EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:

Application number: 94630040.7

Date of filing: 06.07.1994

Compressor with integral filter
Verdichter mit integriertem Filter
Compressore avec filtre intégral

Designated Contracting States:
CH DE ES FR GB IT LI

Date of publication of application:
22.02.1995 Bulletin 1995/08

Proprietor: CARRIER CORPORATION
Syracuse New York 13221 (US)

Inventors:
• Heinrichs, Anton D.
 Canastota, New York 13032 (US)

Cavanaugh, Barry A.
East Longmeadow, Massachusetts 01028 (US)

Representative: Waxweiler, Jean et al
Dennemeyer & Associates Sàrl
P.O. Box 1502
1015 Luxembourg (LU)

References cited:
US-A- 3 400 821

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

In refrigeration compressors the affinity between refrigerant and lubricant generally requires separation of oil from the discharged refrigerant and its return to the compressor. Additionally, the returned oil is normally filtered before being supplied to the oil distribution structure. Because the filter must be accessible for replacement as well as isolatable to minimize oil loss, it is located external to the compressor. This, however, requires brazed lines downstream of the filter and this can result in debris being carried to the bearings, etc.

A filter housing is part of the compressor casting allowing for a single oil entry location to the compressor. The filter is sealed to a check valve assembly. The check valve assembly prevents backflow when the filter is being changed. A solenoid valve is located downstream of the check valve but upstream of the bearings and running gear of the compressor which requires lubrication. Accordingly, the solenoid must be opened to permit supplying lubricant.

It is an object of this invention to supply proper filtration of oil as close as possible to the compressor wear surfaces.

It is another object of this invention to eliminate brazing downstream of the filter. These objects, and others as will become apparent hereinafter, are accomplished by the present invention.

Basically, a filter is located within the compressor casing such that passages in the casing can form at least part of the lubrication supply path which serially includes a filter, a check valve and a solenoid valve.

Figure 1 is a sectional view of a portion of a compressor employing the present invention;

Figure 2 is a sectional view of the check valve assembly;

Figure 3 is a view of the valve member; and

Figure 4 is a view of the snap ring.

In Figure 1, the numeral 10 generally designates a compressor having a casing 12. An opening is formed in casing 12 and serially includes threaded portion 12-1, bore 12-2, shoulder 12-3 and threaded bore 12-4. Threaded bores 12-5 and 12-6 communicate with bore 12-3. Bore 12-7 communicates with bore 12-4 and bore 12-8 communicates with the compressor’s bearings, running gear, etc.

As best shown in Figure 2, check valve assembly 20 includes a body 22. Body 22 has bores 22-1 and 22-3 with valve seat 22-2 therebetween. Annular recess 22-4 is formed in bore 22-3. Body 22 is divided by annular flange portion 22-5. One portion of body 22 has an annular groove 22-6 and a threaded portion 22-7. The other portion of body 22 serially includes hexagonal portion 22-8, shoulder 22-9, cylindrical portion 22-10, transition portion 22-11 and cylindrical portion 22-12. Valve member 24 is located in bore 22-3 and is held in place by snap ring 26. Valve member 24 is light and can move between seat 22-2 and snap ring 26 responsive to flow/pressure differential. As best shown in Figure 3, valve member 24 is made up of a central disk and an annular ring with a plurality of circumferentially spaced webs connecting the central disk and annular ring. As best shown in Figure 4, snap ring 26 is essentially C-shaped.

In assembling the present invention, valve 24 and snap ring 26 will be in place in valve assembly 20. Or ring other suitable seal 28 will be located in groove 22-6. Check valve assembly 20 is then installed in casing 12 by threading threaded portion 22-7 into threaded bore 12-4 until a sufficient torque level is obtained after flange 22-5 engages shoulder 12-3. Schrader plug 30 is threaded into bore 12-6 and acts as a bleed. Oil return line 32 is threadably connected to bore 12-5. Filter 40 which carries O-ring or other suitable seal 42 in place over cylindrical portion 22-12 of body 22 and forced onto cylindrical portion 22-10. Plug 44 is threaded into threaded portion 12-1 such that filter 40 cannot move off of valve assembly 20 while plug 44 is in place.

In operation, oil is returned to compressor 10 from the refrigeration system, at system pressure, via return line 32 and enters bore 12-2. The oil serially passes through filter 40, bore 22-1, check valve 24, bore 22-3, and bore 12-4 into bore 12-7. Assuming that solenoid valve 50 is open, the oil passes from bore 12-7 through the solenoid valve 50 into bore 12-8 from which the oil flows to the compressor bearings, running gear etc. It will be noted that filter 40 is not separated from the parts requiring lubrication by a large distance or by structure requiring brazed connections.

To replace filter 40, compressor 10 will be stopped and solenoid 50 will be closed. Bore 12-2 will be bled through bore 12-6 until the pressure drops to ambient by depressing the valve in the plug 30. Plug 44 will be unthreaded and removed. Any tendency for flow from bores 12-7 and 22-3 will cause valve 24 to seat on valve seat 22-2 and this would be true if solenoid valve 50 failed or leaked. Filter 40 can then be removed and replaced. If necessary, or desired, valve assembly 20 can also be removed and replaced. Plug 44 will then be threaded back into threaded bore 12-1 and plug 30 will be tightened. A vacuum will be pulled via plug 30 and passage 12-6 and then compressor 12 will be started.

Claims

1. Compressor means (10) including:

 a) casing means (12);
 b) a first bore (12-3) in said casing means and having a first and a second end;
 c) a means (44) for fluidly sealing said first end of
said first bore;
a second bore (12-4) in said casing means having a first end and a second end;
a check valve assembly (20) secured in said second bore and permitting flow from said first bore to said second bore;
filter means (40) located in said first bore and sealingly connected to said check valve assembly;
a return line (32) connected to said first bore means whereby oil returning via said return line enters said first bore and passes through a flow path serially including said filter means; said check valve assembly and said second bore for providing lubrication to said compressor means.

2. The compressor means of claim 1 wherein said flow path downstream of said second bore serially includes a third bore (12-7) in said casing means, solenoid valve means (50) and a fourth bore (12-8) in said casing means whereby said solenoid valve means selectively permits flow through said flow path from said third bore to said fourth bore while said check valve assembly prevents flow from said second bore to said first bore.

3. The compressor means of claim 1 wherein said check valve assembly includes:
a first portion (22-7) extending into said second bore and secured therein;
a second portion (22-10) extending into said first bore and adapted to receive said filter means thereover; and,
a check valve member (24) adapted to only permit flow from said second portion to said first portion.

4. The compressor means of claim 3 wherein said first portion is threadably received in said second bore.

5. The compressor means of claim 3 wherein said check valve assembly further includes valve seat means (22-2) and said check valve member is held in place by a snap ring (26) secured in said first portion.

Patentansprüche

1. Kompressoreinrichtung (10), die umfasst:
 eine Gehäuseeinrichtung (12);
a eine erste Bohrung (12-3) in der Gehäuseeinrichtung, die ein erstes und ein zweites Ende hat;

2. Kompressoreinrichtung nach Anspruch 1, bei welcher der Strömungsweg stromabwärts der zweiten Bohrung in serieller Anordnung eine dritte Bohrung (12-7) in der Gehäuseeinrichtung umfasst, eine Magnetventileinrichtung (50) und eine vierte Bohrung (12-8) in der Gehäuseeinrichtung, wobei die Magnetventileinrichtung wahlweise die Strömung durch den Strömungsweg hindurch von der dritten Bohrung zur vierten Bohrung erlaubt, während die Rückschlagventil-Anordnung die Strömung von der zweiten Bohrung zur ersten Bohrung verhindert.

3. Kompressoreinrichtung nach Anspruch 1, bei welcher die Rückschlagventil-Anordnung umfasst:
 einen ersten Teil (22-7), der sich in die zweite Bohrung hinein erstreckt und darin befestigt ist;
 einen zweiten Teil (22-10), der sich in die erste Bohrung hinein erstreckt und angepasst ist, um die Filtereinrichtung darüber aufzunehmen; und
ein Rückschlagventil-Teil (24), das angepasst ist, um nur die Strömung vom zweiten Teil zum ersten Teil zu erlauben.

Revisions

1. Un moyen de compresseur (10) comprenant:
 un moyen d'enveloppe (12);
 un premier perçage (12-3) dans ledit moyen d'enveloppe et ayant une première et une seconde extrémité;
 un moyen (44) pour rendre étanche aux fluids ladite première extrémité dudit premier perçage;
 un second perçage (12-4) dans ledit moyen d'enveloppe ayant une première extrémité et une seconde extrémité;
 un assemblage de soupape d'arrêt (20) fixé dans ledit second perçage et permettant un écoulement à partir dudit premier perçage jusqu'au second perçage;
 un moyen de filtre (40) placé dans ledit premier perçage et relié de façon étanche audit assemblage de soupape d'arrêt;
 une conduite de retour (32) reliée audit premier moyen de perçage d'où l'huile revenant par l'intermédiaire de ladite conduite de retour entre dans ledit premier perçage et passe à travers une trajectoire d'écoulement comprenant en série ledit moyen de filtre, ledit assemblage de soupape d'arrêt et ledit second perçage pour fournir une lubrification audit moyen de compresseur.

2. Le moyen de compresseur de la revendication 1 dans lequel ladite trajectoire d'écoulement en aval dudit second perçage comprend en série un troisième perçage (12-7) dans ledit moyen d'enveloppe, un moyen d'électrovanne (50) et un quatrième perçage (12-8) dans ledit moyen d'enveloppe d'où ledit moyen d'électrovanne permet sélectivement un écoulement à travers ladite trajectoire d'écoulement allant dudit troisième perçage jusqu'au second perçage tandis que ledit assemblage de soupape d'arrêt empêche un écoulement allant dudit second perçage jusqu'au audit premier perçage.

3. Le moyen de compresseur de la revendication 1 dans lequel ledit assemblage de soupape d'arrêt comprend:
 une première portion (22-7) s'étendant dans ledit second perçage et fixée dans ce dernier;
 une seconde portion (22-10) s'étendant dans ledit premier perçage et adaptée pour recevoir ledit moyen de filtre sur cette dernière; et,
 une soupape d'arrêt (24) adaptée pour permettre seulement un écoulement allant de ladite seconde portion jusqu'à ladite première portion.

4. Le moyen de compresseur de la revendication 3 dans lequel ladite première portion est reçue par filetage dans ledit second perçage.

5. Le moyen de compresseur de la revendication 3 dans lequel ledit assemblage de soupape d'arrêt comprend en outre un moyen de siège de soupape (22-2) et ladite soupape d'arrêt est maintenue en place par un anneau de retenue (26) fixé dans ladite première portion.