Intensified corrosion inhibitor and method of use
Verstärktes Korrosionsschutzmittel und Verfahren zu seiner Verwendung
Inhibiteur de corrosion intensifié et méthode d’utilisation

Designated Contracting States:
DE DK FR GB NL

Priority: 05.08.1993 US 103064

Date of publication of application:
15.02.1995 Bulletin 1995/07

Proprietor: NALCO/EXXON ENERGY CHEMICALS L.P.
Sugarland, Texas (US)

Inventors:
• Williams, Dennis A.
 Houston, Texas 77062 (US)

• McDougall, Lee A.
 Houston, Texas 77096 (US)
• Looney, James R.
 Brady, Texas 76825 (US)

Representative: Sexton, Jane Helen et al
J.A. KEMP & CO.
14 South Square
Gray’s Inn
London WC1R 5LX (GB)

References cited:

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
BACKGROUND OF THE INVENTION

This invention relates generally to corrosion inhibitors and more specifically to the use of additives for extending the effectiveness of acid corrosion inhibitors, particularly in oil field acidizing operations.

DESCRIPTION OF THE PRIOR ART

Acids and acid solutions have long been used in the stimulation of oil wells, gas wells, water wells, and similar boreholes. Acid stimulation is performed in wells completed in subterranean formations. Acid stimulation is used in conjunction with hydraulic fracturing techniques and matrix acid stimulation techniques. In both acid fracturing and matrix acid stimulation, the well treating acid solutions, usually HCl, HF, or mixtures thereof, are pumped through the well tubular goods and injected into the formation where the acid attacks formation materials increasing its permeability to oil and/or gas.

In order to protect the equipment and tubular goods from the corrosive effects of the acid, the well treating acid almost always includes a corrosion inhibitor, frequently referred to as ACI’s. Such corrosion inhibitors include nitrogen containing compounds such as those described in H751, 4,028,628, acetylenic compounds as described in U.S. Patents 3,779,935, 4,552,672, 4,498,997, 4,444,668, and 4,522,668, and mixtures thereof.

Other components of acid corrosion inhibitors include aromatic solvents, alcohols (MeOH, IPA, butanol, etc.), organic sulfur compounds, terpenes, and surfactants (nonionic, cationic, anionic, or amphoteric).

Acid corrosion inhibitors also include arsenic compound (U.S. Patent 1,887,504) as an anodic inhibitor; phenyl ketones (U.S. Patent 5,120,471), alpha, beta -- unsaturated aldehydes (U.S. Patent 4,734,259), including derivatives of cinnamic aldehyde (U.S. Patent 3,589,860); and alkyl phenones (EP Appl. 0 276 679, EP Appl. 0 276 543, and U.S. Patent 5,013,483).

Recent developments have demonstrated the usefulness of acid corrosion inhibitor complexes derived from an ammonium quaternary compound and a metal ion as described in U.S. Patent No. 5,002,673.

In order to extend the effectiveness of the acid corrosion inhibitors, the literature suggests the use of additives, specifically metal salts of iodine and chlorine as disclosed in U.S. Patent Nos. 3,773,465, 4,871,024, and 4,997,040. U.S. Patent No. 3,773,465 discloses a number of metal salts of iodine and chlorine but states that cuprous iodide is more effective than the other compounds tested. It should also be noted that U.S. Patent 3,773,465 discloses that it is undesirable to generate free iodine along with CuI2 produced by in situ reaction since the degree of improvement is smaller;

U.S. Patent No. 4,871,024 discloses cuprous chloride as an extender for acid corrosion inhibitors when acidizing through high chrome alloy steel tubulars. U.S. Patent No. 4,997,040 discloses acid corrosion inhibitor extenders in the form of CuCl, HgCl2, SbCl3, and BiCl3 with the HgCl2 extenders being the most effective.

To summarize the state-of-the-art for the acid corrosion inhibitor extenders, all are in the form of ions (metal ions and Cl- and I- ions). One of the problems encountered in using the ionizable salts is that they are not compatible with organic based corrosion inhibitor formulations. The metal chlorides or iodide salts are not soluble in the organic liquids used in corrosion inhibitor formulations.

Another known ACI extender is formic acid, commonly used with amine and quaternary ammonium type ACI formulations. Also U.S. Patent No. 3,779,935 discloses the use of formamide as an extender for organic based inhibitors and is capable of being formulated into the ACI formation.

FR-A-1557060 discloses a method of reducing the susceptibility of a metal surface to attack by acid which comprises treating the surface of the metal with a solubilised iodine composition, which composition contains iodine in an amount of 0.001 to 1% and a surface active agent in a concentration of 0.002 to 1% by weight.

US-A-4029589 describes a process of inhibiting the corrosion of a metal by a liquid hydrocarbon product, which liquid hydrocarbon product has had added to it iodine, bromine or a complex of iodine or bromine. Preferably iodine and bromine are employed as complexes, for example as complexes of amines, carboxylic acids, alcohols, alkanolamines, ketones etc.

SUMMARY OF THE INVENTION

A corrosion inhibitor formulation of the present invention comprises the following components:

(a) an organic solvent other than water;
(b) from 10 to 50 wt% of an organic corrosion inhibitor dissolved or dispersed in the solvent said corrosion inhibitor being an acetylenic alcohol, quaternary ammonium compound, an unsaturated aldehyde or an alkynyl phenone;
In a preferred embodiment, the formulation will also include a surfactant for dispersing the inhibitor and iodine in the aqueous acid solution used in the oil field acidizing operations. The corrosion inhibitor formulation is introduced into the well treating acid at a concentration sufficient to coat the well tubulars and equipment. The concentration of the formulation in the acid solution should generally be sufficient to provide the acid solution with at least 0.05 wt% of the corrosion inhibitor (actives) and at least 0.001 wt% of the iodine. The upper limit of these actives will be controlled by economics. Generally speaking, from about 0.2 to 20 wt% of the formulation in the acid solution will provide satisfactory protection for the well tubulars.

The method of the present invention employs the formulation described above in the acidizing of wells. The formulation of the present invention features the use of elemental iodine as an extender or intensifier of the known acidizing corrosion inhibitors (i.e. acetylenic inhibitors, quaternary ammonium inhibitors (including metal complexes thereof), and cinnamaldehyde). Tests have shown that iodine not only is an effective extender, but can readily be incorporated in the formulation which is easily dispersed in the acid solution. Although the iodine is preferably incorporated in the ACI formulation, it can be added separately to the acid solution.

DESCRIPTION OF PREFERRED EMBODIMENTS

As indicated above, the formulation of the present invention comprises three principal compounds. Each of these compounds, as well as the acid solution in which they are used, are described below:

Aqueous Acid Solutions: Any of the known oil field acids may be used. These are referred to herein as "well treating acids" and include aqueous solutions of hydrochloric acid (HCl), hydrofluoric acid (HF), mixtures of HCl and HF (i.e. mud acid), acetic acid and formic acid. The most common acids are 3% HCl, 7-1/2% HCl, 15% HCl, 28% HCl, and blends of HCl and HF (mud acid). Mud acid is normally a blend of 6 to 12% of HCl and 1-1/2% to 6% HF.

Corrosion Inhibitors: The ACI's used in the formulation are acetylenic alcohol and quaternary ammonia compounds, unsaturated aldehydes and alkynol phenones. The known ACI's are described below:

1. Acetylenic alcohol: The acetylenic alcohols employed in the present invention may suitably include ethyl octynol, propargyl alcohol, hexynol and other acetylenic alcohols having the structural formula:

 \[R_3 \]
 \[\begin{array}{c}
 H - C - C - C - OH \\
 \end{array} \]
 \[\begin{array}{c}
 R_4 \\
 \end{array} \]

 where \(R_3 \) is selected from the group consisting of \(\text{CH}_2 \) and \(H \) and \(R_4 \) is selected from the group consisting of hydrogen, alkyl groups having 1 to 18 carbon atoms, naphthyl, phenyl, and alkyl substituted phenyls having 1 to 10 carbon atoms in the alkyl substituent. Examples of such alcohols include: methyl butanol, methyl pentylnol, hexynol, ethyl octynol, propargyl alcohol, benzyl butanol, naphthyl butanol, and the like. Acetylenic alcohols which have 3 to 10 carbon atoms are preferred.

2. Quaternary Compounds: The quaternary ammonium compounds (referred to as "quaternary" herein) employed in the present invention comprise aromatic nitrogen compounds which may be illustrated by alkyl pyridine-N-methyl chloride quaternary, alkyl pyridine-N-benzyl chloride quaternary, quinoline-N-methyl chloride quaternary, quinoline-N-benzyl chloride quaternary, quino-line-N-(chloro-benzyl chloride) quaternary, isoquinoline quaternaries, benzoquinoline quaternaries, chloromethyl naphthalene quaternaries and admixtures of such compounds, and the like. The quaternary compounds may also be coupled with a metal compound such as described in U.S. Patent Nos. 5,002,673; 5,089,153; 5,130,034; 5,200,096; and 5,209,859, the disclosures of which are incorporated herein by reference.

3. The alpha-, Beta- Unsaturated Aldehydes and Alkynolphenones:
Compounds of this class found to be useful as components of acid corrosion inhibitors comprise those listed in U.S. Patent 4,734,259 (Col. 3 and 4), and U.S. Patent 5,013,483 (Col. 2, 3, and 4). A particularly preferred aldehyde ACI is cinnamaldehyde ACI.
Extender: The extender for the above ACL's is iodine. Iodine is a bluish, black, lustrous solid. It sublimes at ambient temperatures to give a blue-violet gas with an irritating odor. Elemental iodine exhibits some metallic-like properties. It is readily soluble in some halogenated solvents such as chloroform; aromatic solvents such as benzene; glacial acetic acid; ethanol, methanol, isopropyl alcohol, carbon disulfide; glycerine; ether; and polar aprotic solvents such as dimethyl formamide. It is only slightly soluble in water (0.03 wt%), but can form soluble complexes (I$_2$, I$_3^-$, or I$_5^-$) with iodide salts such as KI. Iodine is further described in the Handbook of Chemistry and Physics, published by the Chemical Rubber Co., Cleveland, Ohio, and Advanced Inorganic Chemistry, Cotton & Wilkinson, InterScience Publishers, John Wiley & Sons, New York.

Solvent: The solvent used in the formulation is an organic liquid selected from polar aprotic solvents, aromatic solvents, terpenols, and alcohols. Solvent includes polar aprotic dimethyl formamide (DMF), dimethylsulfoxide (DMSO), dimethylacetamide (DMA), 1-methyl-2-pyrrolidone ("pyrrolidone"), tetramethylene sulfone ("sulfolane"), and mixtures thereof. The aprotic solvent (e.g. DMF, DMSO, DMA, pyrrolidone, and sulfolane) may be blended with alcohol and/or aromatic solvents. The aromatic solvents include heavy aromatic naphtha, xylene, toluene, and others as described in U.S. 4,498,997. Also included are alkynyl phenones (U.S. 5,013,483) and alpha-, beta- Unsaturated aldehydes (U.S. Patent 4,734,259). The alcohols include: methanol, ethanol (U.S. Patent 4,734,259), propanol, isopropanol, n-butanol, isobutanol, ethylene glycol, diethylene glycol, monobutyl ether of ethylene glycol, glycerine and the like.

Other Additives: It is preferred but not essential that the formulation include a dispersant (for metal ion/quaternary complexes), a surfactant, and a co-extender such as formic acid.

In order to disperse the components of the formulation in aqueous acid, it has been found desirable to employ an organic amine (including aromatic amines, aliphatic amines, and heterocyclic amines) dispersant. The preferred dispersants are aminophenol, aniline, chloroaniline, toluidine, diphenyl amine, pico-line, alkyl pyridine, or n-octylamine.

The surfactant serves to wet the tubular goods to permit filming of the acid corrosion inhibitor components. The preferred surfactants are the nonionics having hydrophiliphilic balance (HLB) numbers of 1 to 18, preferably 3 to 16 such as laurates, stearates, and oleates. Nonionic surfactants include the polyoxyethylene surfactants, (such as ethoxylated alkyl phenols, ethoxylated aliphatic alcohols), poly-ethylen glycol esters of fatty, resin, and tall oil acids. Examples of such surfactants are poly-oxylethylene alkyl phenol wherein the alkyl group is linear or branched C$_5$-C$_{12}$ and contains above about 60 wt % poly oxyethylene. Octyl and nonyl phenols containing 9 to 15 moles ethylene oxide per mole hydrophobe are the preferred ethoxylated alkyl phenol surfactants.

The polyoxyethylene ester of fatty acids include the mono and dioleates and sesquioleates wherein the molecular weight of the esterified polyethylene glycol is between about 200 and 1,000.

Other surfactants which are also useful include cationic amines, quaternary amines, amphoterics, anionic sulfates, anionic sulfonates, and alkoxylated alkylphenoxy resins. Polyoxyethylene sorbitan oleates are also useable.

In practice, the nonionics may be blended to provide the desired properties. A particularly useful surfactant is a blend of polyethylene glycol esters of fatty acids and ethoxylated alkylphenols.

The formic acid compound may be selected from the esters and amides of formic acid. The formic acid compound may be from the group consisting of formate esters of the structure:

```
HCOOR
```

where R is a monoaryl group, an alkyl group having 1 to 6 carbon atoms, cyclo-alkyl residues having 5 to 6 carbon atoms, alkenyl and alkynyl groups having 2 to 6 carbon atoms which may contain functional groupings selected from --C--OH, --OH, ==C==O, --COOH, --SH, and NH$_2$ and formamides of the structure:

```
\[
\text{HCON} \quad \text{R}_2
\]
```

where R$_2$ is independently hydrogen, a phenyl group, an alkyl group having 1 to 6 carbon atoms, cyclo-alkyl residues having 5 to 6 carbon atoms, alkenyl and alkynyl groups having 2 to 6 carbon atoms which may contain functional groupings selected from --COH, --OH, ==C==O, --COOH, --SH, and NH$_2$. Examples of the formic acid compound are: methyl formate, ethyl formate, benzyl formate, other alkyl and aryl formates, and the like. Other examples include formamide,
dimethyl formamide, formanilide, and the like. Mixtures of the esters and mixtures of the amides may be used.

Preparation of the Formulation: The preparation of the formulation will depend on the ACI used with the iodine extender. Representative formulations are described below.

With the acetylenic and quaternary ACI’s, the components (i.e. corrosion inhibitor, iodine extender, and other optional additives such as surfactant, formic acid, and dispersants) may be blended into an organic solvent to form the formulation.

With metal ion/quaternary complexes the preparation of the formulation is somewhat more involved, because of the necessity to produce the complex. The quaternary and metal salt may be complexed in a suitable solvent followed by the addition of the extenders and other optional additives. Alternatively, the iodine may be first dissolved in the solvent followed by the complexing step.

Regardless of the method of preparation, the formulation should have the following composition (wt %) ranges, which are interchangeable:

<table>
<thead>
<tr>
<th>Component</th>
<th>Broad Range</th>
<th>Preferred Range</th>
<th>Best Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion Inhibitor</td>
<td>10-50</td>
<td>20-40</td>
<td>75-35</td>
</tr>
<tr>
<td>Iodine</td>
<td>0.5-10</td>
<td>1-5</td>
<td>1-3</td>
</tr>
<tr>
<td>Solvent (^1)</td>
<td>5-90</td>
<td>5-80</td>
<td>10-60</td>
</tr>
<tr>
<td>Other Additives:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>formic acid</td>
<td>0-40</td>
<td>5-30</td>
<td>10-20</td>
</tr>
<tr>
<td>surfactant</td>
<td>0-40</td>
<td>5-30</td>
<td>10-25</td>
</tr>
<tr>
<td>dispersant</td>
<td>0-20</td>
<td>0-10</td>
<td>1-5</td>
</tr>
</tbody>
</table>

\(^1\) Solvent can be provided by certain surfactants and dispersants, such that a single liquid may have a dual function.

An alternative preparation procedure is to dissolve certain components in one solvent and other components in a separate batch, using the same or different solvent. For example, the ACI package can be prepared by dissolving the ACI and certain additives, whereas the iodine alone or with other additives can be dissolved in a second package. The contents of the two packages can be added to the acid solution at the well site. Iodine may also be added directly to the acid solution.

Operation: In operation, the formulation comprising the three principal components (preferably with the surfactant) may be premixed, prepackaged, and transported to the well site ready for use.

The concentration of the formulation in the well treating acid, of course, should be sufficient to provide protection to the metal (e.g. steel or chrome alloys) tubulars against corrosion. The concentration of the formulation will depend on the temperature of the well, the exposure time of the tubulars to the acid solution, the type of acid, and type of metal alloy. As mentioned above, the concentration of the ACI (actives) in the acid solution should be between 0.1 to 20 wt %, preferably 0.1 to 10 wt %, and more preferably 0.1 to 5 wt %.

EXPERIMENTS

In order to demonstrate the effectiveness of the acid corrosion inhibitors (ACI) of the present invention, a formulation sample was prepared using the following components:

<table>
<thead>
<tr>
<th>ACI Components</th>
<th>Concentration (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary Compound(^1)</td>
<td>36</td>
</tr>
<tr>
<td>Surfactant:</td>
<td>16</td>
</tr>
<tr>
<td>Solvent:</td>
<td>60-62</td>
</tr>
<tr>
<td>Iodine:</td>
<td>0-2</td>
</tr>
</tbody>
</table>

\(^1\) Quinoline-N-benzyl chloride quaternary

The above components were mixed in the solvent to provide the indicated concentrations. Additional sample formulations were prepared without any extender or with KI as the extender.

Each sample formulation was added to an aqueous acid solution. Corrosion tests using N-80 tubing steel coupons and CR 2235 (API Specification Grade Duplex containing 21.9 wt % chromium) coupons were run at the following conditions:
The ACI formulation (actives 36 wt %) concentration in the acid solution was 1 vol %.
The test data are presented on Tables I, II, and III with corrosion rate in pound metal loss/ft².

TABLE I

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Formulation</th>
<th>Acid</th>
<th>Corrosion Rate</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACI with I₂</td>
<td>2 wt% I₂</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ACI</td>
<td>Mud¹</td>
<td>0.033</td>
<td>.026 g. KI added directly to acid</td>
</tr>
<tr>
<td>3</td>
<td>ACI</td>
<td>Mud¹</td>
<td>0.073</td>
<td>0.02 g. I₂ added directly to acid solution</td>
</tr>
<tr>
<td>4</td>
<td>ACI</td>
<td>Mud¹</td>
<td>0.076</td>
<td>No Iodine</td>
</tr>
<tr>
<td>5</td>
<td>ACI with</td>
<td>2.6 wt% KI</td>
<td>0.045</td>
<td>KI not dispersed</td>
</tr>
</tbody>
</table>

¹ Mud acid - 12/3% HCl/HF

Table I data reveals that I₂ in the ACI formulation was effective, but I₂ added directly to the acid solution (Test No. 3) was not an effective extender. Conversely the direct addition of KI to the acid solution (Test No. 2) was effective, whereas KI added to the ACI formulation (Test No. 5) was not effective.

Additional corrosion coupon tests were carried out comparing the performance of I₂ (2 wt%) and KI (2.6 wt%) in the ACI formulations. Table II presents these data.

TABLE II

<table>
<thead>
<tr>
<th>Other Test No.</th>
<th>Inhibitor</th>
<th>Conc. Vol.%</th>
<th>Acid</th>
<th>Coupon</th>
<th>Corrosion Rate</th>
<th>Formic Acid (Vol.%) in Acid Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>ACI w/I₂</td>
<td>1.0</td>
<td>15% HCl</td>
<td>Cr 13</td>
<td>0.018</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>ACI</td>
<td>1.0</td>
<td>15% HCl</td>
<td>Cr 13</td>
<td>0.041</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>ACI w/I₂</td>
<td>1.0</td>
<td>Mud</td>
<td>Cr 13</td>
<td>0.048</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>ACI</td>
<td>1.0</td>
<td>Mud</td>
<td>Cr 13</td>
<td>0.064</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>ACI w/I₂</td>
<td>2.0</td>
<td>28% HCl</td>
<td>Cr 13</td>
<td>0.029</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>ACI</td>
<td>2.0</td>
<td>28% HCl</td>
<td>Cr 13</td>
<td>0.030</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>ACI w/KI</td>
<td>1.0</td>
<td>15% HCl</td>
<td>N80</td>
<td>0.023¹</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>ACI</td>
<td>1.0</td>
<td>15% HCl</td>
<td>N80</td>
<td>0.029</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>ACI w/KI</td>
<td>1.0</td>
<td>15% HCl</td>
<td>N8</td>
<td>0.028¹</td>
<td>2</td>
</tr>
</tbody>
</table>

¹ Formulation with KI was unstable.

The Table I and Table II data demonstrate that the iodine salts are not effective corrosion inhibitor intensifiers when applied in a formulation. (Note the results of Tests 12 and 14 were achieved only after agitation of the unstable formulation.) This means that the corrosion inhibitor and intensifier, for best results, must be added separately to the acid solution. On the other hand, iodine is soluble in the corrosion inhibitor formulation, permitting all of the components to be prepackaged together and added in one step. This is a significant advantage not only in the logistics of preparing, storing and transporting the ACI package, but also ensuring that the proper relative concentration of the active com-
ponents are added to the acid solution.

The Table II data further demonstrate the effectiveness of I₂ with coextenders (formic acid). Note that the ACI with I₂ and formic acid performed better than the ACI with only formic acid.

Additional tests were carried out using ACI (with 2 wt% I₂) in various acid systems comparing corrosion rates on Cr 13 and N80. These data are presented in Table III.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Acid</th>
<th>Corrosion Inhibitor Formulation</th>
<th>ACI Conc. Vol.% in Acid</th>
<th>Corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15% HCl</td>
<td>ACI w/I₂</td>
<td>0.2</td>
<td>N80</td>
</tr>
<tr>
<td>16</td>
<td>15% HCl</td>
<td>ACI w/I₂</td>
<td>0.3</td>
<td>N80</td>
</tr>
<tr>
<td>17</td>
<td>Mud</td>
<td>ACI w/I₂</td>
<td>0.1</td>
<td>N80</td>
</tr>
<tr>
<td>18</td>
<td>Mud</td>
<td>ACI w/I₂</td>
<td>0.2</td>
<td>N80</td>
</tr>
<tr>
<td>19</td>
<td>25% HCl</td>
<td>ACI w/I₂</td>
<td>0.5</td>
<td>N80</td>
</tr>
<tr>
<td>20</td>
<td>15% HCl</td>
<td>ACI w/I₂</td>
<td>0.3</td>
<td>Cr 13</td>
</tr>
<tr>
<td>21</td>
<td>Mud</td>
<td>ACI w/I₂</td>
<td>0.2</td>
<td>Cr 13</td>
</tr>
<tr>
<td>22</td>
<td>Mud</td>
<td>ACI w/I₂</td>
<td>0.4</td>
<td>Cr 13</td>
</tr>
</tbody>
</table>

The Table III data demonstrate the effectiveness of the I₂ extender in the ACI formulated for protecting chrome and steel alloy tubulars in HCl and mud acid systems.

Additional experiments were carried out to compare three modes of adding the I₂ to the acid solution: (1) I₂ in blend with ACI formulation, (2) direct addition of I₂ into the acid, and (3) I₂ in solvent.

The ACI formulation used in these experiments had the following compositions:

<table>
<thead>
<tr>
<th>ACI Samples (wt%)</th>
<th>ACI-1</th>
<th>ACI-2</th>
<th>ACI-3</th>
<th>ACI-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary Compound</td>
<td>9¹</td>
<td>9²</td>
<td>9.6³</td>
<td>9.6⁴</td>
</tr>
<tr>
<td>Solvent</td>
<td>56</td>
<td>56</td>
<td>55.4</td>
<td>55.4</td>
</tr>
<tr>
<td>Surfactant</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Acetylenic Alcohol</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

¹Quinoline/methyl Naphthyl Chloride Quaternary
²Quinoline/Benzyl Chloride Quaternary Ammonium
³Calcium/Quinoline/Methyl Naphthyl Chloride Quaternary ammonium
⁴Calcium/Quinoline/Benzyl Chloride Quaternary Ammonium

Corrosion coupon tests using the ACI samples of TABLES IV and VI with the results presented in TABLES V and VII were carried out using 15% HCl on N-80 steel coupons exposed for 6 hours at 250°F.

<table>
<thead>
<tr>
<th>Test Mode</th>
<th>Extender (Wt %) of ACI Formul.</th>
<th>Corrosion Rate (lb/sq.ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACI-1</td>
<td>ACI-2</td>
</tr>
<tr>
<td>No I₂</td>
<td></td>
<td>0.024</td>
</tr>
<tr>
<td>I₂ in ACI Blend</td>
<td>2</td>
<td>0.009</td>
</tr>
<tr>
<td>I₂ added directly to Acid¹</td>
<td>2</td>
<td>0.009</td>
</tr>
</tbody>
</table>

¹ACI separately added
TABLE V (continued)

<table>
<thead>
<tr>
<th>Test Mode</th>
<th>Extender (Wt %) of ACI Formul.</th>
<th>Corrosion Rate (lb/sq.ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACI-1</td>
<td>ACI-2</td>
</tr>
<tr>
<td>I₂ in IPA added to Acid¹</td>
<td>2</td>
<td>0.008</td>
</tr>
<tr>
<td>KI added directly to Acid¹</td>
<td>2.6</td>
<td>0.008</td>
</tr>
</tbody>
</table>

¹ACI separately added

The ACI samples of TABLE IV included acetylenic alcohol. Additional ACI samples were prepared that were acetylenic alcohol free. These samples had the composition shown in TABLE VI.

TABLE VI

<table>
<thead>
<tr>
<th>Samples</th>
<th>ACI-5</th>
<th>ACI-6</th>
<th>ACI-7</th>
<th>ACI-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary Compound</td>
<td>36¹</td>
<td>36²</td>
<td>36.6³</td>
<td>36.6⁴</td>
</tr>
<tr>
<td>Solvent</td>
<td>54</td>
<td>54</td>
<td>51.4</td>
<td>51.4</td>
</tr>
<tr>
<td>Surfactant</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

¹Quinoline/methyl Naphthyl Chloride Quaternary
²Quinoline/Benzyl Chloride Quaternary Ammonium
³Calcium/Quinoline/Methyl Naphthyl Chloride Quaternary ammonium
⁴Calcium/Quinoline/Benzyl Chloride Quaternary Ammonium

TABLE VII

<table>
<thead>
<tr>
<th>Test Mode</th>
<th>Extender (Wt %) of ACI Formulation</th>
<th>Corrosion Rate (lb./sq.ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACI-5</td>
<td>ACI-6</td>
</tr>
<tr>
<td>No I₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂ in ACI Blend</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>I₂ added directly to acid¹</td>
<td>2</td>
<td>0.024</td>
</tr>
<tr>
<td>I₂ in IPA adduct</td>
<td>2</td>
<td>0.018</td>
</tr>
<tr>
<td>KI added directly to acid¹</td>
<td>2.6</td>
<td>0.017</td>
</tr>
</tbody>
</table>

¹ACI separately added

The data of TABLES V and VII reveal that the iodine performed about the same regardless of mode of addition to the acid. Specifically the iodine improved the performance of the ACI without any I and performed generally as well (within experimental error) as the ACI's and KI in the acid.

The data further demonstrate the effectiveness of the I₂ extender, either alone or with other extenders (e.g. formic acid) in a variety of formulations and under a variety of conditions.

Claims

1. A corrosion inhibitor formulation suitable for use in an aqueous acid solution, said formulation comprising:

(a) a solvent which is an organic liquid other than water;
(b) from 10 to 50 wt% of an organic corrosion inhibitor dissolved in the solvent said corrosion inhibitor being an acetylenic alcohol, quaternary ammonium compound, an unsaturated aldehyde or an alkenylphenone; and
(c) from 0.5 to 10 wt% of iodine dissolved or dispersed in the solvent.

2. The formulation of claim 1 further including an effective amount of a surfactant for dispersing the formulation in the acid solution.

3. The formulation of claim 1 or 2 further including from 0 to 30 wt% of formic acid.

4. The formulation of any one of claims 1 to 3 wherein the solvent comprises an alcohol, aromatic hydrocarbon, aprotic solvent, or mixture thereof.

5. The formulation of claim 5 wherein the corrosion inhibitor is an ammonium quaternary compound.

6. An inhibited acidizing solution suitable for contacting metal, comprising:

(a) an aqueous solution of an acid selected from HCl, HF, mixtures of HCl and HF, acetic acid and formic acid; and
(b) the formulation of any one of claims 1 to 5 in a concentration to provide the acid solution with from 0.1 to 20 wt of the corrosion inhibitor and from 0.001 to 1.0 wt% of the iodine.

7. The solution of claim 6 wherein the acid solution is HCl, HF, or a mixture thereof.

8. A method of acidizing a subterranean formation wherein a corrosion inhibitor, being an acetylenic alcohol, quaternary ammonium compound, an unsaturated aldehyde or an alkenyl phenone containing an extender is dissolved or dispersed in an aqueous solution of an acid selected from HCl, HF, mixtures of HCl and HF, acetic acid and formic acid and is pumped down a metal pipe and into the formation, characterized in that the extender is an effective amount of iodine.

9. The method of claim 8 wherein the iodine is dissolved or dispersed in the aqueous acid solution by first dissolving the iodine in a nonaqueous solvent and then dissolving or dispersing the solvent in the aqueous acid solution.

10. The method of claim 9 wherein the nonaqueous solvent containing the iodine further includes an effective amount of a surfactant for dispersing the solvent and iodine in the acid solution.

11. A method of acidizing a subterranean formation penetrated by a well having tubing therein which comprises:

(a) injecting through the tubing and into the formation an aqueous solution of an acid selected from HCl, HF, mixtures of HCl and HF, acetic acid and formic acid; and
(b) introducing into the aqueous acid solution an effective amount of a formulation of any one of claims 1 to 5 to protect the tubing from corrosion.

Patentansprüche

1. Zur Verwendung in einer wäßrigen Lösung einer Säure geeignete Korrosionsschutzmittelformulierung, die

(a) ein Lösungsmittel, das eine von Wasser verschiedene organische Flüssigkeit ist,
(b) 10 bis 50 Gew.-% eines organischen Korrosionsschutzmittels, das in dem Lösungsmittel gelöst ist, wobei das Korrosionsschutzmittel ein acetylenischer Alkohol, eine quartäre Ammoniumverbindung, ein ungesättigter Aldehyd oder ein Alkenylphenon ist, und
(c) 0,5 bis 10 Gew.-% in dem Lösungsmittel gelöstes oder dispergiertes Iod

umfaßt.

2. Formulierung nach Anspruch 1, die außerdem eine effektive Menge Tensid zum Dispergieren der Formulierung in der Säurelösung umfaßt.
3. Formulierung nach Anspruch 1 oder 2, die außerdem 0 bis 30 Gew.% Ameisensäure einschließt.

4. Formulierung nach einem der Ansprüche 1 bis 3, bei der das Lösungsmittel einen Alkohol, aromatischen Kohlenwasserstoff, aprotisches Lösungsmittel oder eine Mischung derselben umfaßt.

5. Formulierung nach Anspruch 4, bei der das Korrosionsschutzmittel eine quartäre Ammoniumverbindung ist.

6. Korrosionsgeschützte Ansäuерungslosung, die zum Kontaktieren von Metall geeignet ist und
 (a) eine wäßrige Lösung einer Säure ausgewählt aus HCl, HF, Mischungen aus HCl und HF, Essigsäure und Ameisensäure und
 (b) die Formulierung gemäß einem der Ansprüche 1 bis 5 in einer Konzentration umfaßt, um die Säurelösung mit 0,1 bis 20 Gew.% Korrosionsschutzmittel und 0,001 bis 1,0 Gew.% lod auszustatten.

7. Lösung nach Anspruch 6, bei der die Säurelösung HCl, HF oder eine Mischung derselben ist.

8. Verfahren zum Ansäuern einer unterirdischen Formation, bei dem ein Korrosionsschutzmittel, das ein acetylenischer Alkohol, eine quartäre Ammoniumverbindung, ein ungesättigter Aldehyde oder ein Alkenylphenol ist, wobei ein Erweiterungsmittel enthalten ist, in einer wäßrigen Lösung einer Säure ausgewählt aus HCl, HF, Mischungen aus HCl und HF, Essigsäure und Ameisensäure aufgelöst oder dispergiert wird und durch ein Metallrohr hinein und in die Formation hineingepumpt wird, dadurch gekennzeichnet, daß das Erweiterungsmittel eine effektive Menge lod ist.

9. Verfahren nach Anspruch 8, bei dem das lod in der wäßrigen Säurelösung aufgelöst oder dispergiert wird, indem zuerst das lod in einem nicht-wäßrigen Lösungsmittel aufgelöst und dann das Lösungsmittel in der wäßrigen Säurelösung aufgelöst oder dispergiert wird.

10. Verfahren nach Anspruch 9, bei dem das lod enthaltende nicht-wäßrige Lösungsmittel außerdem eine effektive Menge Tensid zum Dispergieren von Lösungsmittel und lod in der Säurelösung einschließt.

11. Verfahren zum Ansäuern einer unterirdischen Formation, in die ein Bohrloch eindringt, in dem sich Rohrmaterial befindet, bei dem
 (a) durch das Rohrmaterial hindurch und in die Formation hinein eine wäßrige Lösung einer Säure ausgewählt aus HCl, HF, Mischungen aus HCl und HF, Essigsäure und Ameisensäure injiziert wird und
 (b) in die wäßrige Säurelösung eine effektive Menge einer Formulierung gemäß einem der Ansprüche 1 bis 5 eingebracht wird, um das Rohrmaterial vor Korrosion zu schützen.

Revidications

1. Formulation d'inhibiteur de corrosion apte à l'utilisation dans une solution aqueuse d'un acide, ladite formulation comprenant :
 (a) un solvant qui est un liquide organique autre que l'eau ;
 (b) 10 à 50 % en poids d'un inhibiteur organique de corrosion dissous dans le solvant, ledit inhibiteur de corrosion étant un alcool acétyléniqne, un composé d'ammonium quaternaire, un aldéhyde insaturé ou un alcénylnphène ; et
 (c) 0,5 à 10 % en poids d'iode dissous ou dispersés dans le solvant.

2. Formulation suivant la revendication 1, comprenant en outre une quantité efficace d'un surfactant pour disperser la formulation dans la solution d'acide.

3. Formulation suivant la revendication 1 ou 2, comprenant en outre une quantité de 0 à 30 % en poids d'acide formique.

4. Formulation suivant l'une quelconque des revendications 1 à 3, dans laquelle le solvant comprend un alcool, un hydrocarbure aromatique, un solvant aprotique ou un de leurs mélanges.
5. Formulation suivant la revendication 5, dans laquelle l'inhibiteur de corrosion est un composé d'ammonium quaternaire.

6. Solution acidifiante inhibée apte à la mise en contact avec un métal, comprenant :

 (a) une solution aqueuse d'un acide choisi entre HCl, HF, des mélanges de HCl et HF, l'acide acétique et l'acide formique ; et
 (b) la formulation suivant l'une quelconque des revendications 1 à 5 à une concentration permettant de fournir à la solution d'acide une quantité de 0,1 à 20 % en poids de l'inhibiteur de corrosion et une quantité de 0,001 à 1,0 % en poids de l'iode.

7. Solution suivant la revendication 6, dans laquelle la solution d'acide consiste en HCl, HF ou un de leurs mélanges.

8. Procédé pour acidifier une formation souterraine, dans lequel un inhibiteur de corrosion, qui consiste en un alcool acétylénique, un composé d'ammonium quaternaire, un aldéhyde insaturé ou une alcénylphénone contenant un agent d'extension, est dissous ou dispersé dans une solution aqueuse d'un acide choisi entre HCl, HF, des mélanges de HCl et HF, l'acide acétique et l'acide formique et est descendu par pompage dans une canalisation métallique et à l'intérieur de la formation, caractérisé en ce que l'agent d'extension consiste en une quantité efficace d'iode.

9. Procédé suivant la revendication 8, dans lequel l'iode est dissous ou dispersé dans la solution aqueuse d'acide en dissolvant tout d'abord l'iode dans un solvant non aqueux, puis en dissolvant ou dispersant le solvant dans la solution aqueuse d'acide.

10. Procédé suivant la revendication 9, dans lequel le solvant non aqueux contenant l'iode renferme en outre une quantité efficace d'un surfactant pour disperser le solvant et l'iode dans la solution d'acide.

11. Procédé pour acidifier une formation souterraine dans laquelle pénètre un puits renfermant un tube, qui comprend :

 (a) l'injection à travers le tube et dans la formation d'une solution aqueuse d'un acide choisi entre HCl, HF, des mélanges de HCl et HF, l'acide acétique et l'acide formique ; et
 (b) l'introduction dans la solution aqueuse d'acide d'une quantité efficace d'une formulation suivant l'une quelconque des revendications 1 à 5 pour protéger le tube contre la corrosion.