbamoyl-6-azaandrost-4-en-3-one</td>
</tr>
<tr>
<td>4.</td>
<td>17β-(2-Pyridinylthiocarbonyl)-6-azaandrost-4-en-3-one</td>
</tr>
<tr>
<td>Compound / Example Number</td>
<td>Compound Name</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>5.</td>
<td>17β-(1-Oxo-3-methylbutyl)-6-azaandrost-4-en-3-one</td>
</tr>
<tr>
<td>6.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1,4-dien-3-one</td>
</tr>
<tr>
<td>7.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>8.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-4-chloro-4-en-3-one</td>
</tr>
<tr>
<td>9.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-4-bromo-4-en-3-one</td>
</tr>
<tr>
<td>10.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-4-iodo-4-en-3-one</td>
</tr>
<tr>
<td>11.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-4-methyl-4-en-3-one</td>
</tr>
<tr>
<td>12.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-4-ethyl-4-en-3-one</td>
</tr>
<tr>
<td>13.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-4-cyano-4-en-3-one</td>
</tr>
<tr>
<td>14.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-4-dimethylaminomethylene-4-en-3-one</td>
</tr>
<tr>
<td>15.</td>
<td>17β-N,N-Diethylcarbamoyl-6-(3-hydroxypropyl)-6-azaandrost-4-en-3-one</td>
</tr>
<tr>
<td>16.</td>
<td>17β-N,N-Diethylcarbamoyl-6-methyl-6-azaandrost-4-en-3-one</td>
</tr>
<tr>
<td>17.</td>
<td>17β-N,N-Dicarbomethoxycarbamoyl-6-azaandrost-4-en-3-one</td>
</tr>
<tr>
<td>18.</td>
<td>17β-N,N-Diethylcarbamoyl-6-methyl-6-azaandrost-4-en-3-one</td>
</tr>
<tr>
<td>19.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1,4-dien-3-one</td>
</tr>
<tr>
<td>20.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>21.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>22.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>23.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>24.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>25.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>26.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>27.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>28.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>29.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>30.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>31.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>32.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>33.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>34.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>35.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>36.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>37.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>38.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>39.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>40.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>41.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>42.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>43.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>44.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>45.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>46.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>47.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>48.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>49.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>50.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
<tr>
<td>51.</td>
<td>17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one</td>
</tr>
</tbody>
</table>
Some of the substituents of the compound of formula (I) may cause asymmetry about the atoms to which they are attached giving rise to either α or β stereochemical configuration. (For a detailed explanation of stereochemical configuration see March, J. Advanced Organic Chemistry, 3rd Ed., ch. 4, John Wiley & Sons, New York (1985).) Unless otherwise indicated, either the α and β stereo configurations are intended for the substituents.

The compounds of formula (I) can be used in the form of an acid addition salt derived from inorganic or organic acids. Where the salt of a compound of formula (I) is to be used for a human or veterinary medicinal application the salt must be pharmaceutically acceptable. However, non-pharmaceutically acceptable salts of the compounds of formula (I) may be useful as intermediates in the preparation of a corresponding pharmaceutically acceptable salt. Pharmaceutically acceptable salts include, but are not limited to, salts with inorganic acids such as hydrochloride, sulfate, phosphate, diphosphate, hydrobromide and nitrate salts or salts with an organic acid such as the acetate, malate, maleate, fumarate, tartrate, succinate, citrate, lactate, methanesulfonate, p-toluenesulfonate, palmitoate, salicylate and stearate salts.

Preparation of Compounds

According to one general process (A), the compounds of the present invention may be prepared by the procedure shown in Step 8 of Scheme I, wherein R^1-R^4, R^6, Y and Z are as defined for formula (I) and "JO" is a protected hydroxy group:
SCHEME 1
In Step 1 of Scheme I when Z is CO₂H, the acid group at the 17 position of a compound of formula (II) is converted to the corresponding ketone, ester or amide of compound (III) accompanied by deprotection of the hydroxy group at the 3 position. Alternatively a compound of formula (III) wherein Z is CO₂CH₃ and Y is H may be prepared from pregnenolone as described by Rasmussen, et al., J. Med. Chem., 27, 1690 (1984).

This may be accomplished by activating the carboxylic acid group toward nucleophilic displacement by treatment with an activating agent such as N,N-bis(2-oxo-3-oxazolidinyl)phosphorinic chloride (BOP·Cl) or conversion to the corresponding acid halide group by treatment with a halogenating agent such as oxalyl chloride or thionyl chloride in an aprotic solvent such methylene chloride or toluene at -5 to 10°C. The intermediate activated carboxylic acid, e.g., an acid chloride, may be reacted with H-NR₁₄R₁₅ or HOR₅ (wherein R₅, R₁₄ and R₁₅ are as defined for formula (I)) at room temperature in an aprotic solvent. When R₁₅ is alkyl, alicyclic, lower cycloalkyl, or adamantyl, the activated acid is treated with R₁₅M (wherein M is a metal, such as magnesium or lithium) in a polar, aprotic solvent such as THF or diethyl ether containing catalytic CuI, at a temperature in the range of about 0°C to about -78°C.

In Step 2, a compound of formula (III) is treated with a suitable hydroxy protecting group such as for example a silicon derivative such as a trisubstituted silyl halide, a tetrahydropyran derivative or an aralkyl group such as a para-methoxybenzyl group. Typically the compound of formula (III) is treated with a trialkylsilyl halide, e.g., trisopropylsilyl chloride, at about 25 to 75°C in an aprotic solvent such as dimethylformamide to protect the hydroxy group in the 3-position to yield the corresponding trisubstituted silylated compound of formula (IV).

In Step 3, a compound of formula (IV) is treated with ozone in methanol alone or as a mixture with one or more polar, protic or aprotic solvents, e.g., methylene chloride and methanol, at a temperature substantially below 0°C, e.g., from about -50 to about -80°C to yield a corresponding compound of formula (V).

In Step 4, the compound of formula (V) in methanol alone or as a mixture with one or more polar, protic or aprotic solvents, e.g., methylene chloride and methanol, at about -20°C is treated with a reductant such as zinc and acetic acid then allowed to slowly warm to room temperature to yield the aldehyde of formula (VI). Alternatively the compound of formula (V) may be taken directly to step 5.

In Step 5, a compound of formula (V or VI) is reacted with an oxidant, such as Jones reagent (see Bowden, et al., J. Chem. Soc., 39, (1946)) at about 0°C, to yield the corresponding compound of formula (VII).

In Step 6, a compound of formula (VII) is converted to an activated carboxylic derivative such as an acid halide, e.g., chloride, by treatment with a halogenating agent, e.g., oxalyl chloride. The resulting acid halide is reacted with an alkali metal azide, e.g., sodium azide, at about 0 to 30°C in an aqueous solvent mixture, such as water and acetone, to yield the corresponding acyl azide compound of formula (VIII). Alternatively, the acid is treated with triphenyl phos-
phosphoryl azide in an aprotic solvent such as toluene to yield the acyl azide directly.

In Step 7, an acyl azide compound of formula (VIII) is rearranged with ring closure by warming to reflux in an aprotic solvent, such as toluene, to induce rearrangement to the corresponding isocyanate followed by stirring with a weak acid such as silica gel or by reaction with a strong, sterically hindered base, e.g., potassium t-butoxide, in a protic or aprotic solvent at a temperature in the range of about 90 to about 180°C, to generate the corresponding compound of formula (IX).

Finally, in Step 8, (general process A) a compound of formula (IX) is deprotected and oxidized. Thus, in general process (A1) compounds of general formula (I) wherein R is hydrogen may be prepared by converting the protected hydroxy group of a compound of formula (IX) to the corresponding hydroxy group, i.e., the hydroxy group is deprotected in conventional manner. Thus, for example a trisubstituted silyl group may be removed by reaction of a compound of formula (IX) with aqueous hydrogen fluoride in a polar solvent such as acetonitrile at about 0°C to room temperature. Next the hydroxy group is oxidized by reaction with a suitable oxidizing agent, for example, with Jones reagent with migration of the double bond to the 4,5 position to generate the corresponding compound of formula (I) where R is hydrogen.

Alternatively, in general process (A2) for the preparation of compounds of general formula (I) wherein R is an acyl group the compound of formula (IX) is treated with an acylating agent such as di-t-butyldicarbonate to acylate the 6-nitrogen with migration of the double bond to the 4, 5 position. The hydroxy protecting group is then removed in conventional manner, for example a trisubstituted silyl protecting group may be removed with a reagent such as tetrabutylammonium fluoride, and treated with an oxidant such as pyridinium dichromate to generate the corresponding compound of formula (I) where R is t-butylicarboxy.

Alternatively, according to another general process (B) the compounds of formula (I) wherein X is

\[
\text{(CR}^{10}\text{R}^{11})_p
\]

and both p and q are 1, and R^{10}, R^{11}, R^{12} and R^{13} are hydrogen, may be prepared by the procedure shown in Step 5 of Scheme II wherein R^{1-6} are as defined for formula (I).
In Step 1 of Scheme II, the enone function of compound (X) is protected as a ketal with concomitant migration of the double bond to the 5, 6 position by refluxing with ethylene glycol in the presence of an acid, such as p-toluenesulfonic acid, in a solvent such as toluene which allows azeotropic removal of water to yield the corresponding compound of formula (XI).

In Step 2, a compound of formula (XI) is treated with ozone in methanol alone or with one or more polar, protic or aprotic solvents mixtures, e.g., methylene chloride and methanol, at a temperature substantially below 0°C, e.g., from about -50 to about -80°C, followed by treatment at about -20°C with a reductant, such as zinc and acetic acid, then allowed to slowly warm to room temperature to yield the aldehyde of formula (XII).

In Step 3, a compound of formula (XII) is reduced with a selective reducing agent, such as lithium tri-t-butoxyaluminunhydride in an aprotic solvent such as THF or diethyl ether to give the corresponding alcohol of formula (XIII).

In Step 4, the alcohol functionality of a compound of formula (XIII) is converted to a leaving group, such as the corresponding methanesulfonate by treatment with methanesulfonyl chloride in an aprotic solvent such as methylene chloride in the presence of a hindered tertiary amine base such as triethylamine. Once transformed to a leaving group, the alcohol is displaced by treatment with a source of azide, such as sodium azide, in a polar, aprotic solvent, such as DMF, to give the corresponding alkyl azide of formula (XIV).

In Step 5, a compound of formula (XIV) is treated with a reductant such as triphenylphosphine in THF at reflux followed by a strong protic acid such as 4M HCl to give the corresponding compound of formula (I) where X is -CH₂CH₂-

Alternatively, according to another general process (C), a compound of formula (I) according to the invention may be converted into another compound of the invention using conventional procedures.

Thus, for example a double bond may be inserted between the carbon in the 1 position and the carbon in the 2 position by conventional means such as dehydrogenation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone by refluxing in an aprotic solvent such as dioxane to produce a compound of formula (I) which is unsaturated in the 1, 2 position. A compound of formula (I) with a double bond in the 1, 2 position may then be treated with the anion of trimethylsul-
foxonium iodide, prepared by deprotonation with a base such as sodium hydride, in an aprotic, polar solvent such as DMSO to give a compound of formula (I) wherein R³ is H and R⁴ is acyl or acyloxy, such as t-butylcarboxy, may be treated with bromine at 0°C in an aprotic solvent such as methylene chloride to give the corresponding compound of formula (I) wherein R³ is Br, which may then be treated with an organotin species such as phenyltrimethylin in the presence of a palladium catalyst such as PdCl₂[PPh₃]₂ and lithium chloride in a polar aprotic solvent such as dimethylformamide to give the corresponding compound of formula (I) wherein R⁴ is methyl.

Additionally, a compound of formula (I) wherein R⁴ is acyl or acyloxy, such as t-butylcarboxy, may be treated with a strong hindered base such as lithium diisopropylamide at -78°C in an aprotic solvent such as THF followed by an electrophile, such as methyl iodide to give compounds of formula (I) wherein R⁴ is methyl or lower alky.

Also, a compound of formula (I) wherein R² is H may be treated with cuprous cyanide or N,N-dimethylamino-ammonium iodide in polar, aprotic solvents such as DMF or acetonitrile to give compounds of formula (I) wherein R³ is -CN and -CH₂N(CH₃)₂ respectively.

Additionally a compound of formula (I) wherein R² is H may be treated with a halogenated succinimide such as N-iodosuccinimide in a solvent such as THF to give a compound of formula (I) wherein R³ is I.

The compounds of formula (I) wherein R⁴ is hydrogen may be reacted, via a nucleophilic reaction of the corresponding sodium or potassium salt, with L-lower alkyl, L-lower alkenyl, L-alkenyl of 2 to 6 carbons, L-Alk₁, L-lower cycloalkyl, L-lower cycloalkyl-lower alkyl, cycloalkyl, L-Alk₁, CO₂R², L-(Alk₁)₂-phthalimidy, L-(Alk₁)₂-CO₂H, L-(Alk₁)₂-NR²R³, L-(Alk₁)₂-OH or L-(Alk₁)₂-OR² at a temperature of about 5 to about 100°C in a polar, aprotic solvent such as dimethylformamide, to yield the compounds of formula (I) wherein R⁴ is other than hydrogen. The groups, R²-R⁴, Ar¹ and n, are as defined for formula (I) and L is a leaving group, such as in March, J., *Advanced Organic Chemistry*, 3d Ed., 179, John Wiley & Sons, New York (1985) and in Hendrickson, J., *et al*., *Organic Chemistry*, 3d Ed., 375-377, McGraw Hill, New York (1970), e.g., a halogen atom.

Additionally, a compound of formula (I) wherein Z is CO₂R⁷, and in particular wherein R⁷ is CH₂, may be treated with a strong base, such as lithium hydride in a solvent system such as THF or dioxane and water to give a compound of formula (I) wherein Z is CO₂H. An acid of this formula may then be treated as described in Step 1 to yield the corresponding compounds of formula (I) wherein Z is COR⁶, CO₂R⁸ or CONR¹⁴R¹⁵.

Optionally, a compound of formula (I) wherein Z is CO₂R⁷ and in particular wherein R⁷ is OH₂ may be reduced with a reducing agent such as disobutyl aluminum hydride and then reoxidized with Collins’ reagent (CrO₂-2 pyridine) or another mild oxidant to produce a compound of formula (I) wherein Z is CHO, which may be treated with R⁸M (wherein M is a metal such as magnesium or lithium) and R⁴ is Alk₁-H, lower cycloalkyl or adamantyl to give, after oxidation with pyridinium dichromate, a compound of formula (I) wherein Z is COR⁶.

Further, these compounds of formula (I), wherein Z is -CHO, may be treated with a Wittig reagent, such as Et₂POCH₂COR⁶, Et₂POCH₂CO₂R⁸ or Et₂POCH₂CONR¹⁴R¹⁵ to give a compounds of formula (I) wherein Z is -CH=CH-COR⁶, -CH=CH-CO₂R⁸ or CH₂=CH-COR¹⁴R¹⁵ respectively.

It will be appreciated by those skilled in this art that for certain substituents some Steps in the procedures shown in Scheme I and Scheme II are incompatible with survival of the functional groups of interest. In these cases, the substituents e.g. R³ or Z is either introduced subsequent to the incompatible Step or is present in a protected form. An example of the former is the case where R³ is halogen, in which case the halogen is introduced by reaction of a compound of formula (I) with a halogenated succinimide, such as N-bromosuccinimide. An example of the latter is the use of an ester or ether to protect a carboxylic acid or alcohol, respectively.

Thus, according to another general process (O), a compound of formula (I) according to the invention, or a salt thereof may be prepared by subjecting a protected derivative of formula (I) or a salt thereof to reaction to remove the protecting group or groups.

Thus, at an earlier stage in the preparation of a compound of formula (I) or a salt thereof it may have been necessary and/or desirable to protect one or more sensitive groups in the molecule to prevent undesirable side reactions.

The protecting groups used in the preparation of compounds of formula (I) may be used in conventional manner. See for example ‘Protective Groups in Organic Chemistry’ Ed.J.F.W.McOmie (Plenum Press 1973) or ‘Protective Groups in Organic Synthesis’ by Theodora W Greene (John Wiley and Sons 1981).

Conventional amino protecting groups may include for example aralkyl groups, such as benzyl, diphenylmethyl or triphenylmethyl groups; and acyl groups such as N-benzyloxy carbonyl or t-butoxycarbonyl, thus, compounds of general formula (I) wherein one or all of the groups R³ and R⁴ represent hydrogen may be protected by deprotection of a corresponding protected compound.

Hydroxy groups may be protected, for example, by aralkyl groups, such as benzyl, diphenylmethyl or triphenylmethyl groups, acyl groups, such as acetyl, silicon protecting groups, such as trimethylsilyl or t-butyldimethylsilyl groups, or as tetrahydropyran derivatives.

Removal of any protecting groups present may be achieved by conventional procedures. Thus an aralkyl group such as benzyl, may be cleaved by hydrogenolysis in the presence of a catalyst (e.g. palladium on charcoal); an acyl
group such as N-benzoyloxycarbonyl may be removed by hydrolysis with, for example, hydrogen bromide in acetic acid or by reduction, for example by catalytic hydrogenation; silicon protecting groups may be removed, for example by treatment with fluoride ion or by hydrolysis under acidic conditions, tetrahydropryan groups may be cleaved by hydrolysis under acidic conditions.

As will be appreciated, in any of the general processes (A) to (C) described above it may be necessary or desired to protect any sensitive groups in the molecule as just described. Thus, a reaction step involving deprotection of a protected derivative of general formula (I) or a salt thereof may be carried out subsequent to any of the above described processes (A) to (C). Thus, according to a further aspect of the invention, the following reactions may, if necessary and/or desired by carried out in any appropriate sequence subsequent to any of the processes (A) to (C)

(i) removal of any protecting groups; and
(ii) conversion of a compound of formula (I) or a salt thereof into a pharmaceutically acceptable salt thereof.

Where it is desired to isolate a compound of the invention as a salt, for example as an acid addition salt, this may be achieved by treating the free base of general formula (I) with an appropriate acid, preferably with an equivalent amount, or with creatinine sulphate in a suitable solvent (e.g. aqueous ethanol).

As well as being employed as the last main step in the preparative sequence, the general methods indicated above for the preparation of the compounds of the invention may also be used for the introduction of the desired groups at an intermediate stage in the preparation of the required compound. It should therefore be appreciated that in such multi-stage processes, the sequence of reactions should be chosen in order that the reaction conditions do not affect groups present in the molecule which are desired in the final product.

The compound of formula (I) and the intermediate compounds, (II)-(XIV), shown in Schemes I and II may be purified by convenient methods of the art, e.g., chromatography or crystallization.

Steroid 5α-Reductase In Vitro Assay

Enzyme activity may be determined using microsomes derived from prostate tissue of benign prostatic hypertrophy (BPH) patients or from rat prostate tissue. Prostatic microsomes were prepared by homogenization of the tissue, followed by differential centrifugation of the homogenate. Microsome extracts were incubated with 100 nM [1,2,6,7,3H]-testosterone, 1 mM NADPH and varying amounts of the compounds of Formula (I), i.e., a test compound, for 60 minutes at 37°C. Corresponding incubations were carried out with no test compound as a control study. The percentage of conversion of testosterone to DHT in the presence of test compounds compared to the corresponding conversion in the control study was estimated using high pressure liquid chromatography (HPLC) with radiochemical detection. The results of this assay as IC₅₀ values for microsomes derived from human prostate and rat tissue are shown in Table 1.

<p>| TABLE 1 |
| 5α-REDUCTASE IN VITRO INHIBITORY ACTIVITIES | IC₅₀ Human | IC₅₀ Rat |
| Compound/Example | IC₅₀ Human | IC₅₀ Rat |
| 1 | +++ | ++ |
| 2 | +++ | ++ |
| 3 | +++ | ++ |
| 4 | +++ | ++ |
| 5 | +++ | ++ |
| 6 | ++ | + |
| 7 | +++ | nt |
| 8 | +++ | ++ |
| 9 | +++ | + |
| 10 | ++ | + |
| 11 | ++ | + |
| 12 | + | nt |
| 13 | + | nt |
| 14 | + | nt |
| 15 | + | nt |
| 16 | +++ | ++ |</p>
<table>
<thead>
<tr>
<th>Compound/Example</th>
<th>IC\textsubscript{50} Human</th>
<th>IC\textsubscript{50} Rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>nt</td>
</tr>
<tr>
<td>15</td>
<td>+</td>
<td>nt</td>
</tr>
<tr>
<td>20</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>30</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>35</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>40</td>
<td>++</td>
<td>nt</td>
</tr>
<tr>
<td>45</td>
<td>++</td>
<td>nt</td>
</tr>
<tr>
<td>50</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>55</td>
<td>++</td>
<td>nt</td>
</tr>
<tr>
<td>60</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>65</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>70</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>75</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>80</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>85</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>90</td>
<td>+++</td>
<td>++</td>
</tr>
</tbody>
</table>
TABLE 1 (continued)

<table>
<thead>
<tr>
<th>Compound/Example</th>
<th>IC$_{50}$ Human</th>
<th>IC$_{50}$ Rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>66</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>67</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>68</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>69</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>70</td>
<td>++</td>
<td>nt</td>
</tr>
<tr>
<td>71</td>
<td>+++</td>
<td>nt</td>
</tr>
<tr>
<td>72</td>
<td>+++</td>
<td>nt</td>
</tr>
<tr>
<td>73</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>74</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>75</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>76</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>77</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

+++ = < 10 nM
++ = 10 - 100 nM
+ = 100 - 1000 nM
nt = not tested

In Vivo Evaluation of Steroid 5α-Reductase Inhibitors

The in vivo activity of steroid 5α-reductase inhibitors may be determined in both acute and chronic rat models. The acute model utilizes castrated male rats that receive testosterone (1 mg) subcutaneously and test compound (10 mg/kg) p.o., at 0.5 hr. and 4.5 hr. prior to sacrifice, respectively. Levels of DHT in the serum and prostate indicate the ability of the test compound to inhibit steroid 5α-reductase in an acute rat model. Known steroid 5α-reductase inhibitors were tested in parallel to ensure consistency of the assay method.

The chronic model also utilizes castrated male rats that are dosed daily with testosterone (20 μg/rat) subcutaneously and with test compound (0.01-10 mg/kg) p.o. for 7 days. The animals are then sacrificed and their prostates weighed. Reduction in the size of testosterone-stimulated prostate weight demonstrated activity of the test compound. Known steroid 5α-reductase inhibitors were tested in parallel to ensure consistency of the assay method.

In view of the reported species’ differences between human and rat steroid 5α-reductase in vivo, results were tempered by comparison of the in vitro activity against rat and human enzymes. These procedures were supported by pharmacokinetic studies for compounds with predictable reduced efficacy in the rat model.

Utility

They are also useful in the treatment of prostatitis, prostate cancer, androgen mediated diseases of the skin, such as acne, hirsutism and male pattern baldness. Other hormone related diseases, e.g., polycystic ovary disease, would be expected to respond to treatment with these inhibitors.

The amount of compound of formula (I) required to be effective as an 5α-reductase inhibitor will, of course, vary with the individual mammal being treated and is ultimately at the discretion of the medical or veterinary practitioner. The factors to be considered include the condition being treated, the route of administration, the nature of the formulation, the mammal’s body weight, surface area, age and general condition, and the particular compound to be administered. However, a suitable effective 5α-reductase inhibitory dose is in the range of about 0.1 to about 50 mg/kg body weight per day, preferably in the range of about 0.5 to about 20 mg/kg per day. The total daily dose may be given as a single dose, multiple doses, e.g., two to six times per day, or by intravenous infusion for a selected duration. Dosages above or below the range cited above are within the scope of the present invention and may be administered to the individual patient if desired and necessary.
For example, for a 75 kg mammal, a dose range would be about 50 to about 1500 mg per day, and a typical dose would be about 200 mg per day. If discrete multiple doses are indicated, treatment might typically be 50 mg of a compound of formula (I) given 4 times per day.

Formulations

Formulations of the present invention for medical use comprise an active compound, i.e., a compound of formula (I), together with an acceptable carrier thereof and optionally other therapeutically active ingredients. The carrier must be pharmaceutically acceptable in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.

The present invention, therefore, further provides a pharmaceutical formulation comprising a compound of formula (I) together with a pharmaceutically acceptable carrier thereof.

The formulations include those suitable for oral, rectal or parenteral (including subcutaneous, intramuscular and intravenous) administration. Preferred are those suitable for oral or parenteral administration.

The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active compound into association with a carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing the active compound into association with a liquid carrier or a finely divided solid carrier and then, if necessary, shaping the product into desired unit dosage form.

Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets, tablets or lozenges, each containing a predetermined amount of the active compound: as a powder or granules; or as a suspension or solution in an aqueous liquid or non-aqueous liquid, e.g., a syrup, an elixir, an emulsion or a draught.

A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active compound in a free-flowing form, e.g., a powder or granules, optionally mixed with accessory ingredients, e.g., binders, lubricants, inert diluents, surface active or dispersing agents. Molded tablets may be made by molding in a suitable machine, a mixture of the powdered active compound with any suitable carrier.

A syrup or suspension may be made by adding the active compound to a concentrated, aqueous solution of a sugar, e.g., sucrose, to which may also be added any accessory ingredients. Such accessory ingredient(s) may include flavoring, an agent to retard crystallization of the sugar or an agent to increase the solubility of any other ingredient, e.g., as a polyhydric alcohol, for example, glycerol or sorbitol.

Formulations for rectal administration may be presented as a suppository with a conventional carrier, e.g., cocoa butter or Witepsol S55 (trademark of Dynamit Nobel Chemical, Germany), for a suppository base.

For transdermal administration the compounds according to the invention may be formulated as creams, gels, ointments or lotions or as a transdermal patch. Such compositions may for example be formulated with an aqueous or oily base with the addition of suitable thickening, gelling, emulsifying, stabilising, dispersing, suspending, and/or colouring agents.

Formulations suitable for parenteral administration conveniently comprise a sterile aqueous preparation of the active compound which is preferably isotonic with the blood of the recipient. Such formulations suitably comprise a solution or suspension of a pharmaceutically and pharmacologically acceptable acid addition salt of a compound of the formula (I) that is isotonic with the blood of the recipient. Thus, such formulations may conveniently contain distilled water, 5% dextrose in distilled water or saline and a pharmaceutically and pharmacologically acceptable acid addition salt of a compound of the formula (I) that has an appropriate solubility in these solvents, for example the hydrochloride, isethionate and methanesulfonate salts, preferably the latter. Useful formulations also comprise concentrated solutions or solids containing the compound of formula (I) which upon dilution with an appropriate solvent give a solution suitable for parenteral administration above.

In addition to the aforementioned ingredients, the formulations of this invention may further include one or more optional accessory ingredient(s) utilized in the art of pharmaceutical formulations, e.g., diluents, buffers, flavoring agents, binders, surface active agents, thickeners, lubricants, suspending agents, preservatives (including antioxidants) and the like.

EXAMPLES

The following examples illustrate aspects of this invention but should not be construed as limitations. The symbols and conventions used in these examples are consistent with those used in the contemporary chemical literature, for example, the Journal of the American Chemical Society.
Example 1

17β-N.N-Diethylcarbamol-6-azaandrost-4-en-3-one (Compound 1)

A. 3β-Acetoxytetronic acid diethylamide

To a solution of 3β-acetoxytetronic acid (Org. Syn. 5, 6)(21.46 g, 60 mmol) in methylene chloride (150 mL) under nitrogen is added triethylamine (16.6 mL, 120 mmol), the reaction mixture is stirred for 10 minutes and then cooled to 0°C. Next N,N-bis(2-oxo-3-azolidinyl)phosphorinic chloride (BOP-Cl, 15.3 g, 60 mmol) and diethylamine (6.8 mL, 66 mmol) are added and the reaction allowed to warm to room temperature overnight. An aqueous solution of 1N HCl (100 mL) and isopropanol (50 mL) is then added, the mixture stirred 10 min, chloroform is added (500 mL) and the organic layers washed sequentially with 1N HCl, water and saturated aqueous NaCl. The solution is then dried over MgSO₄, concentrated to a yellow solid which is dissolved in ethyl acetate (150 mL), boiled with activated charcoal, filtered through silica gel and concentrated to give 3β-acetoxytetronic acid diethylamide as an off-white solid; yield: 16.6 g (67%) of sufficient purity to carry on to the following steps.

B. 3β-Hydroxytetronic acid diethylamide

A solution of 3β-acetoxytetronic acid diethylamide (10.03 g, 24 mmol) in anhydrous methanol (250 mL) is treated with anhydrous potassium carbonate (5.0 g) and heated to reflux under nitrogen for 1 hour. The methanol is removed by rotary evaporation, the solid dissolved in ethyl acetate (300 mL), washed sequentially with water and saturated aqueous NaCl then dried over MgSO₄, concentrated and flash chromatographed on silica gel (10 to 20% ethyl acetate to give 3β-hydroxytetronic acid diethylamide as a white solid; yield: 8.95 g (100%)

C. 3β-Trisopropysilyltetronic acid diethyl amide

To a solution of 3β-hydroxytetronic acid diethyl amide (8.95 g, 24 mmol) in dimethylformamide (DMF, 25 mL) is added imidazole (4.10 g, 60 mmol) and trisopropysilyl chloride (10.3 mL, 48 mmol) and the reaction heated to 60°C for about 5 hours. The DMF is then removed by rotary evaporation, diethyl ether added (100 mL), and the solution washed with 1N HCl, saturated aqueous NaCl, dried over MgSO₄ and concentrated by rotary evaporation. The resulting concentrate is flash chromatographed on silica gel (0 to 20% ethyl acetate/hexanes) to give 3β-trisopropysilyltetronic acid diethyl amide as a white foam; yield: 10.28 g (80%).

D. A solution of 3β-trisopropysilyltetronic acid diethyl amide (10.28 g, 19 mmol), from part C, in methylene chloride (400 mL) and methanol (300 mL) is cooled to -76°C and treated with ozone until a deep blue color persists. The reaction is then warmed to room temperature, concentrated and flash chromatographed on silica gel (15 to 25% ethyl acetate/hexanes) to give the peroxy compound of formula (VI) [wherein R₁, R₂, R₃ and Y are hydrogen, and Z is CONEt₂] as a white foam; yield: 8.70 g (74%); FAB mass spec. MH⁺ 610.

E. The compound prepared in part D, above, (8.70 g, 14 mmol) is dissolved in acetone and treated with Jones reagent (12 mL, 3.22 M, 39 mmol) at 0°C for 15 min. Next, isopropanol (25 mL) is added, the acetone removed by rotary evaporation, ethyl acetate added (100 mL) and the solution washed with H₂O and saturated aqueous NaCl. The solution is then dried over MgSO₄, concentrated and the residue flash chromatographed on silica gel (.15 to 50% ethyl acetate/hexanes) to give the corresponding keto-acid compound of formula (VII) as a white solid; yield: 4.09 g (50%); FAB mass spec. MH⁺ 578.

F. A solution of the keto-acid compound of formula (VII) prepared in part E, above, (3.58 g, 6.2 mmol) in methylene chloride (50 mL) at 0°C is treated with anhydrous pyridine (1.5 mL) and oxalyl chloride (1.62 mL, 18.6 mmol). After 30 min the reaction is concentrated, eventually at high vacuum, dissolved in acetone (100 mL) and treated with sodium azide (2.0 g, 31 mmol) in H₂O (7 mL). After 30 min the reaction is concentrated, the residue dissolved in ethyl acetate, washed with H₂O, saturated aqueous NaCl, dried over MgSO₄ and concentrated to give corresponding acyl azido compound of formula (VIII) as a white foam; yield: 3.45 g (92%).

G. 17β-N,N-Diethylecarbomol-3β-trisopropysilyoxy-6-azaandrost-5-ene

The acyl azido compound of formula (VIII) prepared in part F, above, (3.45 g, 5.7 mmol) is dissolved in toluene (40 mL), heated at reflux for 30 min, concentrated, dissolved in t-butanol (100 mL) containing catalytic potassium t-butoxide and heated at reflux for 20 min. After cooling to room temperature, diethyl ether (200 mL) is added, the organics washed with H₂O and saturated aqueous NaCl, the solution dried over MgSO₄, concentrated and flash chromatographed on silica gel (50 to 100% ethyl acetate/hexanes) to give 17β-N,N-diethylecarbomol-3β-trisopropysilyoxy-6-azaandrost-5-ene (a compound of formula (IX) as a light yellow solid; yield: 2.66 g (81%); FAB mass spec. MH⁺ 531.)
H. 17β-N,N-Diethylcarbamoyl-6-azaandrostan-4-en-3-one

A Solution of 17β-N,N-diethylcarbamoyl-3β-triisopropylsilyloxy-6-azaandrostan-5-ene (1.51 g, 2.8 mmol) in acetonitrile (100 mL) at 0°C is treated with 48% aqueous HF (20 mL), the reaction allowed to warm to room temperature and stirred for 2 hours. The solution is then diluted with methylene chloride (200 mL), washed with H₂O and saturated aqueous bicarbonate, dried over MgSO₄ and concentrated to an off-white solid; yield 1.02 g (98%).

A solution of this solid (0.48 g, 1.3 mmol) in acetone (100 ml) is treated with Jones reagent (1 mL, 3.22 M, 3.2 mmol) and warmed to room temperature. Next, isopropanol is added (10 mL), the reaction concentrated, the residue dissolved in ethyl acetate (75 mL), washed with saturated aqueous bicarbonate, dried over MgSO₄ and concentrated to give 17β-N,N-diethylcarbamoyl-6-azaandrostan-4-en-3-one as an off-white solid; yield: 0.22 g (46%).

This material is then triturated with ether to give 172 mg pure white solid; m.p. 253-256°C (dec.). Anal. Calcd. for C₂₃H₃₆N₂O₂; C, 74.15; H, 9.74; N, 7.52. Found: C, 73.88; H, 9.77; N, 7.44.

Example 2

17β-N,N-Diethylcarbamoyl-6-methyl-6-azaandrostan-4-en-3-one (Compound 2)

To a solution of 17β-N,N-diethylcarbamoyl-6-azaandrostan-4-en-3-one (24 mg, 0.056 mmol) in DMF (2 mL) at room temperature is added NaOH (16 mg, 0.5% oil dispersion, 0.5 mmol) and, after 30 min, methyl iodide (50 µL, excess). After stirring for 30 min ethyl acetate (30 mL) is added, the solution washed with H₂O and saturated aqueous NaCl, dried over MgSO₄, concentrated and flash chromatographed on silica gel (100% ethyl acetate to 5% methanol/chloroform) to give 17β-N,N-diethylcarbamoyl-6-methyl-6-azaandrostan-4-en-3-one as a white solid; yield 19 mg (76%). This material is then recrystallized from hexanes/methylene chloride to give 14 mg pure white solid; m.p. 158-159°C. Anal. Calcd. for C₂₄H₃₈N₂O₂; C, 74.57; H, 9.91; N, 7.25. Found: C, 74.38; H, 9.84; N, 7.18.

Example 3

17β-N-t-Butylcarbamoyl-6-azaandrostan-4-en-3-one (Compound 3)

A. 3β-triisopropylsilyloxyetionic acid methyl ester

A suspension of 3β-hydroxyetionic acid methyl ester, (J. Med. Chem., 27, 1690 (1984)), (516 g, 1.55 mol) in DMF (800 mL) is heated to 55°C, imidazole (2,64 g,3.88 mol) added with vigorous mechanical stirring, followed by dropwise addition of triisopropylsilyl chloride (360 g, 1.87 mol). The reaction becomes homogeneous after about half of the triisopropylsilyl chloride is added and the reaction temperature increases to ca. 70°C. The reaction is complete by TLC (35% ethyl acetate/hexanes) after 1.5 hrs and a thick slurry forms. The reaction is then worked up as in Example 1, part C and crystallized from hexanes/methanol to give 3β-triisopropylsilyloxyetionic acid methyl ester as a white crystalline solid; yield: 667 g (88%); m.p. 124-125°C. Anal. Calcd. for C₃₀H₅₂O₃Si; C, 73.71; H, 10.72. Found: C, 73.79; H, 10.74.

B. A solution of 3β-triisopropylsilyloxyetionic acid methyl ester (166 g, 0.34 mol), from part A, in methylene chloride (2 L) and methanol (800 mL) is cooled to -78°C and treated with ozone until a blue color persists. The peroxo compound of formula (V) may be isolated as in Example 1, part D and recrystallized from hexanes to give an analytical sample; m.p 119-121°C. Anal. Calcd. for C₃₀H₅₂O₃Si; C, 65.45; H, 9.92. Found: C, 65.37; H, 9.86. However, more conveniently, the reaction is allowed to warm to -50°C under a stream of nitrogen, and zinc dust added (89 g, 1.36 mol), followed by glacial acetic acid (150 mL). The reaction is then allowed to warm to room temperature with stirring, filtered to remove zinc, the solution washed with water, saturated aqueous NaCl, saturated aqueous bicarbonate, dried over MgSO₄ and concentrated by rotary evaporation to give crude keto-aldehyde of formula (VI) as a white foam; yield: 176 g (99%).

C. The compound prepared in part B above (176 g, 0.34 mol) is oxidized with Jones reagent as in Example 1, part E to give the corresponding keto-acid of formula (VII) as an off-white solid; yield: 163 g (89%). Recrystallization from ethyl acetate/hexanes gives a white crystalline solid; m.p. 143-145°C. Anal. Calcd. for C₃₀H₅₂O₃Si; C, 67.12; H, 9.76. Found: C, 67.21; H, 9.80.

D. 17β-Carbomethoxy-3β-triisopropylsilyloxy-6-azaandrostan-5-ene

A portion of the keto-acid of formula (VII) prepared above (77 g, 0.14 mol) is converted to the acyl azide as in Example 1, part F, and is then dissolved in toluene (500 mL), heated to reflux for 5 minutes, cooled to 50°C and treated with silica gel (150 g). The reaction is allowed to stir overnight, the silica gel removed by filtration and washed with 4:1 ethyl acetate/methanol (500 mL) to give 17β-carbomethoxy-3β-triisopropylsilyloxy-6-azaandrostan-
5-one (a compound of formula (IX)) as a white foam; yield: 66 g (94%). Flash chromatography on silica gel (30% ethyl acetate/hexanes) gives an analytical sample as a white foam. Anal. Calcd. for C_{26}H_{51}NO_{3}Si: C, 71.11; H, 10.49; N, 2.56. Found: C, 71.04; H, 10.51; N, 2.60.

E. 17β-Carbomethoxy-6-t-butylicarboxy-6-azaandrostat-4-en-3-one

Crude 17β-carbomethoxy-3β-triisopropylsilylcarboxy-6-azaandrostat-5-one (66 g, 0.135 mol) is dissolved in pyridine (500 mL), treated with di-t-butyldicarbonate (150 g, 0.69 mol) and allowed to stir overnight. The pyridine is removed by rotary evaporation and tetraethylammonium fluoride (500 mL, 1M, 0.5 mol) in tetrahydrofuran (THF) added carefully and the reaction heated to reflux for 5 min. The THF is removed by rotary evaporation, the residue dissolved in ethyl acetate (500 mL), washed cautiously with water, saturated aqueous NaCl, dried with MgSO_{4} and concentrated. This material is dissolved in DMF (500 mL), is treated with pyridinium dichromate (153 g, 0.41 mol) and allowed to stir overnight. The reaction is poured into water (700 mL) and extracted with ethyl acetate (2X500 mL). The combined extracts are washed with water, 5% aqueous CuSO_{4}, saturated aqueous NaCl, dried over MgSO_{4} and concentrated and flash chromatographed (0-60%, diethyl ether/hexanes) to give 17β-carbomethoxy-6-t-butylicarboxy-6-azaandrostat-4-en-3-one as an off-white foam; yield: 37.5 g (64%); FAB mass spec. MH{ }^{+} 432.

F. 17β-Carboxy-6-t-butylicarboxy-6-azaandrostat-4-en-3-one

A solution of 17β-carbomethoxy-6-t-butylicarboxy-6-azaandrostat-4-en-3-one (15.4 g, 36 mmol), from part E, in dioxane (150 mL) and water (100 mL) is treated with LiOH⋅H_{2}O (3.31 g, 79 mmol) and stirred overnight on a water bath. The reaction is poured into saturated aqueous NaHCO_{3} (150 mL), extracted with methylene chloride (3X100 mL), extracts washed with saturated aqueous NaCl, dried over MgSO_{4} and concentrated to a volume of 100 mL. At this point crystals begin to form and 2.1 hexanes/ethyl acetate (50mL) is added, the mixture triturated, cooled to room temperature and 17β-carboxy-6-t-butylicarboxy-6-azaandrostat-4-en-3-one collected as a fluffy white powder; yield: 9.44 g (63%); m. p. 215-216°C. Anal. Calcd. for C_{24}H_{38}NO_{5}1/4H_{2}O: C, 68.30; H, 8.48; N, 3.32. Found: C, 68.45; H, 8.41; N, 3.32.

The mother liquor is diluted with methylene chloride (100 mL), filtered through silica gel, the silica gel washed with 1:1 diethyl ether/hexanes and the eluant concentrated to give recovered 17β-carbomethoxy-6-t-butylicarboxy-6-azaandrostat-4-en-3-one; yield: 2.63 g (17%). The silica pad is then washed with 1.9 methanol/methylene chloride (250 mL), the eluant concentrated, the resulting solid triturated with 2.1 hexanes/ethyl acetate (50 mL), cooled to 0°C and 17β-carboxy-6-t-butylicarboxy-6-azaandrostat-4-en-3-one collected as a white powder; yield: 2.25 g (15%). The combined yield based on recovered starting material is 94%.

G. 17β-N-t-Butylcarbamoyl-6-azaandrostat-4-en-3-one

A sample of 17β-carboxy-6-t-butylicarboxy-6-azaandrostat-4-en-3-one (2.03 g, 4.86 mmol), from part F, is coupled with t-butylicamine as described in Example 1, part A. to give crude 17β-N-t-butylcarbamoyl-6-t-butylicarboxy-6-azaandrostat-4-en-3-one which is dissolved in methylene chloride (30 mL) and treated with trifluoroacetic acid (4 mL) at room temperature. After 3 hrs the reaction is concentrated, methylene chloride (50 mL) and saturated aqueous bicarbonate (50mL) added, the layers separated, methylene chloride washed with saturated aqueous NaCl, dried over MgSO_{4}, concentrated and chromatographed on silica gel (0-10% methanol/methylene chloride) to give 17β-N-t-butylcarbamoyl-6-azaandrostat-4-en-3-one as a white solid; yield: 1.04g (57%). Recrystallization from methylene chloride/hexanes gives an analytical sample as a white crystalline solid; m. p. 186-189°C. Anal. Calcd. for C_{23}H_{30}N_{2}O_{5}3/8H_{2}O: C, 72.83; H, 9.77; N, 7.38. Found C, 72.95; H, 9.85; N, 7.22.

Example 4

17β-(2-Pyrindinylthiocarboxy)-6-azaandrostat-4-en-3-one (Compound 4)

A solution of 17β-(2-butylicarboxy)-6-azaandrostat-4-en-3-one (486 mg, 1.16 mmol), Example 3, part F, is dissolved in toluene (10mL) and treated with triphenylphosphine (458 mg, 1.75 mmol) and dipyrudyl disulfide (385 mg, 1.75 mmol) at room temperature. After stirring overnight the reaction is poured into ethyl acetate (100mL), washed with saturated aqueous NaHCO_{3}, 2N NaOH and water, dried over MgSO_{4}, concentrated and chromatographed on silica gel (60% ethyl acetate/hexanes) to give crude 17β-(2-pyrindinylthiocarboxy)-6-t-butylicarboxy-6-azaandrostat-4-en-3-one. This material is dissolved in methylene chloride (15mL) and treated with trifluoroacetic acid (5mL) and after 2 hrs is worked up as in Example 3, part G and triturated with diethyl ether to give 17β-(2-pyrindinylthiocarboxy)-6-azaandrostat-4-en-3-one as a light yellow solid; yield: 181 mg (41%); m. p. 190-202°C. Anal. Calcd. for C_{24}H_{30}N_{2}O_{5}Si1/4H_{2}O: C, 69.45; H, 7.41; N, 6.75; S, 7.72. Found: C, 69.55; H, 7.31; N, 6.76; S, 7.72.
Example 5

17β-(1-Oxo-3-methylbutyl)6-azaandrost-4-en-3-one (Compound 5)

A. 17β-Hydroxymethyl-3β-hydroxy-6-t-butyldcarboxy-6-azaandrost-4-ene

A solution of 17β-carbomethoxy-6-t-butyldcarboxy-6-azaandrost-4-en-3-one (2.30 g, 5.33 mmol), Example 3, part E, in methylene chloride (70 mL) at -78°C is treated with disobutylaluminium hydride (1.5 M in toluene, 15 mL, 22.5 mmol). After 20 minutes the reaction is quenched with methanol (4 mL), methylene chloride added (150 mL), washed with 2N NaOH and water, dried over MgSO₄ and concentrated to give crude 17β-hydroxymethyl-3β-hydroxy-6-t-butyldcarboxy-6-azaandrost-4-ene of sufficient purity to carry on to the following steps; yield: 2.16 g (99%).

B. 17β-Formyl-6-t-butyldcarboxy-6-azaandrost-4-en-3-one

A solution of 17β-hydroxymethyl-3β-hydroxy-6-t-butyldcarboxy-6-azaandrost-4-en-3-one (182 mg, 0.446 mmol), prepared in part A above, in methylene chloride (7 mL) is added to freshly prepared Collins' reagent (CrO₃/2 pyridine) in methylene chloride (12 mL) at 0°C. After 15 minutes the solvent is decanted from the lar, the far is triturated with methylene chloride (2X30 mL), the combined methylene chloride washed with 2N NaOH, saturated aqueous NaH₂SO₄ saturated aqueous NaCl, dried over MgSO₄, concentrated and chromatographed on silica gel (50% ethyl acetate/hexanes) to give crude 17β-formyl-6-t-butyldcarboxy-6-azaandrost-4-en-3-one of sufficient purity to carry on to the following steps; yield: 125 mg (69%).

C. 17β-(1-Hydroxy-3-methylbutyl)-6-t-butyldcarboxy-6-azaandrost-4-en-3-one

A solution of 17β-formyl-6-t-butyldcarboxy-6-azaandrost-4-en-3-one (550 mg, 1.37 mmol), prepared in part B above, in THF (10 mL) is treated with isobutylmagnesium bromide (2.0 M in diethyl ether, 2.0 mL, 4.0 mmol) at 0°C. After 20 minutes the reaction is quenched with saturated aqueous NaH₂SO₄, extracted with ethyl acetate (2X40 mL), dried over MgSO₄, concentrated and chromatographed on silica gel (50% ethyl acetate/hexanes) to give crude 17β-(1-hydroxy-3-methylbutyl)-6-t-butyldcarboxy-6-azaandrost-4-en-3-one of sufficient purity to carry on to the following steps; yield: 168 mg (26%); FAB mass spec. MH+ 460.

D. 17β-(1-Oxo-3-methylbutyl)-6-azaandrost-4-en-3-one

A solution of 17β-(1-hydroxy-3-methylbutyl)-6-t-butyldcarboxy-6-azaandrost-4-en-3-one (160 mg, 0.349 mmol) prepared in part C above, in DMF (10 mL) is treated with pyridinium dichromate (656 mg, 1.74 mmol) at room temperature. After 10 hours the reaction is poured into water, extracted with ethyl acetate (2X50 mL), the extracts are dried over MgSO₄, concentrated and chromatographed on silica gel (40% ethyl acetate/hexanes) to give crude 17β-(1-oxo-3-methylbutyl)-6-t-butyldcarboxy-6-azaandrost-4-en-3-one; yield: 135 mg (85%). A portion of this material (81 mg, 0.18 mmol) is treated with trifluoroacetic acid as described in Example 4 above to give, after recrystallization from diethyl ether/hexanes 17β-(1-oxo-3-methylbutyl)-6-azaandrost-4-en-3-one as a white crystalline solid; yield: 58 mg (92%); m. p. 169-171°C. Anal. Calc. for C₂₃H₃₆NO₂: C, 76.30; H, 9.88; N, 3.87. Found: C, 76.48; H, 9.93; N, 3.89.

Alternatively, a solution of 17β-carbomethoxy-6-t-butyldcarboxy-6-azaandrost-4-en-3-one (260 mg, 0.62 mmol), example 3, Part F, is dissolved in toluene (10 mL) and treated with pyridine (3 eq) and catalytic dimethylformamide, cooled to 0°C, and thionyl chloride added (80 μL, 1.10 mmol), The reaction is then allowed to warm to room temperature and is stirred for 1 hr. The solids are then removed by filtration, the solution concentrated, the resulting crude acid chloride dissolved in THF (6 mL), CuL₃ (120 mg, 0.62 mmol), cooled to -78°C and treated with isobutylmagnesium bromide (2.0 M in diethyl ether, 0.5 mL, 1 mmol). The reaction is allowed to warm to room temperature, stirred for 30 min and is worked up as in Part C above to give 17β-(1-oxo-3-methylbutyl)-6-azaandrost-4-en-3-one.

Example 6

17β-N-Diethylcarbamoyl-6-azaandrost-1,4-dien-3-one (Compound 6)

A. 17β-Carbomethoxy-6-t-butyldcarboxy-6-azaandrost-1,4-dien-3-one

A solution of 17β-carbomethoxy-6-t-butyldcarboxy-6-azaandrost-4-en-3-one (2.00 g, 4.63 mmol), prepared in Example 3, part E, in dioxane (50 mL) is treated with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 1.37 g, 6.02 mmol) and p-nitrophenol (10 mg). The reaction is heated to reflux for 2 hrs, poured into ice water (150 mL), extracted with ethyl acetate (3X100 mL), extracts washed with saturated aqueous NaHSO₄, 2N NaOH, saturated aqueous NaCl, dried over MgSO₄, concentrated and chromatographed on silica gel (40% ethyl acetate/hexanes) to give crude 17β-carbomethoxy-6-t-butyldcarboxy-6-azaandrost-1,4-dien-3-one as a tan solid of sufficient purity
to carry on to the following steps; yield: 1.53 g (76%).

B. 17β-N,N-Diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-1,4-dien-3-one

The crude 17β-carbomethoxy-6-t-butylcarboxy-6-azaandrost-1,4-dien-3-one (1.50 g, 3.50 mmol), prepared in part A, is hydrolyzed as in Example 3, part F and then coupled with diethylamine as described in Example 1, part A to give after chromatography (50% ethyl acetate/hexanes) 17β-N,N-diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-1,4-dien-3-one as a white foam; yield: 1.07 g (65%). Anal. Calcd. for C_{20}H_{34}N_{2}O_{4}; C, 71.45; H, 9.00; N, 5.95. Found C, 71.38; H, 9.07; N, 5.90.

C. 17β-N,N-Diethylcarbamoyl-6-azaandrost-1,4-dien-3-one

A sample of 17β-N,N-diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-1,4-dien-3-one (186 mg, 0.400 mmol), prepared in part B above, is treated with trifluoroacetic acid as described in Example 4 above to give, after trituration with diethyl ether/hexanes 17β-N,N-diethylcarbamoyl-6-azaandrost-1,4-dien-3-one as a pale yellow solid; yield: 98 mg (66%); m. p. >250°C. Anal. Calcd. for C_{20}H_{34}N_{2}O_{2}/2H_{2}O; C, 72.78; H, 9.29; N, 7.38. Found: C, 72.89; H, 9.20; N, 7.43.

Example 7

17β-N,N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one (Compound 7)

A solution of 17β-N,N-diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-1,4-dien-3-one (500 mg, 1.06 mmol) prepared as described in Example 6, part B, in dimethylsulfoxide (DMSO, 4 mL) is added to a solution of trimethylsulfonium iodide (1.31 g, 5.93 mmol) which has stirred with sodium hydride (60% dispersion in oil, 237 mg, 5.93 mmol) in DMSO (4 mL) for one hour. After stirred overnight at room temperature the reaction is poured into ice water; extracted with diethyl ether (2X50 mL), extracts washed with saturated aqueous NaCl, dried over MgSO₄ and concentrated to a white foam; yield: 411 mg (80%). This material is treated with trifluoroacetic acid as described in Example 4 above to give, after crystallization from diethyl ether/hexanes 17β-N,N-diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one as a pale yellow solid; yield: 166 mg (57%); m. p. >250°C. Anal. Calcd. for C_{20}H_{36}N_{2}O_{2}/1/2H_{2}O; C, 74.08; H, 9.45; N, 7.20. Found: C, 74.01; H, 9.40; N, 7.11.

Example 8

17β-N,N-Diethylcarbamoyl-6-azaandrost-4-chloro-4-en-3-one (Compound 8)

A solution of 17β-N,N-diethylcarbamoyl-6-azaandrost-4-en-3-one (compound 1) (152 mg, 0.408 mmol) in THF (3 mL) is treated with NaClO₃ (110 mg, 0.62 mmol), After 4 hrs at room temperature the reaction is quenched with saturated aqueous NaOH, diluted with water, extracted with methylene chloride (2X30 mL), dried over MgSO₄, concentrated and chromatographed (0-30% i-propanol in 70% ethyl acetate/hexanes) to give 17β-N,N-diethylcarbamoyl-6-azaandrost-4-chloro-4-en-3-one as a yellow solid; yield: 81 mg (49%); m. p. 134-135°C. Anal. Calcd. for C_{20}H_{36}N_{2}O_{2}/3/4H_{2}O; C, 65.70; H, 8.75; N, 6.66. Found: C, 65.91; H, 8.96; N, 6.14.

Example 9

17β-N,N-Diethylcarbamoyl-6-azaandrost-4-bromo-4-en-3-one (Compound 9)

This compound is prepared from 17β-N,N-diethylcarbamoyl-6-azaandrost-4-en-3-one (compound 1) by treatment with N-bromosuccinimide as described in Example 8 to give 17β-N,N-diethylcarbamoyl-6-azaandrost-4-bromo-4-en-3-one as a white powder; m. p. 205-207°C. Anal. Calcd. for C_{20}H_{36}N_{2}O_{2}/Br; C, 61.19; H, 8.15; N, 5.95.

Example 10

17β-N,N-Diethylcarbamoyl-6-azaandrost-4-iodo-4-en-3-one (Compound 10)

This compound is prepared from 17β-N,N-diethylcarbamoyl-6-azaandrost-4-en-3-one (compound 1) by treatment with N-iodosuccinimide as described in Example 8 to give 17β-N,N-diethylcarbamoyl-6-azaandrost-4-iodo-4-en-3-one as pale yellow crystals; m. p. 195-197°C. Anal. Calcd. for C_{20}H_{36}N_{2}O_{2}/I; C, 55.42; H, 7.08; N, 5.62. Found: C, 55.42; H, 7.13; N, 5.54.
Example 11

17β-N-Diethylcarbamoyl-6-azaandrost-4-methyl-4-en-3-one (Compound 11)

A. 17β-N-Diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-4-bromo-4-en-3-one

A solution of 17β-N-Diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-4-en-3-one (5.20 g, 11.0 mmol), prepared by coupling 17β-carboxylic acid-6-t-butylcarboxy-6-azaandrost-4-en-3-one (Example 3, part F) and diethylamine as described in Example 1, part A, in methylene chloride (100 mL) containing anhydrous K₂CO₃ (10 g, 74 mmol) at 0°C is treated with bromine (1.7 mL, 33 mmol) dissolved in methylene chloride (10 mL). After 2 hrs the mixture is diluted with water, extracted with methylene chloride (3X50 mL), extracts washed with saturated aqueous Na₂SO₄, dried over MgSO₄, concentrated and chromatographed (50-70% ethyl acetate/hexanes) to give 17β-N-Diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-4-bromo-4-en-3-one as a white solid; yield: 5.18 g (85%). Recrystallization from ethyl acetate gives an analytical sample; m. p. 215-216°C (decomp.) Anal. Calcd. for C₂₀H₄₃N₂O₂·Br: C, 60.97; H, 7.86; N, 5.08. Found: C, 60.96; H, 7.92; N, 5.01.

B. 17β-N-Diethylcarbamoyl-6-azaandrost-4-methyl-4-en-3-one

A mixture of 17β-N-Diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-4-bromo-4-en-3-one (250 mg, 0.453 mmol), prepared in part A, phenyltrimethyltin (320 mg, 1.33 mmol), PdCl₂(PPh₃)₂ (45 mg) and lithium chloride (20 mg) in DMF (1.5 mL) is heated at 140°C for 8 hrs. The reaction is allowed to cool to room temperature, quenched with 5M aqueous potassium fluoride (5 mL), extracted with ethyl acetate (3X30 mL), extracts washed with 5M aqueous potassium fluoride, dried over MgSO₄, concentrated and chromatographed (20-70% ethyl acetate/hexanes) to give 17β-N-Diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-4-methyl-4-en-3-one as a clear oil; yield: 204 mg (93%). A portion of this material (181 mg, 0.372 mmol) is treated with trifluoroacetic acid as described in Example 4 above to give, after chromatography (0-30% t-propanol in 70% ethyl acetate/hexanes), 17β-N-Diethylcarbamoyl-6-azaandrost-4-methyl-4-en-3-one as a white powder; yield: 75 mg (52%); m. p. 115-116°C. Anal. Calcd. for C₂₄H₅₆N₂O₂·1/2t-propanol: C, 73.51; H, 10.16; N, 6.72. Found: C, 73.79; H, 10.21; N, 6.79.

Example 12

17β-N-Diethylcarbamoyl-6-azaandrost-4-ethyl-4-en-3-one (Compound 12)

A mixture of 17β-N-Diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-4-bromo-4-en-3-one (510 mg, 0.925 mmol), prepared in Example 11, part A, vinylicbutylin (300 mg, 2.52 mmol), PdCl₂(PPh₃)₂ (70 mg) and lithium chloride (50 mg) in DMF (1.5 mL) is heated at 140°C for 4 hrs. The reaction is allowed to cool to room temperature, quenched with 5M aqueous potassium fluoride (3 mL), extracted with ethyl acetate (2X30 mL), extracts washed with 5M aqueous potassium fluoride, dried over MgSO₄, concentrated and chromatographed (20-70% ethyl acetate/hexanes) to give 17β-N-Diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-4-vinyl-4-en-3-one as a white foam; yield: 395 mg (84%). A portion of this material (180 mg, 0.353 mmol) is dissolved in t-propanol and treated with 20% palladium hydroxide on carbon (100 mg) and cyclohexene (2 mL) at reflux for 8 hrs. The reaction is then filtered, concentrated and chromatographed (50% ethyl acetate/hexanes) to give 17β-N-Diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-4-ethyl-4-en-3-one as an amorphous solid; yield: 173 mg (96%); m. p. 163-165°C. A portion of this material (157 mg, 0.306 mmol) is treated with trifluoroacetic acid as described in Example 4 above to give, after chromatography (0-50% t-propanol in 70% ethyl acetate/hexanes), 17β-N-Diethylcarbamoyl-6-azaandrost-4-ethyl-4-en-3-one as a white powder; yield: 85 mg (67%); m. p. 112-116°C. Anal. Calcd. for C₂₅H₄₀N₂O₂·3/8t-propanol: C, 74.16; H, 10.24; N, 6.62. Found: C, 74.16; H, 10.28; N, 6.73.

Example 13

17β-N-Diethylcarbamoyl-6-azaandrost-4-cyano-4-en-3-one (Compound 13)

A solution of 17β-N-Diethylcarbamoyl-6-t-butylcarboxy-6-azaandrost-4-bromo-4-en-3-one (300 mg, 0.544 mmol), prepared in Example 11, part A, in DMF (2 mL) is treated with cuprous cyanide (292 mg, 3.25 mmol) at 140°C for 4 hrs. The reaction is allowed to cool to room temperature, diluted with aqueous 5% sodium cyanide, extracted with ethyl acetate (3X20 mL), the extracts washed with saturated aqueous NaCl, dried over MgSO₄, concentrated and chromatographed (0-30% t-propanol in 70% ethyl acetate/hexanes) and recrystallized from ethyl acetate to give 17β-N-Diethylcarbamoyl-6-azaandrost-4-cyano-4-en-3-one as a tan solid; yield: 94 mg (43%); m. p. <240°C. Anal. Calcd. for C₂₅H₄₀N₂O₂·Br: C, 72.51; H, 8.87; N, 10.57. Found: C, 72.27; H, 8.91; N, 10.52.
Example 14

17β-N-Diethylcarbamoyl-6-azaandrost-4-dimethylaminomethylene-4-en-3-one (Compound 14)

A solution of 17β-N-diethylcarbamoyl-6-azaandrost-4-en-3-one (compound 1) (160 mg, 0.430 mmol) in acetonitrile (2 mL) is treated with N,N-dimethylmethyleneammonium iodide (Eschenmoser's salt, 160 mg, 0.865 mmol) at room temperature for 4 hrs. The reaction is diluted with saturated aqueous sodium bicarbonate, extracted with ethyl acetate (2X30 mL), the extracts washed with saturated aqueous NaCl, dried over MgSO₄, concentrated and chromatographed (30% i-propanol in 70% ethyl acetate/hexanes followed by 10% ammonium hydroxide in 20% acetonitrile/chloroform) to give 17β,N,N-diethylcarbamoyl-6-azaandrost-4-dimethylaminomethylene-4-en-3-one as a white solid; yield 110 mg (60%); m. p. 84-88°C. Anal. Calcd. for C₂₉H₄₆N₂O₂·1/4H₂O, C, 71.93; H, 10.10; N, 9.68. Found: C, 72.18; H, 10.05; N, 9.67.

Examples 15-77

Following the procedures of Example 1, part A or Example 3, part G for preparation of amides as the Z substituent in compounds of formula (I); the procedure of Example 2 for introduction of R³ substituents in compounds of formula (I); the procedure of Example 5 for preparation of ketones as the Z substituent compounds of formula (I); the procedure of Example 8 and 11 for introduction of R³ substituents in compounds of formula (I); and the procedures of Example 6, part A or Example 7 for introduction of unsaturation or cyclopropyl substitution in the 1.2-position of compounds of formula (I) the following compounds are prepared: (in some cases a simple deprotection step is necessary to reveal the functionality incorporated in the R³ substituent and methods widely known in the art are utilized (cf. Green, "Protective Groups in Organic Synthesis" Wiley-Interscience, 1981.)

Example 15

17β-N-Diethylcarbamoyl-6-(3-hydroxypropyl)-6-azaandrost-4-en-3-one (Compound 15)

Melting Point: 223-225°C

Anal. Calcd. for C₂₈H₄₀N₂O₅·H₂O: C, 72.51; H, 9.83; N, 6.51.
Found: C, 72.60; H, 9.81; N, 6.43.

Example 16

17β-N-t-Butyldiethylcarbamoyl-6-methyl-6-azaandrost-4-en-3-one (Compound 16)

Melting Point: 254-256°C

Anal. Calcd. for C₂₉H₃₈N₂O₅: C, 74.57; H, 9.91; N, 7.25.
Found: C, 74.33; H, 9.92; N, 7.17.

Example 17

17β-N-Diisopropylcarbamoyl-6-azaandrost-4-en-3-one (Compound 17)

Melting Point: 140-150°C

Anal. Calcd. for C₂₅H₄₀N₂O₂·H₂O: C, 71.96; H, 9.66; N, 5.60.
Found: C, 72.13; H, 9.81; N, 5.57.
17β-N,N-Diisopropylcarbamoyl-6-methyl-6-azaandrost-4-en-3-one (Compound 18)

FAB mass spec. for C_{26}H_{42}N_{2}O_{2};
Found:
414.64
415 M+H+

17β-N-1-Adamantylcarbamoyl-6-azaandrost-4-en-3-one (Compound 19)

Melting Point: 197-199°C

Anal. Calcd. for C_{23}H_{42}N_{2}O_{2}·1/2H_{2}O;
C, 75.76;
H, 9.43;
N, 6.10.
Found:
C, 75.79;
H, 9.43;
N, 6.09.

17β-N-1-Adamantylcarbamoyl-6-methyl-6-azaandrost-4-en-3-one (Compound 20)

Melting Point: 262-264°C

Anal. Calcd. for C_{30}H_{44}N_{2}O_{2};
C, 77.54;
H, 9.54;
N, 6.03.
Found:
C, 77.48;
H, 9.70;
N, 5.96.

17β-N-Methoxy-N-methylcarbamoyl-6-azaandrost-4-en-3-one (Compound 21)

Melting Point: 230°C (decomp)

Anal. Calcd. for C_{21}H_{32}N_{2}O_{3};
C, 69.97;
H, 8.95;
N, 7.77.
Found:
C, 69.89;
H, 9.00;
N, 7.80.

17β-Carbomethoxy-6-azaandrost-4-en-3-one (Compound 22)

Melting Point: 254-257°C (decomp).

17β-Carboxy-6-methyl-6-azaandrost-4-en-3-one (Compound 23)

Melting Point: 238°C (decomp).

Anal. Calcd. for C_{20}H_{29}NO_{2}·CF_{3}CO_{2}H;
C, 59.32;
H, 6.79;
Found:
C, 59.29;
H, 7.13;
N, 3.46.

17β-(1-Oxo-3-methylbutyl)-6-methyl-6-azaandrost-4-en-3-one (Compound 24)

Melting Point: 40-46°C
Example 25

17β-N-Diethylcarbamoyl-6-methyl-6-azaandrost-1,4-dien-3-one (Compound 25)

Melting Point: 151-152°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{24}H_{37}NO_2;</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 74.96; H, 9.44; N, 7.29.</td>
<td></td>
</tr>
<tr>
<td>C, 74.86; H, 9.49; N, 7.28.</td>
<td></td>
</tr>
</tbody>
</table>

Example 26

17β-N-t-Butylcarbamoyl-6-azaandrost-1,4-dien-3-one (Compound 26)

Melting Point: 196–198°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{23}H_{34}N_2O_2-1/4H_2O;</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 72.78; H, 9.29; N, 7.38.</td>
<td></td>
</tr>
<tr>
<td>C, 72.55; H, 9.24; N, 7.55.</td>
<td></td>
</tr>
</tbody>
</table>

Example 27

17β-N-t-Butylcarbamoyl-6-methyl-6-azaandrost-1,4-dien-3-one (Compound 27)

Melting Point: 174–175°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{24}H_{36}N_2O_2-1/2H_2O;</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 74.09; H, 9.46; N, 7.20.</td>
<td></td>
</tr>
<tr>
<td>C, 73.72; H, 9.66; N, 6.87.</td>
<td></td>
</tr>
</tbody>
</table>

Example 28

17β-N-1-Adamantylcarbamoyl-6-azaandrost-1,4-dien-3-one (Compound 28)

Melting Point: 188°C (decomp.)

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{30}OH_{40}N_2O_2-1/2H_2O;</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 76.11; H, 8.81; N, 6.12.</td>
<td></td>
</tr>
<tr>
<td>C, 76.03; H, 9.01; N, 6.09.</td>
<td></td>
</tr>
</tbody>
</table>

Example 29

17β-N-1-Adamantylcarbamoyl-6-methyl-6-azaandrost-1,4-dien-3-one (Compound 29)

Melting Point: 242-243°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{30}H_{42}N_2O_2;</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 77.88; H, 9.15; N, 6.06.</td>
<td></td>
</tr>
<tr>
<td>C, 77.33; H, 9.12; N, 5.91.</td>
<td></td>
</tr>
</tbody>
</table>

Example 30

17β-N-Diethylcarbamoyl-6-methyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one (Compound 30)

Melting Point: 213-215°C
Example 31

17β-N-t-Butylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one (Compound 31)

Melting Point: foams below 100°C

Example 32

17β-N-t-Butylcarbamoyl-6-methyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-one (Compound 32)

Melting Point: 228-231°C

Example 33

17β-N,N-Diethylcarbamoyl-6-ethyl-6-azaandrost-4-en-3-one (Compound 33)

Melting Point: 174-176°C

Example 34

17β-N,N-Diethylcarbamoyl-6-propyl-6-azaandrost-4-en-3-one (Compound 34)

Melting Point: 158-160°C

Example 35

17β-N,N-Diethylcarbamoyl-6-butyl-6-azaandrost-4-en-3-one (Compound 35)

Melting Point: 170-172°C

Example 36

17β-N,N-Diethylcarbamoyl-6-hexyl-6-azaandrost-4-en-3-one (Compound 36)

Melting Point: 94-97°C
Example 37

17β-N-Diethylcarbamoyl-6-isopropyl-6-azaandrostan-4-en-3-one (Compound 37)

Melting Point: 165-168°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{26}H_{42}N_{2}O_{2}·1/2H_{2}O;</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 73.71; H, 9.99; N, 6.61.</td>
<td></td>
</tr>
<tr>
<td>C, 73.96; H, 10.00; N, 6.69.</td>
<td></td>
</tr>
</tbody>
</table>

Example 38

17β-N-Diethylcarbamoyl-6-isobutyl-6-azaandrostan-4-en-3-one (Compound 38)

Melting Point: 196-201°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{27}H_{44}N_{2}O_{2}·1/4H_{2}O;</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 74.86; H, 10.35; N, 6.47.</td>
<td></td>
</tr>
<tr>
<td>C, 74.81; H, 10.22; N, 6.47.</td>
<td></td>
</tr>
</tbody>
</table>

Example 39

17β-N-Diethylcarbamoyl-6-methylene-cyclopropyl-6-azaandrostan-4-en-3-one (Compound 39)

Melting Point: 180-182°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{27}H_{42}N_{2}O_{2};</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 74.43; H, 9.95; N, 6.43.</td>
<td></td>
</tr>
<tr>
<td>C, 74.65; H, 9.89; N, 6.48.</td>
<td></td>
</tr>
</tbody>
</table>

Example 40

17β-N-Diethylcarbamoyl-6-allyl-6-azaandrostan-4-en-3-one (Compound 40)

Melting Point: 145-148°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{25}H_{40}N_{2}O_{2};</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 75.68; H, 9.77; N, 6.79.</td>
<td></td>
</tr>
<tr>
<td>C, 75.81; H, 9.87; N, 6.63.</td>
<td></td>
</tr>
</tbody>
</table>

Example 41

17β-N-Diethylcarbamoyl-6-benzyl-6-azaandrostan-4-en-3-one (Compound 41)

Melting Point: 193-194°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{30}H_{42}N_{2}O_{2};</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 77.86; H, 9.15; N, 6.05.</td>
<td></td>
</tr>
<tr>
<td>C, 77.72; H, 9.15; N, 5.98.</td>
<td></td>
</tr>
</tbody>
</table>

Example 42

17β-N-Diethylcarbamoyl-6-(2-acetic acid)-6-azaandrostan-4-en-3-one (Compound 42)

Melting Point: 237-238°C (decomp.)
Example 43

17β-N-N-Diethylcarbamoyl-6-(3-propanoic acid)-6-azaandrostan-4-en-3-one (Compound 43)

Example 44

17β-N-N-Diethylcarbamoyl-6-(methyl-3-propanoate)-6-azaandrostan-4-en-3-one (Compound 44)

FAB mass spec for C_{27}H_{42}N_{2}O_{2}:

<table>
<thead>
<tr>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>459.33</td>
</tr>
<tr>
<td>459 MH^{+}.</td>
</tr>
</tbody>
</table>

Example 45

17β-N-N-Diethylcarbamoyl-6-(4-butanoic acid)-6-azaandrostan-4-en-3-one (Compound 45)

Example 46

17β-N-N-Diethylcarbamoyl-6-(5-pentanoic acid)-6-azaandrostan-4-en-3-one (Compound 46)

Melting Point: 187°C (decomp.)

Example 47

17β-N-N-Diethylcarbamoyl-6-(methyl-5-pentanoate)-6-azaandrostan-4-en-3-one (Compound 47)

Example 48

17β-N-N-Diethylcarbamoyl-6-(6-hexanoic acid)-6-azaandrostan-4-en-3-one (Compound 48)

Melting Point: 163°C (decomp.)
Example 49

17β-N,N-Diethylcarbamoyl-6-(ethyl-6-hexanoate)-6-azaandrost-4-en-3-one (Compound 49)

FAB mass spec for C_{31}H_{50}N_{2}O_{4}: 514.39. Found: 515 M^+.

Example 50

17β-N,N-Diethylcarbamoyl-6-(3-phthalimidylpropyl)-6-azaandrost-4-en-3-one (Compound 50)

Melting Point: 108-110°C

Anal. Calcd. for C_{34}H_{45}N_{2}O_{4}·1/2H_{2}O: C, 71.80; H, 8.15; N, 7.39. Found: C, 71.96; H, 8.05; N, 7.43.

Example 51

17β-N,N-Diethylcarbamoyl-6-(4-phthalimidylbutyl)-6-azaandrost-4-en-3-one (Compound 51)

Melting Point: 105-107°C

Anal. Calcd. for C_{35}H_{47}N_{2}O_{4}: C, 73.27; H, 8.26; N, 7.32. Found: C, 73.07; H, 8.24; N, 7.33.

Example 52

17β-N,N-Diethylcarbamoyl-6-(2-methoxyethyl)-6-azaandrost-4-en-3-one (Compound 52)

Melting Point: 108-110°C

Anal. Calcd. for C_{29}H_{42}N_{2}O_{3}: C, 72.51; H, 9.83; N, 6.51. Found: C, 72.56; H, 9.88; N, 6.49.

Example 53

17β-N-1-Adamantylcarbamoyl-6-azaandrost-4-bromo-4-en-3-one (Compound 53)

Melting Point: 181-187°C (decomp.)

Anal. Calcd. for C_{29}H_{41}N_{2}O_{2}Br: C, 65.76; H, 7.81; Br, 15.10; N, 5.29. Found: C, 65.59; H, 7.82; Br, 15.00; N, 5.23.

Example 54

17β-N-1-Adamantylcarbamoyl-6-azaandrost-4-methyl-4-en-3-one (Compound 54)

Melting Point: 169-175°C (decomp.)

Anal. Calcd. for C_{30}H_{44}N_{2}O_{2}: C, 77.53; H, 9.55; N, 6.03. Found: C, 77.42; H, 9.62; N, 5.96.
Example 55

17β-N-1-Adamantylcarbamoyl-6-methyl-6-azaandrost-4-methyl-4-en-3-one (Compound 55)

Melting Point: 150-155°C

Anal. Calcd. for C_{31}H_{48}N_{2}O_{2}: 1/4H_{2}O:

\[
\begin{align*}
\text{C} & : 75.63; \\
\text{H} & : 9.73; \\
\text{N} & : 5.69.
\end{align*}
\]

Example 56

17β-N-Diphenylmethylcarbamoyl-6-azaandrost-4-en-3-one (Compound 56)

Melting Point: 192-194°C

Anal. Calcd. for C_{32}H_{58}N_{2}O_{2}:

\[
\begin{align*}
\text{C} & : 79.63; \\
\text{H} & : 7.94; \\
\text{N} & : 5.80.
\end{align*}
\]

Example 57

17β-N-Diphenylcarbamoyl-6-azaandrost-4-en-3-one (Compound 57)

Melting Point: 154°C

Anal. Calcd. for C_{31}H_{56}N_{2}O_{2}: 3/2H_{2}O:

\[
\begin{align*}
\text{C} & : 75.11; \\
\text{H} & : 7.93; \\
\text{N} & : 5.65.
\end{align*}
\]

Example 58

17β-N-exo-2-Norbornylmethylcarbamoyl-6-azaandrost-4-en-3-one (Compound 58)

Melting Point: 179°C (decomp.)

Anal. Calcd. for C_{27}H_{40}N_{2}O_{2}: 6/5H_{2}O:

\[
\begin{align*}
\text{C} & : 72.67; \\
\text{H} & : 9.56; \\
\text{N} & : 6.28.
\end{align*}
\]

Example 59

17β-N-endo-2-Norbornylcarbamoyl-6-azaandrost-4-en-3-one (Compound 59)

Melting Point: 188°C (decomp.)

Anal. Calcd. for C_{26}H_{38}N_{2}O_{2}: 3/2H_{2}O:

\[
\begin{align*}
\text{C} & : 71.36; \\
\text{H} & : 9.44; \\
\text{N} & : 6.40.
\end{align*}
\]

Example 60

17β-N-t-Butylcarbamoyl-6-azaandrost-4-methyl-4-en-3-one (Compound 60)

Melting Point: 168-169°C

Anal. Calcd. for C_{24}H_{36}N_{2}O_{2}:

\[
\begin{align*}
\text{C} & : 74.57; \\
\text{H} & : 9.91; \\
\text{N} & : 7.25.
\end{align*}
\]
Example 61

17β-(1-Oxo-3-methylbutyl)-6-azaandrost-4-methyl-4-en-3-one (Compound 61)

Melting Point: 187-189°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{24}H_{37}N_{2}O_{2}; Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 77.58; H, 10.03; N, 3.76.</td>
</tr>
</tbody>
</table>

Example 62

17β-N-Benzylcarbamoyl-6-azaandrost-4-en-3-one (Compound 62)

Melting Point: 149-150°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{30}H_{38}N_{2}O_{2}·H_{2}O; Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 73.55; H, 8.55; N, 6.60.</td>
</tr>
</tbody>
</table>

Example 63

17β-(1-Oxo-3-methylbutyl)-6-azaandrost-4-bromo-4-en-3-one (Compound 63)

Melting Point: 197-200°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{25}H_{34}N_{2}O_{2}·Br·1/2H_{2}O; Found:</th>
</tr>
</thead>
</table>

Example 64

17β-N-1-Anthracylcarbamoyl-6-azaandrost-4-en-3-one (Compound 64)

Melting Point: 210-213°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{33}H_{38}N_{2}O_{2}·1/2H_{2}O; Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 79.01; H, 7.43; N, 5.58.</td>
</tr>
</tbody>
</table>

Example 65

17β-N,N-Diethylcarbamoyl-6-methyl-6-azaandrost-4-methyl-4-en-3-one (Compound 65)

Melting Point: 180-182°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{26}H_{40}N_{2}O_{2}·1/4H_{2}O; Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 74.12; H, 9.95; N, 6.92.</td>
</tr>
</tbody>
</table>

Example 66

17β-N-t-Butylcarbamoyl-6-methyl-6-azaandrost-4-methyl-4-en-3-one (Compound 66)

Melting Point: 122-124°C

<table>
<thead>
<tr>
<th>Anal. Calcd. for C_{25}H_{40}N_{2}O_{2}; Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>400.61; 401 MH⁺.</td>
</tr>
</tbody>
</table>
EP 0 641 356 B1

Example 67

17β-N-Diethylcarbamoyl-6-azaandroster-4-fluoro-4-en-3-one (Compound 67)

| FAB mass spec. for Point: C_{25}H_{35}N_{2}O_{2}F_{2}; Found: 390.391 |

Example 68

17β-N-Triphenylmethylcarbamoyl-6-azaandroster-4-en-3-one (Compound 68)

Melting Point: 186-194°C

| Anal. Calcd. for C_{38}H_{42}N_{2}O_{2}: Found: | C, 79.13; H, 7.69; N, 4.86.
| | C, 79.18; H, 7.69; N, 4.86.

Example 69

17β-N-1-Naphthylcarbamoyl-6-azaandroster-4-en-3-one (Compound 69)

Melting Point: 198-204°C

| Anal. Calcd. for C_{29}H_{34}N_{2}O_{2}:
| Found: 1/2H_{2}O: | C, 74.17; H, 7.94; N, 5.96.
| | C, 74.30; H, 7.71; N, 5.96.

Example 70

17β-Carbo-(2-adamantyl)-oxy-6-azaandroster-4-en-3-one (Compound 70)

A suspension of 17β-carboxy-6-t-butylicarboxy-6-azaandroster-4-en-3-one (760 mg, 1.82 mmol) in toluene (20 mL) is cooled to 0°C and treated with pyridine (225 mL, 2.78 mmol) and thionyl chloride (200 mL, 2.74 mmol). After stirring 1 hr at 0°C, the suspension is concentrated to a tan solid and the solid is dissolved in dichloromethane (20 mL). The resulting tan solution is treated with 2-adamantanol (301 mg, 1.98 mmol). After stirring overnight, the reaction is diluted with dichloromethane, washed with saturated aqueous sodium bisulfate, 10% sodium hydroxide and brine, dried over MgSO_{4}, filtered, concentrated and chromatographed on silica gel (0-2% methanol/chloroform gradient) to give crude 17β-carbo-(2-adamantyl)-oxy-6-t-butylicarboxy-6-azaandroster-4-en-3-one (907 mg, 90%) as a white foam. A portion of this material (696 mg, 1.62 mmol) is treated with trifluoroacetic acid as described in Example 4 above to give after recrystallization from ethyl acetate, 17β-carbo-(2-adamantyl)-oxy-6-azaandroster-4-en-3-one as a crystalline solid; mp>280°C (decomp.). Anal. Calcd. for C_{29}H_{41}NO_{3}H_{2}O: C, 74.16; H, 9.23; N, 2.98. Found C, 73.96; H, 9.22; N, 2.97.

Example 71

17β-Carbo-(1-adamantyl)-oxy-6-azaandroster-4-en-3-one (Compound 71)

17β-Carbo-(1-adamantyl)-oxy-6-azaandroster-4-en-3-one is prepared as described in Example 73 from 17β-carboxy-6-t-butylicarboxy-6-azaandroster-4-en-3-one and 1-adamantanol to give a pale yellow crystalline solid; m.p. 273-275°C. Anal. Calcd. for C_{29}H_{41}NO_{3}H_{2}O: C, 74.16; H, 9.23; N, 2.98. Found C, 74.15; H, 9.23; N, 2.95.

Example 72

17β-N-Diethylcarbamoyl-6-azaandroster-2-(α,β)-methyl-4-en-3-one (Compound 72)

A solution of 17β-N,N-diethylcarbamoyl-6-t-butylicarboxy-6-azaandroster-4-en-3-one (1.00 g, 2.12 mmol), [prepared from coupling 17β-carboxy-6-t-butylicarboxy-6-azaandroster-4-en-3-one (Example 3, part F) and diethylamine as described in Example 1, part A], in tetrahydrofuran (10 mL) is treated at -78°C with lithium diisopropylamide (2 eq. in
tetrahydrofuran), warmed slightly by removing the dry-ice acetone bath for 10 min, recooled to -78°C and treated with excess methyl iodide. The solution is then warmed to room temperature, poured into saturated aqueous NaHSO₄, extracted with ethyl acetate (2x50 mL), the extracts washed with saturated aqueous NaCl, dried over MgSO₄, concentrated and chromatographed to give 17β-N,N-diethylcarbamoyl-6-t-butylcarboxy-6-azaandrostan-2(α,β)-methyl-4-en-3-one; yield: 582 mg (58%). This material is treated with trifluoroacetic acid as described in Example 4 above to give, after recrystallization from methylene chloride/hexane, 17β,N,N-diethylcarbamoyl-6-azaandrostan-2(α,β)-methyl-4-en-3-one as a pale yellow crystalline solid; m:p: 246-252°C (decomp). Anal. Calcd. for C₂₅H₂₅N₂O₄: C, 74.57; H, 9.91; N, 7.25. Found: C, 74.31; H, 9.86; N, 7.16.

Example 73

17β-1-(E)-Acroyl(N,N-diethyl)amide-6-azaandrostan-4-en-3-one (Compound 73)

A solution of N,N-diethyl-diethanolaminemethylamide (108 mg, 0.43 mmol) in tetrahydrofuran (2 mL) at 0°C is treated with lithium bis(trimethylsilyl)amide (1.0 M in tetrahydrofuran, 0.41 mL, 0.41 mmol). After 5 minutes, 17β-formyl-6-t-butylcarboxy-6-azaandrostan-4-en-3-one (prepared as described in Example 5, part B), (150 mg, 0.37 mmol) in tetrahydrofuran (3 mL) is added and the reaction proceeds for 10 minutes at 0°C before being allowed to warm to ambient temperature. After 15 minutes, the reaction is quenched with water (0.5 mL), diluted with ethyl acetate (40 mL), washed with saturated aqueous NaHSO₄, aqueous NaCl, dried over MgSO₄, concentrated and chromatographed on silica gel (30-60% methanol/methylene chloride) to give 17β-1-(E)-acroyl(N,N-diethyl)amide-6-t-butylcarboxy-6-azaandrostan-4-en-3-one as a yellow oil; yield: 150 mg (82%); FAB mass spec. MH⁺ 499. This material is treated with trifluoroacetic acid as described in Example 4 above to give after chromatography and recrystallization from acetonitrile, 17β-1-(E)-acroyl(N,N-diethyl)amide-6-azaandrostan-4-en-3-one as an off-white solid; yield: 42 mg (35%); m:p: 232°C (decomp). Anal. Calcd. for C₂₅H₂₅N₂O₄: C, 69.81; H, 9.73; N, 6.51. Found: C, 69.94; H, 9.42; N, 6.49.

Example 74

17β-N,N-Diethylcarbamoyl-6-aza-B-homoandrost-4-en-3-one (Compound 74)

A. To a solution of 17β-N,N-diethylcarbamoyl-androst-4-en-3-one (Fluoromson et al. J. Med. Chem., 27, 1690, (1984); id, 29, 2298 (1986)), (2.00 g, 5.38 mmol) in anhydrous toluene (30 mL) is added anhydrous ethylene glycol (4 mL), p-toluenesulfonic acid (50 mg) and the solution heated at reflux for 5 hrs with azetropic removal of water. The reaction is then concentrated to about 10 mL, poured into water (60 mL) and extracted with ethyl acetate (2x100 mL), the combined ethyl acetate is washed with saturated aqueous NaCl, dried over MgSO₄, concentrated to a yellow solid. The solid is then triturated with diethyl ether to give a corresponding ketal of formula [(XI), Scheme 2] as a white solid; yield: 1.32 g (59%).

B. The crude product from above is treated with ozone followed by zinc and acetic acid as described in step B, Example 3 above to give a corresponding aldehyde of formula (XII) in 55% yield.

C. The crude aldehyde from above (8.50 g, 19 mmol) is dissolved in THF (160 mL) and treated with lithium tri-t-butoxylaluminium hydride (23 mL, 1.7M, 39 mmol) at -78°C. After 35 minutes the reaction is allowed to warm to 0°C and quenched with 2N NaOH (12 mL), filtered through Celite, filtrate washed with saturated aqueous NaCl, dried over MgSO₄, and concentrated to an oil. Flash chromatography (0-6%, methanol/methylene chloride) gives the compound of formula (XIII) as a clear oil of sufficient purity to carry on to the next step; yield: 6.4 g (75%); FAB mass spec. MH⁺ 450.2.

D. A solution of the crude alcohol produced in step C (2.07 g, 4.6 mmol) in methylene chloride (40 mL) is treated with triethylamino (0.710 mL, 5.09 mmol) and methanesulfonyl chloride (0.360 mL, 4.91 mmol) and the reaction allowed to stir for 3 hrs. The reaction is then diluted with methylene chloride (25 mL), water added (15 mL), the mixture stirred for 5 minutes, layers separated, washed with saturated aqueous NaCl, dried over MgSO₄, and concentrated to an oil. This crude mesylate is then dissolved in dimethylformamide (95 mL) and treated with sodium azide (830 mg, 12.8 mmol) at 80°C for 1.5 hrs. The reaction is then diluted with water, cooled to room temperature and extracted with diethyl ether (3x70 mL). The combined organics are washed with saturated aqueous NaCl, dried over MgSO₄, and concentrated to an oil. Flash chromatography (methylene chloride) gives the corresponding compound of formula (XIV) as a clear oil of sufficient purity to carry on to the next step; yield: 0.840 g (39%).

E. 17β-N,N-Diethylcarbamoyl-6-aza-B-homoandrost-4-en-3-one
The crude azide from part D above (0.840 mg, 1.76 mmol) is dissolved in THF, treated with triphenylphosphine (0.465 g, 1.77 mmol), and heated to reflux for 2 hrs. The reaction is allowed to stir overnight at room temperature, aqueous HCl (4M, 25 mL) and THF (15 mL) added, and the reaction returned to reflux for 2 hrs. The reaction is then concentrated, the aqueous residue made basic with 2N NaOH, extracted with ethyl acetate and 10% methanol in chloroform, the combined extracts washed with saturated aqueous NaCl, dried over MgSO₄, and concentrated to give a yellow solid. Flash chromatography (10% methanol/methylene chloride) gives the corresponding compound of formula (I) wherein X is -CH₂CH₂₂⁻, 17β-N,N-diethylcarbamoyl-6-aza-B-homoandrostan-4-en-3-one as a tan solid; yield: 183 mg (26%). Recrystallization from ethyl acetate/diethyl ether gives an analytical sample as a pink solid; m.p. 106-110°C. Anal. Calcd. for C₂₄H₃₈N₂O₂·1/3H₂O: C, 73.43; H, 9.33; N, 7.14. Found: C, 73.65; H, 9.86; N, 6.92.

Example 75

Pharmaceutical formulations

(A) Transdermal System - For 1000 Patches

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active compound</td>
<td>400 g</td>
</tr>
<tr>
<td>Silicone fluid</td>
<td>450 g</td>
</tr>
<tr>
<td>Colloidal silicone dioxide</td>
<td>25 g</td>
</tr>
</tbody>
</table>

The silicone fluid and active compound are mixed together and the colloidal silicone dioxide is added to increase viscosity. The material is then dosed into a subsequently heat sealed polymeric laminate comprised of the following: polyester release liner, skin contact adhesive composed of silicone or acrylic polymers, a control membrane which is a polyolefin (e.g. polyethylene, polyvinyl acetate or polyurethane), and an impermeable backing membrane made of a polyester multilaminate. The resulting laminated sheet is then cut into 10 sq. cm patches.

(B) Oral Tablet - For 1000 Tablets

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active compound</td>
<td>50 g</td>
</tr>
<tr>
<td>Starch</td>
<td>20 g</td>
</tr>
<tr>
<td>Magnesium Stearate</td>
<td>1 g</td>
</tr>
</tbody>
</table>

The active compound and the starch are granulated with water and dried. Magnesium stearate is added to the dried granules and the mixture is thoroughly blended. The blended mixture is compressed into tablets.

(C) Suppository - For 1000 Suppositories

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active compound</td>
<td>25 g</td>
</tr>
<tr>
<td>Theobromine sodium salicylate</td>
<td>250 g</td>
</tr>
<tr>
<td>Witexsol S55</td>
<td>1725 g</td>
</tr>
</tbody>
</table>

The inactive ingredients are mixed and melted. The active compound is then distributed in the molten mixture, poured into molds and allowed to cool.

(D) Injection - For 1000 Ampules

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Compound</td>
<td>5 g</td>
</tr>
<tr>
<td>Buffering Agents</td>
<td>q.s.</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>400 mg</td>
</tr>
</tbody>
</table>
The active compound and buffering agents are dissolved in the propylene glycol at about 50°C. The water for injection is then added with stirring and the resulting solution is filtered, filled into ampules, sealed and sterilized by autoclaving.

(E) Capsule - For 1000 Capsules

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Compound</td>
<td>50 g</td>
</tr>
<tr>
<td>Lactose</td>
<td>450 g</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>5 g</td>
</tr>
</tbody>
</table>

The finely ground active compound is mixed with the lactose and stearate and packed into gelatin capsules.

Claims

1. A compound of formula (I):

$$\begin{array}{c}
\text{O} \\
\text{R}^1 \text{R}^2 \text{R}^3 \text{R}^4
\end{array}$$

wherein the substituents R^1, R^2, R^3 and R^4 when causing asymmetry to the atoms to which they are attached may be either α or β stereo configuration wherein

R^1 and R^2 are,

i) independently hydrogen or straight or branched chain alkyl of 1 to 6 carbon atoms and the bond between the carbons bearing R^1 and R^2 is a single or a double bond, or

ii) taken together are a $-\text{CH}_2-$ group to form a cyclopropane ring, and the bond between the carbons bearing R^1 and R^2 is a single bond;

R^3 is hydrogen, $-\text{Alk}^1-\text{H}$ optionally substituted with one or more halogen atoms, cycloalkyl of 3 to 6 carbons, cycloalkyl of 3 to 6 carbons - straight or branched chain alkyl of 1 to 6 carbons, halogen,

- $-\text{Alk}^1\text{H}$,
- $-\text{Alk}^1\text{CO}_2\text{H}$,
- $-\text{Alk}^1\text{CO}_2\text{R}^7$,
- $-\text{Alk}^1\text{N}\text{Ar}^1$,
- $-\text{Alk}^1\text{CONRP}R^9$,
- $-\text{Alk}^1\text{NRP}R^9$,
- $-\text{Alk}^1\text{SO}_2\text{R}^7$,
- $-\text{Alk}^1\text{CN}$,
- $-\text{Alk}^1\text{OH}$ or
- $-\text{Alk}^1\text{OR}^7$,

wherein
EP 0 641 356 B1

Alk\(^1\) is straight or branched alkyne of 1 to 6 carbons, straight or branched alkenylene or alkylnylene of 2 to 6 carbons;
n is 0 or 1;
r is 0, 1 or 2;
R\(^7\) is -Alk\(^1\)-H, -(Alk\(^1\))\(_n\)-Ar\(^1\) or cycloalkyl of 3 to 6 carbons;
R\(^8\) and R\(^9\) are independently hydrogen, -Alk\(^1\)-H or cycloalkyl of 3 to 6 carbons;
Ar\(^1\) is a homocyclic group of 6 to 14 carbons;
R\(^4\) is hydrogen, -Alk\(^1\)-H, cycloalkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 6 carbons-straight or branched alky of 1-6 carbons,

\[-(\text{Alk}^1)_n_\text{S(O)}_R^7, -(\text{Alk}^1)_n_\text{phthalimidyl}, -(\text{Alk}^1)_n_\text{CO}_2\text{H}, -(\text{Alk}^1)_n_\text{CO}_2\text{R}^7, -(\text{Alk}^1)_n_\text{Ar}^1, -(\text{Alk}^1)_n_\text{CONR}^8\text{R}^9, -(\text{Alk}^1)_n_\text{NR}^9\text{R}^9, -(\text{Alk}^1)_n_\text{OH} or -(\text{Alk}^1)_n_\text{OR}^7;\]

X is,

\[
\begin{array}{c}
(CR^{10}R^{11})_p \\
(CR^{12}R^{13})_q \\
\end{array}
\]

wherein

R\(^{10}\), R\(^{11}\), R\(^{12}\) and R\(^{13}\) are independently hydrogen or a straight or branched chain alky of 1-6 carbon atoms,
p and q are independently either 0 or 1;

Y is hydrogen;
Z is -(Alk\(^2\))\(_n\)_COR\(^5\), -(Alk\(^2\))\(_n\)_CO\(_2\)R\(^5\), -(Alk\(^2\))\(_n\)_CO-thiopyridinyl or -(Alk\(^2\))\(_n\)_CONR\(^{14}\)R\(^{15}\),
wherein

Alk\(^2\) is (C\(_{1-12}\)) alkyl, (C\(_{2-12}\)) alkenylene or (C\(_{2-12}\)) alkylnylene;
R\(^6\) is hydrogen, -Alk\(^1\)-H, cycloalkyl of 3-6 carbon atoms, adamantyl, or Ar\(^1\)-NR\(^{12}\)R\(^{13}\);
R\(^{14}\) and R\(^{15}\) are,
a) independently, hydrogen, -Alk\(^2\)-H, cycloalkyl of 3 to 6 carbon atoms, alkoxy of 1 to 6 carbon atoms, adamantyl, Ar\(^1\)_benzyl,diphenylmethyl, triphenylmethyl or -(Alk\(^1\))\(_n\)-norbornyl; or
b) carbon atoms, optionally substituted with one or more lower alky groups of 1 to 6 carbon atoms, taken together with the linking nitrogen to form a 4 to 8 atom heterocyclic group

\[
\begin{array}{c}
N \\
\text{Het} \\
\end{array}
\]

wherein,

Het represents -O-, -CH\(_2\)-, -S(O)\(_2\)-, -NH- or -N-(Alk\(^1\))-H;

R\(^6\) is hydrogen or methyl;
2. A compound of Claim 1 which is a compound of formula (IA),

\[\text{Formula (IA)} \]

wherein Y, Z, R^3 and R^4 are as defined in claim 1.

3. A compound of Claim which is a compound of formula (IB)

\[\text{Formula (IB)} \]

wherein Y, Z, R^1, R^3 and R^4 are as defined in Claim 1.

4. A compound of Claim 1 which is a compound of formula (IC)

\[\text{Formula (IC)} \]

wherein Y, Z, R^3 and R^4 are as defined in Claim 1.

5. A compound of Claim 1 which is a compound of formula (ID)
wherein Y, Z, R^3 and R^4 are as defined in Claim 1.

6. A compound of Claim 1 wherein Z is -COOH, -COOCH_3, adamantylcarbamoyl, t-butylicarbamoyl, dimethylcarbamoyl, diethylcarbamoyl, di-i-propylcarbamoyl, di-t-butylicarbamoyl, 2-methylpropylcarbamoyl, pyridinylthiocarbonyl, diphenylmethylcarbamoyl, triphenylmethylcarbamoyl, diphenylcarbamoyl, naphthylcarbamoyl, anthracylcarbamoyl, cardo adamantyloxy, acrylyldiethylamide, exonorbornylmethylcarbamoyl, endonorbornylcarbamoyl, or benzylcarbamoyl.

7. A compound of Claim 1 wherein R^4 is hydrogen, methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-buty, hexyl, 3-hydroxypropyl, propenyl, methylene-cyclopropyl, benzyl, 2-methoxyethyl, 2-acetic acid, 3-propanoic acid, 4-butoanoic acid, 5-pentanoic acid, 6-hexanoic acid, methyl-5-pentanoate, ethyl-6-hexanoate, 3-phthalimidopropyl or 4-phthalimidobutyl.

8. A compound of Claim 1 wherein R^3 is hydrogen, methyl, ethyl, cyano, iodo, bromo, chloro and dimethylaminomethyl.

9. A compound of Claim 1 which is

17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-methyl-6-azaandrostan-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-4-en-3-one,
17\beta-(2-Pyridinylthiocarbonyl)-6-azaandrostan-4-en-3-one,
17\beta-(1-Oxo-3-methylbutyl)-6-azaandrostan-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-1,4-dien-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-1\alpha,2\alpha-cyclopropyl-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-4-chloro-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-4-bromo-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-4-iodo-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-4-methyl-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-4-ethyl-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-4-cyano-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-4-dimethylaminomethylene-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-(3-hydroxypropyl)-6-azaandrostan-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-methyl-6-azaandrostan-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-methyl-6-azaandrostan-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-methyl-6-azaandrostan-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-methyl-6-azaandrostan-4-en-3-one,
17\beta-N-1-Adamantylcarbamoyl-6-azaandrostan-4-en-3-one,
17\beta-N-1-Adamantylcarbamoyl-6-methyl-6-azaandrostan-4-en-3-one,
17\beta-N-Methoxy-N-methylcarbamoyl-6-azaandrostan-4-en-3-one,
17\beta-Carbomethoxy-6-azaandrostan-4-en-3-one,
17\beta-Carboxy-6-methyl-6-azaandrostan-4-en-3-one,
17\beta-(1-Oxo-3-methylbutyl)-6-methyl-6-azaandrostan-4-en-3-one,
17\beta-N-N-Diethylcarbamoyl-6-methyl-6-azaandrostan-1,4-dien-3-one,
17\beta-N-N-Diethylcarbamoyl-6-azaandrostan-1,4-dien-3-one,
17\beta-N-N-Diethylcarbamoyl-6-methyl-6-azaandrostan-1,4-dien-3-one,
10. An in vitro method of inhibiting 5α-testosteronase reductase enzyme comprising contacting said enzyme with an effective 5α-testosteronase inhibitory amount of a compound of Claim 1.

11. A pharmaceutical formulation comprising a compound of Claim 1 in a pharmaceutically acceptable carrier thereof.

12. A method of preparation of a compound of formula (I) as defined in Claim 1 or a pharmaceutically acceptable salt thereof which comprises

(a) reacting a compound of formula (IX)
wherein \(J'O\) is hydroxy or a protected group, with an oxidising agent; or

(b) for the preparation of compounds of formula (I) wherein \(X = \text{CH}_2\text{CH}_2\), reacting a compound of formula (XIV)

with a reducing agent,

and if necessary and/or desired subjecting the compound thus obtained to one or more further reactions comprising

(i) converting the resulting compound of formula (I) or a salt or protected derivative thereof into another compound of formula (I) and/or

(ii) removing any protecting group or groups and/or

(iii) converting a compound of formula (I) or a salt thereof into a pharmaceutically acceptable salt thereof.

13. A method as claimed in Claim 12 wherein a compound of formula (IX*)

is reacted with an appropriate oxidising agent to give a compound of formula (I) wherein \(R^4\) is hydrogen.

15. A method as claimed in Claim 12 wherein a compound of formula (XIV) is reacted with triphenylphosphine to give a compound of formula (I) wherein \(X = \text{CH}_2\text{CH}_2\).

16. Use of a compound according to any of Claims 1-9 for the manufacture of a medicament for the treatment of an
androgen responsive or mediated disease.

17. Use according to Claim 16 where the androgen responsive or mediated disease is benign prostatic hypertrophy, prostate cancer, acne, male pattern baldness and hirsutism.

Patentansprüche

1. Verbindung der Formel (I):

![Chemical Structure](image)

worin die Substituenten R¹, R², R³ und R⁴, wenn sie an den Atomen, mit denen sie verbunden sind, zu einer Asymmetrie führen, entweder in α- oder β-Stereokonfiguration vorliegen können und wobei

R¹ und R²

i) unabhängig Wasserstoff oder gerad- oder verzweigtkettiges Alkyl mit 1 bis 6 Kohlenstoffatomen sind und die Bindung zwischen den Kohlenstoffatomen, an denen sich R¹ und R² befinden, eine Einfach- oder Doppelbindung ist, oder

ii) zusammengenommen eine -CH₂-Gruppe unter Bildung eines Cyclopropan-Rings sind, und die Bindung zwischen den Kohlenstoffatomen, an denen sich R¹ und R² befinden, eine Einfachbindung ist;

R³ Wasserstoff, -Alk¹⁻⁻H, gegebenenfalls substituiert mit einem oder mehreren Halogenatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Cycloalkyl (mit 3 bis 6 Kohlenstoffatomen)-gerad- oder verzweigtkettiges Alkyl mit 1 bis 6 Kohlenstoffatomen, Halogen,

- (Alk¹⁻⁻)⁻⁻⁻˓→
EP 0 641 356 B1

\(-\text{Alk}^1_n - \text{S(O)}_m \text{R}^7, -\text{Alk}^1_n - \text{phthalimidyl}, \)

\(-\text{Alk}^1_n - \text{CO}_2 \text{H}, -\text{Alk}^1_n - \text{CO}_2 \text{R}^7, -\text{Alk}^1_n - \text{Ar}^1, \)

\(-\text{Alk}^1_n - \text{CONR}^9 \text{R}^9, -\text{Alk}^1_n - \text{NR}^9 \text{R}^9, -\text{Alk}^1_n - \text{OH} \) oder

\(-\text{Alk}^1_n - \text{OR}^7 \) ist;

\[
\begin{array}{c}
\text{(CR}^{10} \text{R}^{11})_p \\
\text{(CR}^{12} \text{R}^{13})_q \\
\end{array}
\]

ist, wobei

\(R^{10}, R^{11}, R^{12} \) und \(R^{13} \) unabhängig Wasserstoff oder gerad- oder verzweigtkettiges Alkyl mit 1 bis 6 Kohlenstoffatomen sind;

\(p \) und \(q \) unabhängig entweder 0 oder 1 sind;

\(Y \) Wasserstoff ist;

\(Z \) \(-\text{Alk}^2_n - \text{COR}^5, -\text{Alk}^2_n - \text{CO}_2 \text{R}^5, -\text{Alk}^2_n - \text{CO}-\text{thiopyridinyl} \) oder \(-\text{Alk}^2_n - \text{CONR}^{14} \text{R}^{15} \) ist,

wobei

\(\text{Alk}^2 \) \((C_{1-12}) \) Alkenyl, \((C_{2-12}) \) Alkenylen oder \((C_{2-12}) \) Alkinyle ist;

\(R^6 \) Wasserstoff, \(-\text{Alk}^1_n - \text{H}, \) Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Adamantyl oder \(\text{Ar}^1_n NR^{12} R^{13} \) ist;

\(R^{14} \) und \(R^{15} \)

a) unabhängig Wasserstoff, \(-\text{Alk}^2_n - \text{H}, \) Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen, Adamantyl, \(-\text{Ar}^1, \) Benzyl, Diphenylmethyl, Triphenylmethyl oder \(-\text{Alk}^1_n - \text{norbornyl} \) sind; oder

b) Kohlenstoffatome sind, die gegebenenfalls mit einer oder mehreren Niederalkyl-Gruppen mit 1 bis 6 Kohlenstoffatomen substituiert sind und zusammen mit dem verbindenden Stickstoff eine 4- bis 8-atomige heterocyclische Gruppe bilden

\[
\begin{array}{c}
\text{Het} \\
\end{array}
\]

worin \(\text{Het} - \text{O}, -\text{CH}_2, -\text{S(O)}_2, -\text{NH} \) oder \(-\text{N(Alk}^1_n - \text{H}) \) darstellt;

\(R^6 \) Wasserstoff oder Methyl ist;

und pharmazeutisch akzeptable Salze davon.

2. Verbindung gemäß Anspruch 1 mit der Formel (IA):
worin \(Y, Z, R^3 \) und \(R^4 \) wie in Anspruch 1 definiert sind.

3. Verbindung gemäß Anspruch 1 mit der Formel (IB):

worin \(Y, Z, R^1, R^3 \) und \(R^4 \) wie in Anspruch 1 definiert sind.

4. Verbindung gemäß Anspruch 1 mit der Formel (IC)

worin \(Y, Z, R^3 \) und \(R^4 \) wie in Anspruch 1 definiert sind.

5. Verbindung gemäß Anspruch 1 mit der Formel (ID):
worin Y, Z, R³ und R⁴ wie in Anspruch 1 definiert sind.

7. Verbindung nach Anspruch 1, worin R⁴ Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, Hexyl, 3-Hydroxypropyl, Propenyl, Methylencyclopropyl, Benzy, 2-Methoxyethyl, 2-Essigsäure, 3-Propionsäure, 4-Butansäure, 5-Pentansäure, 6-Hexansäure, Methyl-6-pentanoat, Ethyl-6-hexanoat, 3-Pthalimidylpropyl oder 4-Pthalimidylbutyl ist.

8. Verbindung gemäß Anspruch 1, worin R³ Wasserstoff, Methyl, Ethyl, Cyano, Jodo, Bromo, Chlоро und Dimethylaminomethyl ist.

9. Verbindung gemäß Anspruch 1, welche

17|N-N-Diethylcarbamoyl-6-azaandrost-4-en-3-on,
17|N-N-Diethylcarbamoyl-6-methyl-6-azaandrost-4-en-3-on,
17|N-N-Butylcarbamoyl-6-azaandrost-4-en-3-on,
17|N-(2-Pyridinylthiocarbonyl)-6-azaandrost-4-en-3-on,
17|N-(1-Oxo-3-methylbutyl)-6-azaandrost-4-en-3-on,
17|N-N-Diethylcarbamoyl-6-azaandrost-1,4-dien-3-on,
17|N-N-Diethylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-en-3-on,
17|N-N-Diethylcarbamoyl-6-azaandrost-4-chlor-4-en-3-on,
17|N-N-Diethylcarbamoyl-6-azaandrost-4-bromo-4-en-3-on,
17|N-N-Diethylcarbamoyl-6-azaandrost-4-jodo-4-en-3-on,
17|N-N-Diethylcarbamoyl-6-azaandrost-4-methyl-4-en-3-on,
17|N-N-Diethylcarbamoyl-6-azaandrost-4-ethyl-4-en-3-on,
17|N-N-Diethylcarbamoyl-6-azaandrost-4-cyano-4-en-3-on,
17|N-N-Diethylcarbamoyl-6-azaandrost-4-dimethylaminomethyl-4-en-3-on,
17|N-N-Diethylcarbamoyl-6-(3-hydroxypropyl)-6-azaandrost-4-en-3-on,
17|N-N-Butylcarbamoyl-6-methyl-6-azaandrost-4-en-3-on,
17|N-N-Diisopropylcarbamoyl-6-azaandrost-4-en-3-on,
17|N-N-Diisopropylcarbamoyl-6-methyl-6-methyl-6-azaandrost-4-en-3-on,
17|N-N-1-Adamantylcarbamoyl-6-azaandrost-4-en-3-on,
17|N-N-1-Adamantylcarbamoyl-6-methyl-6-azaandrost-4-en-3-on,
17|N-N-Methoxy-N-methylcarbamoyl-6-azaandrost-4-en-3-on,
17|N-Carbomethoxy-6-azaandrost-4-en-3-on,
17|N-N-Carboxy-6-methyl-6-azaandrost-4-en-3-on,
17|N-N-(1-Oxo-3-methylbutyl)-6-methyl-6-azaandrost-4-en-3-on,
17|N-N-Diethylcarbamoyl-6-methyl-6-azaandrost-1,4-dien-3-on,
17|N-N-1-Butylcarbamoyl-6-azaandrost-1,4-dien-3-on,

11. Pharmazeutische Formulierung, umfassend eine Verbindung gemäß Anspruch 1 in einem pharmazeutisch akzeptablen Träger dafür.

12. Verfahren zur Herstellung einer Verbindung der Formel (I) gemäß Anspruch 1 oder eines pharmazeutisch akzeptablen Salzes davon, welches umfaßt:
(a) Umsetzung einer Verbindung der Formel (IX):

\[
\begin{align*}
&\text{(IX)} \\
&\begin{array}{c}
R^1 \\
R^2 \\
R^3 \\
R^4 \\
R^5 \\
R^6 \\
\end{array}
\end{align*}
\]

worin J'O-Hydroxy oder eine Schutzgruppe ist, mit einem Oxidationsmittel; oder

(b) zur Herstellung von Verbindungen der Formel (I), worin X -CH₂CH₂- ist, Umsetzung einer Verbindung der Formel (XIV):

\[
\begin{align*}
&\text{(XIV)} \\
&\begin{array}{c}
R^1 \\
R^2 \\
R^3 \\
R^4 \\
R^5 \\
R^6 \\
\end{array}
\end{align*}
\]

mit einem Reduktionsmittel und, falls erforderlich und/oder gewünscht, Unterwerfen der so erhaltenen Verbindung einer oder mehrerer weiterer Reaktionen, umfassend

(i) Umwandlung der resultierendeen Verbindung der Formel (I) oder eines Salzes oder geschützten Derivates davon in eine andere Verbindung der Formel (I) und/oder

(ii) Entfernung einer oder mehrerer etwaiger Schutzgruppen und/oder

(iii) Umwandlung einer Verbindung der Formel (I) oder eines Salzes davon in ein pharmazeutisch akzeptables Salz davon.

13. Verfahren gemäß Anspruch 12, worin eine Verbindung mit der Formel (IX°):

\[
\begin{align*}
&\text{(IX°)} \\
&\begin{array}{c}
R^1 \\
R^2 \\
R^3 \\
R^4 \\
R^5 \\
R^6 \\
\end{array}
\end{align*}
\]

mit einem geeigneten Oxidationsmittel zur Bildung einer Verbindung der Formel (I) umgesetzt wird, worin R⁴ Wasserstoff ist.

15. Verfahren gemäß Anspruch 12, worin eine Verbindung mit der Formel (XIV) mit Triphenylphosphin zur Bildung einer Verbindung der Formel (I), worin X -CH₂CH₂- ist, umgesetzt wird.

16. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 9 zur Herstellung eines Medikaments zur Behandlung einer Krankheit, die auf Androgene anspricht oder durch Androgene vermittelt wird.

17. Verwendung gemäß Anspruch 16, wobei die Krankheit, die auf Androgene anspricht oder durch Androgene vermittelt wird, benign Prostatahypertrophie, Prostatakrebs, Akne, männlicher Haarausfall und Hirnserum ist.

Revendications

1. Composés de la formule (I):

![Chemical Structure](image)

(i)

Dans laquelle les substituants R¹, R², R³ et R⁴ entraînent une asymétrie sur les atomes auxquels ils sont attachés, peuvent être en configuration stéréo α ou β, dans laquelle

R¹ et R² représentent

i) indépendamment des atomes d'hydrogène ou un radical alkyle à chaîne droite ou ramifiée comportant de 1 à 6 atomes de carbone et la liaison entre les carbone portant R¹ et R² est une simple ou double liaison, ou bien

ii) considérés ensemble, ils constituent un radical -CH₂-, pour former un noyau cyclopropane et la liaison entre les carbones portant R¹ et R² est une simple liaison,

R³ représente un atome d'hydrogène, un groupe -Alk¹-H, éventuellement substitué par un ou plusieurs atomes d'halogènes, un radical cycloalkyle comportant de 3 à 6 atomes de carbone, un radical cycloalkyle comportant de 3 à 6 atomes de carbone - à chaîne droite ou ramifiée comportant de 1 à 6 atomes de carbone, un atome d'halogène,

- (Alk¹)ₙ-CO₂H,
- (Alk¹)ₙ-CO₂HR⁷, -(Alk¹)ₙ-Ar¹, -(Alk¹)ₙ-CNR⁸R⁹,
- (Alk¹)ₙ-NR²R⁹,
- (Alk¹)ₙ-S(O)₂R⁷, -(Alk¹)ₙ-CN, (Alk¹)-OH ou
- (Alk¹)ₙ-OR⁷,

où

Alk¹ représente un radical alkylène à chaîne droite ou ramifiée comportant de 1 à 6 atomes de carbone, un radical alcénylène ou alcénylène à chaîne droite ou ramifiée comportant de 2 à 6 atomes de carbone,

n est égal à 0 ou à 1,

r est égal à 0, 1 ou 2,
R^7 représente un groupe -Alk^1-H, -(Alk^1)_n-Ar ou un cycloalkyle comportant de 3 à 6 atomes de carbone.
R^6 et R^8 représentent indépendamment des atomes d'hydrogène, des radicaux -Alk^1-H ou cycloalkyle comportant de 3 à 6 atomes de carbone.
Ar\(^1\) représente un radical aromatique comportant de 6 à 14 atomes de carbone.
R^4 représente un atome d'hydrogène, un groupe -Alk^1-H, cycloalkyle comportant de 3 à 6 atomes de carbone, cycloalkylalkyle comportant de 3 à 6 atomes de carbone,
-(Alk^1)_n-S(O)_2R^7, -(Alk^1)_n-phtalimidyldie, -(Alk^1)_n-CO_2H, -(Alk^1)_n-CO_2R^7,
-(Alk^1)_n-Ar\(^1\), -(Alk^1)_n-CONR^6R^9, -(Alk^1)_n-NR^6R^9, -(Alk^1)_n-OH ou
-(Alk^1)_n-OR^7.
X représente un groupe

\[
\begin{array}{c}
\text{CR}^{10}\text{R}^{11}_p \\
\text{CR}^{12}\text{R}^{13}_q
\end{array}
\]
dans lequel
R\(^{10}\), R\(^{11}\), R\(^{12}\) et R\(^{13}\) représentent indépendamment des atomes d'hydrogène ou des radicaux alkyle à chaîne droite ou à chaîne ramifiée comportant de 1 à 6 atomes de carbone,
p et q sont indépendamment égaux à 0 ou à 1.
Y représente un atome d'hydrogène,
Z représente un radical -(Alk^2)_n-COR^6, -(Alk^2)_n-CO_2R^6, -(Alk^2)_n-CO-thiopyridinyle ou -(Alk^2)_n-CONR^{14}R^{15},
or
Alk^2 représente un radical alkylène en C\(_1\) à C\(_{12}\), alcénylène en C\(_2\) à C\(_{12}\), ou alcynylène en C\(_2\) à C\(_{12}\).
R\(^{6}\) représente un atome d'hydrogène, un radical Alk^1-H, cycloalkyle comportant de 3 à 6 atomes de carbone, un radical adamantyle, ou un radical Ar\(^1\)-NR\(^2\)R\(^3\).
R\(^{14}\) et R\(^{15}\) sont
a) indépendamment des atomes d'hydrogène, des radicaux Alk^2-H, des radicaux cycloalkyle comportant de 3 à 6 atomes de carbone, alcynyl comportant de 1 à 6 atomes de carbone, adamantyle,
Ar\(^1\), benzyle, diphyénylméthyle, triphénylméthyle, ou -(Alk^1)_n-norbornyle, ou
b) des atomes de carbone, éventuellement substitués par un ou plusieurs radicaux alkyle inférieur comportant de 1 à 6 atomes de carbone, considérés ensemble avec l'azote de liaison, pour former un groupe hétérocyclique comportant de 4 à 8 atomes

\[
\begin{array}{c}
\text{N} \\
\text{Het}
\end{array}
\]
ou
Het représente -O-, -CH\(_2\)-, -S(O)\(_1\)-, -NH- ou N-(Alk\(^1\)-H),
R^6 représente un atome d'hydrogène ou le radical méthyle

et les sel pharmaceutiquement acceptables de ces composés.

2. Composés suivant la revendication 1, caractérisés en ce qu'ils répondent à la formule (IA)

\[
\text{(IA)}
\]

dans laquelle Y, Z, R^3 et R^4 possèdent les significations qui leur ont été attribuées dans la revendication 1.

3. Composés suivant la revendication 1, caractérisés en ce qu'ils répondent à la formule (IB)

\[
\text{(IB)}
\]

dans laquelle Y, Z, R^1, R^3 et R^4 possèdent les significations qui leur ont été attribuées dans la revendication 1.

4. Composés suivant la revendication 1, caractérisés en ce qu'ils répondent à la formule (IC)

\[
\text{(IC)}
\]

dans laquelle Y, Z, R^3 et R^4 possèdent les significations qui leur ont été attribuées dans la revendication 1.
5. Composés suivant la revendication 1, caractérisés en ce qu'ils répondent à la formule (ID)

6. Composés suivant la revendication 1, caractérisés en ce que Z représente un radical -COOH, -COOCH₃, adamantylcarbamoyl, t-butyl-carbamoyl, diméthylcarbamoyl, diéthylcarbamoyl, di-i-propylcarbamoyl, di-t-butylcarbamoyl, 2-méthylpropylcarbamoyl, pyridinylthiocarbamoyl, diphenylméthylcarbamoyl, triphénylcarbamoyl, diphenylcarbamoyl, naphthylcarbamoyl, anthracécarbamoyl, carbadoxamantylxoxy, acrylidéthylamide, exonorbornylméthylcarbamoyl, endonorbornylcarbamoyl, ou benzylcarbamoyl.

7. Composés suivant la revendication 1, caractérisés en ce que R⁴ représente un atome d'hydrogène, un radical méthyle, éthyle, propyle, i-propyle, butyle, t-butyle, hexyle, 3-hydroxypropyle, propényle, méthylencyclopropyle, benzyle, 2-méthoxéthyle, acide 2-acétique, acide 3-propanoïque, acide 4-butanoique, acide 5-pentanoïque, acide 6-hexanoïque, 5-pentanoate de méthyle, 6-hexanoate d'éthyle, 3-phtalimidylpropyle ou 4-phtalimidylbutyle.

8. Composés suivant la revendication 1, caractérisés en ce que R³ représente un atome d'hydrogène, un radical méthyle, éthyle, cyano, iodo, bromo, chloro et diméthylaminométhyle.

9. Composés suivant la revendication 1, caractérisés en ce que ce sont les substances qui suivent :

17) N,N-Diéthylcarbamoyl-6-azaandrost-4-ène-3-one
17) N,N-Diéthylcarbamoyl-6-méthyl-6-azaandrost-4-ène-3-one
17) N-t-Butylcarbamoyl-6-azaandrost-4-ène-3-one
17) (2-Pyridinylthiocarbonyl)-6-azaandrost-4-ène-3-one
17) (1-Oxo-3-méthylbutyl)-6-azaandrost-4-ène-3-one
17) N,N-Diéthylcarbamoyl-6-azaandrost-1,4-diène-3-one
17) N,N-Diéthylcarbamoyl-6-azaandrost-1α,2α-cyclopropyl-4-ène-3-one
17) N,N-Diéthylcarbamoyl-6-azaandrost-4-chloro-4-ène-3-one
17) N,N-Diéthylcarbamoyl-6-azaandrost-4-bromo-4-ène-3-one
17) N,N-Diéthylcarbamoyl-6-azaandrost-4-iodo-4-ène-3-one
17) N,N-Diéthylcarbamoyl-6-azaandrost-4-méthyl-4-ène-3-one
17) N,N-Diéthylcarbamoyl-6-azaandrost-4-éthyl-4-ène-3-one
17) N,N-Diéthylcarbamoyl-6-azaandrost-4-cyano-4-ène-3-one
17) N,N-Diéthylcarbamoyl-6-azaandrost-4-diméthylaminométhylène-4-ène-3-one
17) N,N-Diéthylcarbamoyl-6-(3-hydroxypropyl)-6-azaandrost-4-ène-3-one
17) N-t-Butylcarbamoyl-6-méthyl-6-azaandrost-4-ène-3-one
17) N,N-Diisopropylcarbamoyl-6-azaandrost-4-ène-3-one
17) N-N-1-Adamantylcarbamoyl-6-azaandrost-4-ène-3-one
17) N,N-1-Adamantylcarbamoyl-6-azaandrost-4-ène-3-one
17) N,N-Méthoxy-N-méthylcarbamoyl-6-azaandrost-4-ène-3-one
17) N-Carbométhoxy-6-azaandrost-4-ène-3-one
10. Procédé in vitro d'inhibition de l'enzyme qu'est la 5α-testostérone réductase, caractérisé en ce que l'on met ladite enzyme en contact avec une quantité inhibitrice de la Sa-testostérone efficace d'un composé de la revendication 1.

11. Composition pharmaceutique comprenant un composé de la revendication 1, dans un véhicule ou excipient pharmaceutiquement acceptable pour celui-ci.
12. Procédé de préparation d'un composé de la formule (I) suivant la revendication 1, ou d'un sel pharmaceutiquement acceptable de celui-ci, caractérisé en ce que

(a) on fait réagir un composé de la formule (IX')

\[
\begin{align*}
R^1 &; R^2 &; R^3 &; R^4 &; R^5 &; R^6 &; X &; Y &; Z &; H_C &; \text{formule (IX')} \\
\end{align*}
\]

dans laquelle J'O représente un groupe hydroxyle ou un groupe protégé, avec un agent oxydant, ou bien

(b) pour la préparation de composés de la formule (I) dans laquelle X est -CH₂CH₂-, on fait réagir un composé de la formule (XIV)

\[
\begin{align*}
R^1 &; R^2 &; R^3 &; R^4 &; R^5 &; R^6 &; X &; Y &; Z &; H_C &; \text{formule (XIV)} \\
\end{align*}
\]

avec un agent réducteur

et, si cela se révèle nécessaire et/ou souhaitable, on soumet le composé ainsi obtenu à une ou plusieurs réactions supplémentaires comprenant

(i) la conversion du composé ainsi obtenu de la formule (I) ou d'un sel ou d'un dérivé protégé de celui-ci, en un autre composé de la formule (I) et/ou

(ii) l'élimination de n'importe quel(s) groupe(s) protecteur(s) et/ou

(iii) la conversion d'un composé de la formule (I) ou d'un sel de celui-ci en un sel pharmaceutiquement acceptable de celui-ci.

13. Procédé suivant la revendication 12, caractérisé en ce que l'on fait réagir un composé de la formule (IX')

\[
\begin{align*}
R^1 &; R^2 &; R^3 &; R^4 &; R^5 &; R^6 &; X &; Y &; Z &; H_C &; \text{formule (IX')} \\
\end{align*}
\]

avec un agent oxydant approprié, pour obtenir un composé de la formule (I) dans laquelle R⁶ représente un atome d'hydrogène.
14. Procédé suivant la revendication 13, caractérisé en ce que l'agent oxydant est un réactif de Jones.

15. Procédé suivant la revendication 12, caractérisé en ce que l'on fait réagir un composé de la formule (XIV) avec de la triphénylphosphine, pour obtenir un composé de la formule (I) dans laquelle X est -CH₂CH₂-.

16. Utilisation d'un composé suivant l'une quelconque des revendications 1 à 9, pour la fabrication d'un médicament destiné au traitement d'une maladie sensible aux androgènes ou survenant par l'intermédiaire d'androgènes.

17. Utilisation suivant la revendication 16, caractérisée en ce que la maladie sensible aux androgènes ou survenant par l'intermédiaire d'androgènes et l'hypertrophie prostatique bénigne, le cancer de la prostate, l'acné, la calvitie hippocratique et l'hirsutisme.