EUROPEAN PATENT SPECIFICATION

METHODS AND COMPOSITIONS FOR MONITORING CELLULAR PROCESSING OF BETA-AMYLOID PRECURSOR PROTEIN

Verfahren und Zusammensetzungen zur Beobachtung der zellulären Verarbeitung von beta-amyloid-precursorproteinen

Procédés et composition de contrôle du traitement cellulaire de la protéine précurseur beta-amyloïde

(54) References cited:

- Cell, Volume 57, issued 07 April 1989, WEIDEMANN et al., "Identification, Biogenesis, and Localization of Precursors of Alzheimer’s Disease A4 Amyloid Protein", pages 115-126, especially see Summary on page 115 and page 121 paragraph bridging first and second columns.
- Proceedings of the National Academy of Science USA, Volume 86, issued August 1989, PALMERT et al., "The Beta-Amyloid Protein Precursor of Alzheimer Disease has Soluble Derivatives Found in Human Brain and Cerebrospinal Fluid", pages 6338-6342, especially see page 6339, second column, first full paragraph.

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Biochemical and Biophysical Research Communications, Volume 174, No. 2, issued 31 January 1991, Abraham et al., "A Calcium-Activated Protease from Alzheimer’s Brain Cleaves at the N-Terminus of the Amyloid Beta-Protein", see page 790-796, especially see page 791, first full paragraph and Figure 4 on page 794.
Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates generally to methods and compositions for monitoring the processing of β-amyloid precursor protein. More particularly, the present invention relates to the use of such methods and compositions for the diagnosis, prognosis, and monitoring response to therapy of Alzheimer’s disease, and for screening and evaluation of potential drugs for the treatment of Alzheimer’s disease.

[0002] Alzheimer’s disease is characterized by the presence of numerous amyloid plaques and neurofibrillary tangles (highly insoluble protein aggregates) present in the brains of Alzheimer’s disease patients, particularly in those regions involved with memory and cognition. While in the past there was significant scientific debate over whether the plaques and tangles are a cause or are merely the result of Alzheimer’s disease, recent discoveries indicate that amyloid plaque is a causative precursor or factor. In particular, it has been discovered that the production of β-amyloid peptide, a major constituent of the amyloid plaque, can result from mutations in the gene encoding amyloid precursor protein, a protein which when normally processed will not produce the β-amyloid peptide. The identification of mutations in the amyloid precursor protein gene which cause familial, early onset Alzheimer’s disease is the strongest evidence that amyloid metabolism is the central event in the pathogenic process underlying the disease. Four reported disease-causing mutations include with respect to the 770 isoform, valine717 to isoleucine (Goate et al. (1991) Nature 349:704-706), valine717 to glycine (Chartier Harlan et al. (1991) Nature 353:844-846), valine717 to phenylalanine (Murrell et al. (1991) Science 254:97-99) and with respect to the 695 isoform, a double mutation changing lysine 595 methionine 596 to asparagine 595-leucine 596 (Mullan et al. (1991) Science 254:97-99) and with respect to the 695 isoform, a double mutation changing lysine595-methionine596 to asparagine595-leucine596 (Mullan et al. (1992) Nature Genet. 1:345-347). Moreover, β-amyloid peptide is toxic to brain neurons, and neuronal cell death is associated with the disease.

[0003] Thus, the ability to monitor cellular processing of the amyloid precursor protein would be of significant value in the diagnosis, prognosis, and therapeutic supervision of Alzheimer’s disease. In particular, it would be desirable to identify minimally invasive procedures for screening and evaluating detectable diagnostic markers in readily obtainable patient samples, such as serum, cerebrospinal fluid (CSF), and the like.

[0004] A number of potential diagnostic markers for Alzheimer’s disease have been proposed. Of particular interest to the present invention are certain fragments of the amyloid precursor protein, including carboxy-terminal fragments (such as the β-amyloid peptide itself and fragments thereof), and amino-terminal fragments (such as certain 25 kD, 105 kD, and 125 kD fragments). As yet, none of the proposed markers has proved to be definitive for the antemortem diagnosis or monitoring of Alzheimer’s disease.

[0005] Thus, it would be desirable to identify additional and alternative diagnostic markers for Alzheimer's disease. Such markers should be useful by themselves and/or in combination with other diagnostic markers and procedures. Preferably, the diagnostic markers would be detectable in body fluids, such as CSF, blood, plasma, serum, urine, tissue, and the like, so that minimally invasive diagnostic procedures can be utilized.

[0006] Of further interest to the present invention are in vitro systems and methods for screening candidate drugs for the ability to inhibit or prevent the production of β-amyloid plaque. It would be desirable to provide methods and systems for screening test compounds for the ability to inhibit or prevent the conversion of amyloid precursor protein to β-amyloid peptide. In particular, it would be desirable to base such methods and systems on metabolic pathways which have been found to be involved in such conversion, where the test compound would be able to interrupt or interfere with the metabolic pathway which leads to conversion. Such methods and systems should be rapid, economical, and suitable for screening large numbers of test compounds.

2. Description of the Background Art

[0008] Golde et al. (1992) Science 255:728-730, pre-
pared a series of deletion mutants of amyloid precursor protein and observed a single cleavage site within the β-amyloid peptide region. Based on this observation, it was postulated that β-amyloid peptide formation does not involve a secretory pathway. Estus et al. (1992) Science 255:726-728, teaches that the two largest carboxy-terminal proteolytic fragments of amyloid precursor protein found in brain cells contain the entire β-amyloid peptide region.

[0009] PCT application WO 92/00521 describes methods for evaluating Alzheimer's disease based on measuring the amounts of certain 25 kD, 105 kD, and 125 kD soluble derivatives of amyloid precursor protein in a patient's cerebrospinal fluid. Fig. 3 of WO 92/00521 suggests that cleavage of amyloid precursor protein may occur adjacent to the amino-terminus of β-amyloid peptide to produce a soluble amino-terminal fragment, but no evidence or discussion of such cleavage is presented in the application. Kennedy et al. (1992) Neurodegeneration 1:59-64, present data for a form of secreted β-amyloid peptide, wherein ATF-βAPP, which was characterized by its reactivity with antibodies to residues 527-540 of βAPP and the lack of reactivity with antibodies to the first fifteen residues of βAPP. No direct evidence is provided to suggest the cleavage site or identity of the carboxy-terminus of the βAPP form. PCT application WO 91/16628 describes methods for diagnosing disease based on detection of amyloid precursor proteins and fragments thereof utilizing antibodies to protease nexin-2 or amyloid precursor protein.

[0011] The present invention provides a method for monitoring the processing of β-amyloid precursor protein (βAPP) in cells comprising specifically detecting a soluble amino-terminal fragment of β-amyloid precursor protein (ATF-βAPP) secreted from the cells, wherein the amino acid sequence of the ATF-βAPP extends from the amino-terminus of βAPP to the amino-terminus of β-amyloid peptide, wherein ATF-βAPP is distinguished from other cleaved forms of βAPP which may be present.

[0012] The ATF-βAPP may be detected by a technique selected from the group consisting of (1) exposure to a substance which specifically binds to an epitope of the ATF-βAPP which terminates in a C-terminal residue which has been exposed by the cleavage of β-amyloid peptide from βAPP, and (2) two-dimensional gel electrophoresis of βAPP fragments secreted from the cells followed by exposure of the electrophoresed fragments to a substance which is cross-reactive with βAPP fragments.

[0013] The invention also provides a method for detecting a secreted amino-terminal fragment of β-amyloid precursor protein (ATF-βAPP) resulting from cleavage of βAPP at the amino-terminus of β-amyloid peptide (βAP) in a biological sample, the method comprising:

1. exposing the sample to a substance which binds specifically to a C-terminal region on the secreted ATF-βAPP;
2. detecting binding between the substance and the secreted fragment.

[0014] The substance is preferably an antibody specific for the C-terminal region including a C-terminal residue exposed by the cleavage of the β-amyloid peptide from βAPP, optionally wherein the βAPP is isoform 695, 751 or 770.

[0015] In preferred embodiments the C-terminal residue of ATF-βAPP is methionine\(^{596}\) or leucine\(^{596}\). The antibody may be raised against a peptide comprising residues 591-596 of βAPP with residue\(^{596}\) being exposed.

[0016] The invention also provides a method for determining the presence of a secreted amino-terminal fragment of β-amyloid precursor protein (ATF-βAPP) in a biological sample, the method comprising:

1. exposing the sample to an antibody which binds specifically to an epitope at the carboxy-terminal end of a fragment of βAPP, optionally wherein the βAPP is isoform 695, 751 or 770, having at its carboxy-terminus, methionine, which antibody is substantially free of cross-reactivity with other fragments of βAPP having amino acids beyond methionine; and
2. detecting binding between the substance and the secreted fragment, preferably wherein the antibody had been raised against a peptide comprising residues 591-596 of βAPP with residue\(^{596}\) being exposed.

[0017] In preferred embodiments the ATF-βAPP is detected in a patient sample or the biological sample is a patient sample. In particular, the patient sample may be cerebrospinal fluid.

[0018] The ATF-βAPP may be detected in conditioned medium from a cell culture or the biological sample may be conditioned medium from a cell line.

[0019] The invention further provides an in vitro method of screening compounds to identify β-amyloid production inhibitors, the method comprising:

(a) culturing cells under conditions which result in a secretion of a soluble amino-terminal fragment of β-amyloid precursor protein (ATF-βAPP) wherein the amino acid sequence of the soluble ATF-βAPP extends from the amino-terminus of βAPP to the amino-terminus of β-amyloid peptide;
(b) exposing the cultured cells to a test compound; and
(c) detecting an amount of the soluble ATF-βAPP;
whereby a decrease in the amount of the soluble ATF-βAPP as compared to the amount of soluble ATF-βAPP from cells not exposed to the compound indicates that the compound is a β-amyloid production inhibitor.

[0020] The cells are preferably cultured human fetal brain cells.

[0021] The test compound may be exposed at a concentration from 1 nM to 1 mM. The test compound is preferably a small molecule or a biological polymer.

[0022] In certain embodiments the ATF-βAPP has a carboxy-terminus at methionine596, optionally methionine652 or methionine671. In other embodiments the ATF-βAPP has a carboxy-terminus at leucine596, optionally leucine652 or leucine671.

[0023] The invention also provides an antibody composition comprising antibody molecules that specifically recognize an amino-terminal fragment of β-amyloid precursor protein (ATF-βAPP) which is cleaved at the amino-terminus of β-amyloid peptide, but which antibody molecules do not specifically recognize a secreted fragment of βAPP whose sequence extends into the sequence of β-amyloid peptide.

[0024] The antibody preferably specifically recognizes the C-terminal region including a C-terminal residue exposed by the cleavage of the β-amyloid peptide from βAPP, optionally wherein the βAPP is isoform 695, 751 or 770. The antibody molecules may comprise intact immunoglobulin or immunoglobulin fragments, preferably the immunoglobulin fragment is an F(ab) fragment, and Fv fragment, a VL fragment or a VH fragment.

[0025] The antibody molecules have preferably been raised against a peptide comprising at least residues 591-596 of βAPP with residue596 being the carboxy-terminal amino acid of the peptide, more preferably the antibody composition may comprise mouse antibody molecules, rabbit antibody molecules, sheep antibody molecules or goat antibody molecules the ATF-βAPP has a carboxy-terminal residue that corresponds to methionine596 or leucine596.

[0026] The antibody composition may comprise antisera raised against the peptide.

[0027] The antibody composition may comprise monoclonal antibodies.

[0028] In other embodiments the antibody composition may comprise antibody molecules which are recombinantly produced.

[0029] The invention further provides a hybridoma that produces antibody molecules that specifically recognize an amino-terminal fragment of β-amyloid precursor protein (ATF-βAPP) which is cleaved at the amino-terminus of β-amyloid peptide, but which antibody molecules do not specifically recognize a secreted fragment of βAPP whose sequence extends into the sequence of β-amyloid peptide.

[0030] The ATF-βAPP may have a carboxy-terminal residue that corresponds to methionine596 or leucine596, optionally methionine652 or leucine652; or methionine671 or leucine671.

[0031] The invention also provides a soluble fragment of β-amyloid precursor protein (βAPP) in purified and isolated form, said fragment having a C-terminal methionine or leucine which results from cleavage of β-amyloid peptide from intact βAPP, preferably the soluble fragment is isolated from a natural or recombinant source such as cerebrospinal fluid, conditioned medium from cultured cells, or the like. The amino acid sequence of the fragment may consist of residues 18-596 of βAPP isoform 695, residues 18-612 of βAPP isoform 751, or residues 18-671 of βAPP isoform 770. Compositions of the soluble fragment will be useful in a variety of conventional assays for the detection of ATF-βAPP.

[0032] The invention provides for the use of an antibody composition as hereinbefore defined for monitoring the processing of β-amyloid.

[0033] The invention also provides for the use of a soluble fragment as hereinbefore defined for monitoring the processing of β-amyloid.

SUMMARY OF THE INVENTION

[0034] Methods and compositions are therefore provided for detecting and monitoring a secreted amino-terminal fragment of β-amyloid precursor protein (βAPP) in biological samples, where the fragment results from cleavage at or near the amino-terminus of the β-amyloid peptide (βAP) region. In particular for the amino acid sequence on βAPP described by Kang et al., supra, (i.e., the “normal” sequence), this truncated secreted fragment of βAPP may be recognized by antibodies raised against peptides comprising certain carboxy-terminal residues of the secreted fragment having an exposed methionine at their carboxy-terminus. Alternatively, naturally occurring or engineered variant sequences of βAPP, such as the double mutation changing lysine595-methionine596 to asparagine595, leucine596 reported by Mullan et al. (1992) Nature Genet 1:345-347, can introduce a novel sequence in this region. A binding substance specific for the C-terminal residues of this βAPP sequence would be a preferred means of detection for such sequences.

[0035] The secreted fragments may comprise a substantially intact amino-terminal sequence of βAPP terminating within five amino acids of the carboxy-terminal residue (methionine in the case of the normal sequence) which lies adjacent the βAP region in intact βAPP. In particular, the secreted fragments may consist essentially of sequences which terminate in methionine596 and lysine595 of the 695 amino acid isoform of βAPP, with corresponding numbering for the other isoforms and corresponding amino acids for the mutant βAPP forms, such as, for example, LYS595-MET596 to ASN595-LEU596 (the “Swedish” form). The methods and compositions of the present invention are useful both in
vivo and in vitro for monitoring intracellular processing of βAPP, particularly for monitoring the cleavage of βAPP to release intact βAP which has been associated with certain diseases, particularly Alzheimer’s disease, including the familial form, and Down’s syndrome.

[0036] Antibodies having the requisite specificity may be raised against synthetic peptide haptens including the c-terminal residues of ATF-βAPP. Such antibody molecules may be prepared in any conventional manner, usually employing an immunogen comprising the C-terminal residues of ATF-βAPP, with for example, the C-terminal methionine being exposed in the normal sequence. βAP-related diseases, such as Alzheimer’s disease and Down’s syndrome, may be diagnosed and monitored in patients based on detection of the ATF-βAPP in patient samples, such as CSF, serum, blood, plasma, urine, tissue, and the like. Elevated ATF-βAPP levels or ratios may be associated with the onset and progression of the disease, and might be reduced with progress in treatment of the disease.

DESCRIPTION OF THE DRAWINGS

[0037] Figs. 1A and 1B illustrate the various isoforms of normal βAPP and the corresponding isoforms of ATF-βAPP, respectively.

Figs. 2A, 2B, and 2C, are chemiluminescent gel patterns of material derived from conditioned medium of a human fetal brain cell culture. Lanes 1, 2, and 3 of each gel represent the untreated conditioned medium, the conditioned medium depleted by reaction with antibody which recognizes an epitope within the β-amyloid peptide residues 1-16, and the material removed by this antibody, respectively. Panels A, B, and C represent the following probes: anti-5 antibody (which recognizes locations on βAPP amino-terminal to β-amyloid peptide region), antibody 92 (which was raised against a synthetic peptide terminating in the C-terminal methionine exposed by cleavage of βAP from βAPP), and antibody 10DS (a monoclonal antibody which recognizes an epitope of βAP within residues 1-16), respectively.

Fig. 3 is a chemiluminescent gel pattern obtained by examining human lumbar CSF. The CSF was probed with antibody either alone (lane 1) or pre-incubated with various peptides representing variations of the C-terminus of ATF-βAPP. A significant competition (reduction in binding) was observed with peptides terminating in the C-terminal methionine (lanes 3, 4, 6, and 7). The peptides were as follows: Lane 1, no competing peptide added; Lane 2, GSGLTNKTEIISEVKK; Lane 3, YSGLTNKTEIISEVKK; Lane 4, ISEVKK; Lane 5, IESEVKKMD; Lane 6, CISEVKK; Lane 7, YISEVKKM. MW = molecular mass markers (indicated in kilodaltons).

Fig. 4 is an autoradiogram representing electrophoretic gel patterns obtained by immunoprecipitation of conditioned medium from various cell lines. The material secreted by human fetal brain cultures and immunoprecipitated by antibody 92 (lane 11 at the arrow) is apparently smaller than the material precipitated by antibody 6C6 (lane 10 at the arrow). Antibody 6C6 recognizes an epitope within residues 1-16 of βAP.

Fig. 5 is an autoradiogram representing electrophoretic gel patterns obtained by immunoprecipitation of conditioned medium from human 293 cell lines transfected with cDNA encoding both normal and Swedish βAPP. The amount of AFT-βAPP material secreted by the Swedish transfected cells (lanes 11 and 12) is qualitatively greater than that produced by normal βAPP transfectants (lanes 9 and 10).

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

[0038] The present invention results from the identification of a novel secreted fragment of β-amyloid precursor protein (βAPP) which results from cleavage of an intact β-amyloid peptide (βAP) region from the precursor protein. The novel secreted fragments comprise the amino-terminal portion of βAPP which remains after such cleavage and will be referred to hereinafter as the amino-terminal fragment form of βAPP (ATF-βAPP).

ATF-βAPP is believed to be the product of an alternative secretory processing pathway for βAPP, which pathway is present even in normal (non-diseased) cells. It is further believed, however, that the alternate secretory pathway may be responsible for an essential event in the production of βAP in diseased cells in patients, and that abnormal production of ATF-βAPP may be involved in diseases related to βAP plaque, particularly Alzheimer’s disease and Down’s syndrome. Thus, the present invention provides methods and compositions for monitoring the cellular processing of βAPP based on the detection and measurement of ATF-βAPP in biological samples.

[0039] ATF-βAP is identified and recognized by specific binding to antibodies raised against peptides comprising certain residues of βAPP which lie immediately adjacent to the βAP region and for normal βAPP include the carboxy-terminal methionine (numbered as methionine596 in the 695 isoform, as set forth below). The peptides will usually include at least five contiguous residues up to and including residue596, and specific methods for producing such antibodies are set forth below.

[0040] Referring now to Figs. 1A and 1B, βAPP is found in three isoforms comprising 695, 751, and 770 amino acids, respectively. The 695 isoform is the most common in neuronal cells, with the 751 and 770 isoforms resulting from insertions at residue 289 on the 695 isoform (all numbering of the 695 isoform will be in accordance with Kang et al. (1987) Nature 325:733-736).
ATF-βAPP apparently results from proteolytic cleavage of the various βAPP isoforms at or within the five residues on the amino-terminal side of the amino-terminus of the β-amyloid peptide (βAP) region, which is located between residues 596 and 597 of the 695 isoform. Such cleavage results in the exposure of a C-terminal residue, which will usually be methionine596, lysine595 or leucine596, more usually being methionine596, shown as MET596 and LYS595 in Fig. 1B. It will be appreciated, of course, that the C-terminal residues would have a different numbering when the ATF-βAPP is derived from a different βAPP isoform. In particular, the C-terminal methionine would be MET652 and MET571 and the C-terminal lysine would be LYS551 and LYS570 in the 751 and 770 βAPP isoforms, respectively. As used hereinafter and in the claims, methionine596, lysine595, and leucine596 will refer generally to corresponding residues in all other isoforms or variants of βAPP. Presently, it is believed that the N-terminal residue of ATF-βAPP is LEU19 in all isoforms (based on processing of the amino-terminal end of βAPP in secreted forms which are cleaved within the βAP region).

According to the present invention, ATF-βAPP may be detected and/or measured in a variety of biological samples, including in vitro samples, such as conditioned medium from cultured cells, and in vivo patient samples, typically CSF, blood, serum, plasma, urine, tissue, and the like. Detection and measurement may be accomplished by any technique capable of distinguishing ATF-βAPP from other βAPP fragments which might be found in the sample. Conveniently, immunological detection techniques may be employed which utilize antibodies, antibody fragments, or other equivalent specific binding substances, which bind to a C-terminal residue of ATF-βAPP which is exposed upon cleavage of the βAP region, e.g., methionine596, leucine596 or lysine596. It has been found that such C-terminal-specific antibodies are able to discriminate between the ATF-βAPP and related βAPP fragments. Alternatively, immunological detection techniques may be based on isolated and purified ATF-βAPP using conventional techniques. The preparation of both C-terminal residue-specific antibodies and purified and isolated ATF-βAPP are described hereinafter. Particularly suitable detection techniques include ELISA, Western blotting, radioimmunoassay, and the like.

Other techniques for detecting ATF-βAPP which do not require the use of ATF-βAPP specific antibodies and/or competing antigen may also be employed. For example, two-dimensional gel electrophoresis may be employed to separate closely related soluble fragments of βAPP. Antibodies cross-reactive with many or all of the fragments may then be used to probe the gels, with the presence of ATF-βAPP being identified based on its precise position on the gel. Other techniques for detection of ATF-βAPP are also well within the skill in the art. For example, the secreted βAPP species which contain the amino-terminal region of βAP can be immunologically removed from a sample to isolate ATF-βAPP (see Fig. 2A, lane 2 and Fig. 5, lanes 11 and 12), which can then be detected by any of several methods as discussed above.

Antibodies specific for the ATF-βAPP may be prepared against a suitable antigen or hapten comprising the C-terminal ATF-βAPP sequence including the methionine residue. Convenitently, synthetic peptides may be prepared by conventional solid-phase techniques, coupled to a suitable immunogen, and used to prepare antisera or monoclonal antibodies by conventional techniques. One suitable synthetic peptide consists of six residues of ATF-βAPP (ISEVKM) which are located on the immediate amino-terminal side of βAP and which may be coupled to an immunogen and used to prepare specific antibodies as described in detail in the Experimental section. Other suitable peptide hapten will usually comprise at least five contiguous residues within βAPP on the immediate amino-terminal side of βAP, and may include more than six residues (although a peptide including sixteen amino-terminal residues was found to yield antisera which was less specific). The carboxy-terminal 25 residues of the normal ATF-βAPP are as follows (using the single letter amino acid designations).

<table>
<thead>
<tr>
<th>DRGLT</th>
<th>TRPGSLTNI</th>
<th>KTEEISEVKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>576</td>
<td>586</td>
<td>596</td>
</tr>
</tbody>
</table>

Synthetic polypeptide hapten may be produced by the well-known Merrifield solid-phase synthesis technique where amino acids are sequentially added to a growing chain (Merrifield (1963) J. Am. Chem. Soc. 85:2149-2156). The amino acid sequences may be based on the sequence of ATF-βAPP set forth above or may utilize naturally occurring or engineered mutant sequences. For example, the Swedish mutant would have asparagine595,leucine596 substituted for lysine595, methionine596 and another substitution might include only the leucine596 substitution for methionine596.

Once a sufficient quantity of polypeptide hapten has been obtained, it may be conjugated to a suitable immunogenic carrier, such as serum albumin, keyhole limpet hemocyanin, or other suitable protein carriers, as generally described in Hudson and Hay, Practical Immunology, Blackwell Scientific Publications, Oxford, Chapter 1.3, 1980.

Once a sufficient quantity of the immunogen has been obtained, antibodies specific for the C-terminal residue exposed upon cleavage of βAP from ATF-βAPP may be produced by in vitro or in vivo techniques. In vitro techniques involve exposure of lymphocytes to the immunogens, while in vivo techniques require the injection of the immunogens into a suitable vertebrate host. Suitable vertebrate hosts are non-human, including mice, rats, rabbits, sheep, goats, and the like. Immunogens are injected into the animal according to a
predetermined schedule, and the animals are periodically bled with successive bleeds having improved titer and specificity. The injections may be made intramuscularly, intraperitoneally, subcutaneously, or the like, and an adjuvant, such as complete Freund's adjuvant, will be employed.

If desired, monoclonal antibodies can be obtained by preparing immortalized cell lines capable of producing antibodies having desired specificity. Such immortalized cell lines may be produced in a variety of ways. Conveniently, a small vertebrate, such as a mouse is hyperimmunized with the desired immunogen by the method just described. The vertebrate is then killed, usually several days after the final immunization, the spleen cells removed, and the spleen cells immortalized. The manner of immortalization is not critical. Presently, the most common technique is fusion with a myeloma cell fusion partner, as first described by Kohler and Milstein (1975) Nature 256:495-497. Other techniques including EBV transformation, transformation with bare DNA, e.g., oncogenes, retroviruses, etc., or any other method which provides for stable maintenance of the cell line and production of monoclonal antibodies. Specific techniques for preparing monoclonal antibodies are described in Antibodies: A Laboratory Manual, Harlow and Lane, eds., Cold Spring Harbor Laboratory, 1988.

In addition to monoclonal antibodies and polyclonal antibodies (antisera), the detection techniques of the present invention will also be able to use antibody fragments, such as F(ab), Fv, Vh, and other fragments. It will also be possible to employ recombinantly produced antibodies (immunoglobulins) and variations thereof as now well described in the patent and scientific literature. See, for example, EP 0 123 527, EP 0 171 496, EP 0 173 494, WO 8 601 533, EP 0 184 187, WO 8 702 671 and JP 62100291. It would also be possible to prepare other recombinant proteins which would mimic the binding specificity of antibodies prepared as just described.

The present invention further comprises isolated and purified ATF-βAPP, usually obtained in substantially pure form. "Substantially pure" means at least about 50% w/w (weight/weight) or more purity with substantial freedom from interfering proteins and contaminants. Preferably, the ATF-βAPP will be isolated or synthesized in a purity greater than 50% w/w, preferably being 80% w/w or higher. The ATF-βAPP may be purified from a natural source by conventional protein purification techniques, with homogeneous compositions of at least about 50% w/w purity being purified by use of antibodies prepared as described above using conventional immunoaffinity separation techniques. Suitable natural starting materials include conditioned medium from ATF-βAPP-producing cell lines, such as fetal brain cell cultures, and the like. Alternatively, the ATF-βAPP may be isolated from biological samples obtained from a human, such as CSF, serum, and the like. Suitable protein purification techniques are described in Methods in Enzymology, Vol. 182, Deutcher, ed., Academic Press, Inc., San Diego, 1990, the disclosure of which is incorporated herein by reference.

Antibodies and purified ATF-βAPP prepared as described above can be used in various conventional immunological techniques for detecting ATF-βAPP in biological samples, particularly in vivo patient samples for the monitoring of β-amyloid-related diseases and in conditioned media from cell culture for monitoring the intracellular processing of βAPP. Suitable immunological techniques include immunoassays, such as ELISA, Western Blot analyses, and the like. Numerous specific immunological detection techniques are described in Harlow and Lane, supra.

In vivo detection of ATF-βAPP in patient samples can be used for diagnosing and monitoring of Alzheimer's disease and other diseases related to β-amyloid plaque deposition, such as Down's syndrome. Suitable patient samples include CSF, blood, serum, plasma, urine, tissue, and the like. Presence of the disease will generally be associated with elevated levels of ATF-βAPP, or elevated ratios of the amount of ATF-βAPP to the amounts of other secreted βAPP fragments (i.e., those βAPP fragments cleaved within or carboxy terminal to the βAPP region) when compared to those values in normal individuals, i.e., individuals not suffering from Alzheimer's disease or other β-amyloid-related disease. The amount of ATF-βAPP may be compared to the amount of another species of APP, either an isoform (e.g., 695, 751 or 770) and/or a form further defined by its carboxy-terminus (e.g., forms cut at and/or carboxy-terminal to that site described by Esch et al.). In addition to initial diagnostic procedures, levels of ATF-βAPP may be monitored in order to follow the progress of the disease, and potentially follow the effectiveness of treatment. It would be expected that levels of ATF-βAPP would decrease with an effective treatment regimen.

In vitro monitoring of ATF-βAPP levels in cultured medium from a suitable cell culture may be used for drug screening. By growing cells under conditions which result in the secretion of ATF-βAPP into the culture medium, and exposing the cells to test compounds, the effect of these test compounds on ATF-βAPP secretion may be observed. It would be expected that test compounds which are able to diminish the amount of ATF-βAPP would be candidates for testing as inhibitors of βAPP formation. Suitable cell lines include human and animal cell lines, such as 293 human kidney cell line, human neuroglia cell lines, human HeLa cells, primary endothelial cells (e.g., HUVEC cells), primary human fibroblasts or lymphoblasts (including endogenous cells derived from patients with βAPP mutations), primary human mixed brain cells (including neurons, astrocytes and neuroglia), Chinese hamster ovary (CHO) cells, and the like. Cell lines which preferentially increase the levels or ratios of ATF-βAPP would be particularly useful in the methods of invention.
Similarly, in vitro monitoring of ATF-βAPP in animal models of Alzheimer's disease, such as the mouse model disclosed in WO 91/19810, may also be used to screen test compounds for therapeutic effectiveness (usually for testing of compounds which have previously been identified by an in vitro screen). The test compound(s) are administered to the animal and the level of ATF-βAPP or ratio of ATF-βAPP to other βAPP fragments observed. Those compounds which reduce the level of ATF-βAPP, or decrease the ratio of ATF-βAPP to other βAPP fragments, will be considered to be candidates for further evaluation.

The test compounds can be any molecule, compound, or other substance which can be added to the cell culture without substantially interfering with cell viability. Suitable test compounds may be small molecules, biological polymers, such as polypeptides, polysaccharides, polynucleotides, and the like. The test compounds will typically be administered to the culture medium at a concentration in the range from about 1 nM to 1 mM, usually from about 10 μM to 1 mM.

Test compounds which are able to inhibit secretion of ATF-βAPP are considered as candidates for further determinations of the ability to block β-amyloid production in pathogenic cells. Inhibition of secretion indicates that cleavage of βAPP at the amino-terminus of βAP has likely been at least partly blocked, reducing the amount of a processing intermediate available for conversion to β-amyloid peptide.

The present invention further considers methods for inhibiting β-amyloid production in cells, where the method includes administering to the cells compounds selected by the method described above. The compounds may be added to cell culture in order to inhibit βAP production by the cultured cells. The compounds may also be administered to a patient in order to inhibit the deposition of amyloid plaque associated with Alzheimer's and other βAP-related diseases.

The present invention further considers pharmaceutical compositions incorporating a compound selected by the above-described method and including in a pharmaceutically acceptable carrier. Such pharmaceutical compositions should contain a therapeutic or prophylactic amount of at least one compound identified by the method of the present invention. The pharmaceutically acceptable carrier can be any compatible, nontoxic substance suitable to deliver the compounds to an intended host. Sterile water, alcohol, fats, waxes, and inert solids may be used as the carrier. Pharmaceutically acceptable adjuvants, buffering agents, dispersing agents, and the like may also be incorporated into the pharmaceutical compositions. Preparation of pharmaceutical conditions incorporating active agents is well described in the medical and scientific literature. See, for example, Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pennsylvania, 16th Ed., 1982.

The pharmaceutical compositions just described are suitable for systemic administration to the host, including both parenteral, topical, and oral administration. The pharmaceutical compositions may be administered parenterally, i.e. subcutaneously, intramuscularly, or intravenously. Thus, the present invention considers compositions for administration to a host, where the compositions comprise a pharmaceutically acceptable solution of the identified compound in an acceptable carrier, as described above.

Frequently, it will be desirable or necessary to introduce the pharmaceutical compositions directly or indirectly to the brain. Direct techniques usually involve placement of a drug delivery catheter into the host's ventricular system to bypass the blood-brain barrier. Indirect techniques, which are generally preferred, involve formulating the compositions to provide for drug latentization by the conversion of hydrophilic drugs into lipid-soluble drugs. Latentization is generally achieved through blocking of the hydroxyl, carboxyl, and primary amine groups present on the drug to render the drug more lipidsoluble and amenable to transportation across the blood-brain barrier. Alternatively, the delivery of hydrophilic drugs can be enhanced by intraarterial infusion of hypertonic solutions which can transiently open the blood-brain barrier.

The concentration of the compound in the pharmaceutical carrier may vary widely, i.e. from less than about 0.1 % by weight of the pharmaceutical composition to about 20% by weight, or greater. Typical pharmaceutical composition for intramuscular injection would be made up to contain, for example, one to four ml of sterile buffered water and one μg to one mg of the compound identified by the method of the present invention. The typical composition for intravenous infusion could be made up to contain 100 to 500 ml of sterile Ringer's solution and about 1 to 100 mg of the compound.

The pharmaceutical compositions can be administered for prophylactic and/or therapeutic treatment of diseases related to the deposition of βAP, such as Alzheimer's disease and Down's syndrome. In therapeutic applications, the pharmaceutical compositions are administered to a host already suffering from the disease. The pharmaceutical compositions will be administered in an amount sufficient to inhibit further deposition of βAP plaque. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Such effective dose will depend on the extent of the disease, the size of the host, and the like, but will generally range from about 0.01 μg to 10 mg of the compound per kilogram of body weight of the host, with dosages of 0.1 μg to 1 mg/kg being more commonly employed.

For prophylactic applications, the pharmaceutical compositions are administered to a host susceptible to the βAP disease, but not already suffering from such disease. Such hosts may be identified by genetic screening and clinical analysis, as described in the medical literature. The pharmaceutical compositions will be
able to inhibit or prevent deposition of the βAP plaque at a very early stage, preferably preventing even the initial stages of the β-amyloid disease. The amount of the compound required for such prophylactic treatment, referred to as a prophylactically-effective dosage, are generally the same as described above for therapeutic treatment.

The following examples are offered by way of illustration, not by way of limitation.

EXPERIMENTAL

Materials and Methods

1. *Antibody and Affinity Matrix Preparation*

Monoclonal antibody 6C6 was raised and screened in the same manner as antibody 10D5 (Hyman et al. 1992) by the method described by Man et al. (1992) J. Neuropath. Exp. Neurol. 51:76. A more detailed description of the antibody 92 AP residues 1-28 β2. The peptide (N-acetyl-CISEVKM) was conjugated to rabbit serum albumin as the immunogen. Antisera were raised against the immunogen in rabbits by standard methods. During each inoculation, rabbits received 5 μg of immunogen in 0.1 ml injections subcutaneously at approximately 10 sites (50 μg/boost). The same peptide was coupled to Sulfo-link™ gel (Pierce Chemical Co., Rockford, IL) using the manufacturer’s recommendations to generate an affinity resin to purify the peptide specific antibodies. The IgG fraction was applied to the column and, after washing through non-specifically bound material with PBS, the antibodies were eluted with 0.1 M glycine pH 2.5. 0.5 M NaCl an then dialyzed vs PBS before freezing.

2. *Human Fetal Brain Cell Culture*

Fetal neural tissue specimens were obtained from 12-14 week old fetal cadavers. Samples of cerebral cortex were rinsed twice with Hank’s Balanced Saline Solution (HBSS). Cortical tissue (2-3 grams) was placed in 10 mls of cold HBSS to which 1 mg of DNase (Sigma Chemical Co., St. Louis, MO D3427) was added. The triturated suspension was filtered through Nitex nylon screens of 210 µm then 130 μm, as described by Pulliam et al. (1984) J. Virol. Met. 9:301.

Cells were harvested by centrifugation and resuspended in neuronal medium (MEM fortified with 10% fetal bovine serum, 1% glucose, 1 mM NaPyruvate, 1 mM glutamine, 20 mM KCl). Polyethyleneimine coated 100 mm dishes were seeded with 1.5 x 10⁷ cells in 8 mls of neuronal medium. The medium was exchanged twice weekly. All cultures in this study were grown in vitro at least 30 days. For serum-free growth conditions, cultures were shifted into defined medium (DMEM supplemented with 5 μg/ml bovine insulin; 0.1 mg/ml human transferrin; 0.1 mg/ml BSA fraction V; 0.062 μg/ml progesterone, 1.6 μg/ml putrescine; 0.039 μg/ml sodium selenite, 0.042 μg/ml thryoxine; and 0.033 μg/ml triiodothyronine), and after 3 days the supernasant was harvested.

Conditioned medium from the cells (10 ml) was harvested. EDTA (5 mM), leupeptin (10 μg/ml), and Tris-HCl (20 mM, pH 8.0) were added to each 10 ml sample at the indicated final concentration, and the sample spun 30,000 xg for 20 minutes at 4°C. The resulting supernatant was divided into two equal aliquots,
6C6 resin was added to one of the aliquots (200 µl of resin with approximately 5 mg/ml 6C6 bound). Both aliquots were gently mixed for 6 hours at 4°C, the resin was pelleted, and a second 200 µl aliquot of resin was added. The samples were further mixed overnight at 4°C. The combined resins were washed twice with TTBS, then briefly extracted twice with one ml aliquots of 0.1 M glycine, 0.1 M NaCl, pH 2.8.

[0070] The material extracted from the resin, the medium depleted by the resin, and the starting medium were individually precipitated with 10% TCA (trichloroacetic acid) at 0°C for one hour, the pellets washed with acetone and then resuspended in 150 µl of SDS-PAGE sample buffer under reducing conditions and boiled. Each sample (25 µl) was subjected to SDS-PAGE using 10-20% tricine gels (Novex). The proteins were transferred to ProBlot™ PVDF membranes overnight at 40V. Visualization of immunoreactive proteins employed the TROPIX™ chemiluminescence system according to the manufacturer's directions for the AMPPD substrate. Primary antibody concentrations used were: anti-5, 0.1 µg/ml; 92, 2 µg/ml; 10D5, 2 µg/ml.

3. Culture of Human 293 Cells

[0071] Human 293 cells (ATCC No. CRL-1573) were modified to overexpress APP (Selkoe et al. (1988) Proc. Natl. Acad. Sci. USA 85:7341). Cells were grown in 10 cm dishes to subconfluency prior to use. Metabolic labelling and immunoprecipitation were performed essentially as previously described in Oltersdorf et al. (1989) Nature 341:144 and (1990) J. Biol. Chem. 265:4492. In brief, labelling was performed in 10 cm dishes. Cells were washed in methionine-free medium, incubated for 20 minutes in 2 ml methionine-free medium supplemented with 0.5 mCi 35S-methionine, washed in full medium, and chased for 2 hours in 3 ml of full medium. Conditioned medium was collected and cleared to 3000 xg for 10 minutes followed by preabsorption with protein A Sepharose® (Pharmacia, Piscataway, NJ). Immunoprecipitation was performed with 1.5 mg protein A Sepharose® per sample. Antibody anti-5 was used at 2 µg per sample; 6C6, 7H5 and 92 were used at 10 µg per sample. 5 mg of rabbit anti mouse IgG were used with 6C6 and 7H5 as well as in the control samples. Precipitates were washed four times in TBS (137 mM NaCl, 5 mM KCl, 25 mM Tris, pH 7.5), 0.1% NP40, 5 mM EDTA, 1 mM PMSF, 10 µg/ml leupeptin. SDS-PAGE was performed on 5% Laemmli gels.

4. Culture of Human 293 Cells Transfected with Swedish Mutation

[0072] Duplicate wells in a 6 well tray of human kidney 293 cells were transiently transfected with plasmid vectors expressing either normal human βAPP or the Swedish mutation variant βAPP using DOTAP mediated transfection as described by the manufacturer (Boehringer Mannheim). 40 hours later the cells were placed into methionine free DME containing 10% fetal calf serum and 20 minutes later they were labeled for 35 minutes with 200 µCi/ml 35S-methionine. The cells were then placed back into normal DME medium containing 10% fetal calf serum and incubated another 2.5 hours. The medium was collected from the cells, and spun at 1000 xg for 15 minutes to remove all the cells. The supernatants were split in half and half was immunoprecipitated with anti-5 antibody by standard methods. The other half was incubated overnight with agarose-coupled 6C6 antibody, and the material bound to the 6C6 agarose was separated by centrifugation. The remaining material was then immunoprecipitated with anti-5 antibody. The total anti-5 immunoprecipitates (α5+), 6C6 bound precipitates (6C6+) and 6C6 non-reactive, anti-5 reactive immunoprecipitates (6C6-α5+) were run on a 5% Laemmli gel and immunoreactive proteins were visualized by autoradiography.

Description of the Experimental Figures

Fig. 2: Demonstration of truncated βAPP in conditioned medium from human mixed-brain cell cultures.

[0073] Sample 1 is the conditioned-medium from culture; sample 2 is the medium depleted of 6C6-reactive βAPP; and sample 3 is the material extracted from the 6C6 resin. Panel A was probed with anti-5 antibodies which were raised against the βAPP sequence 444-592 (Oltersdorf et al. (1989) supra, and (1990) supra). Panel B was probed with antibody 92, described in the Materials and Methods section. Panel C was probed with 10D5, a monoclonal antibody which recognizes an epitope within βAP residues 1-16, as described in the Materials and Methods section. The lower molecular weight bands observed in C2 and C3 were not seen in C1 and are derived from the 6C6 resin and are recognized by goat-anti-mouse IgG alkaline phosphatase conjugate independent of a primary antibody (data not shown).

Fig. 3: Specificity of 92 Antibodies.

[0074] One milliliter of a human lumbar CSF specimen obtained from a 75 year old male was precipitated with 10% TCA to effect a ten-fold concentration and processed as described in Fig. 2, except that the gel well was a 4 cm slot. The 92 antibody was diluted to 6.7 µg/ml in 0.5 ml of TTBS in the presence of various potentially competing peptides, each at an approximate concentration of 60 µM, for 10 hours at 4°C with gentle mixing. The antibody was then diluted eight-fold in 1% gelatin/TTBS before incubation with strips of the blot of CSF-derived material and processed as described in Fig. 2. The competing peptides were as follows: Lane 1, no competing peptide added; Lane 2, GSGLTNK-
Fig. 4: Molecular mass heterogeneity of secreted forms of APP in immunoprecipitation detected by antibodies against different C-termini in cell lines and primary human fetal brain cultures.

[0075] Antibodies: anti-5: Lanes 3, 6, 9; 6C6 (directed against βAPP peptide residues 1-16); Lanes 4, 7, 10; antibody 92 (against APP amino acids 591 to 596): Lanes 5, 8, 11; 7H5 (against APP-KPI): Lanes 2 and 6-8; 293 cells stably transfected with APP 695; middle panel (lanes 2 and 6-8): 293 cells stably transfected with APP 751; right panel (lanes 9-13): human fetal brain cultures. Controls: lanes 1, 2, and 13: rabbit anti mouse IgG antibody. Arrows: an example of molecular mass difference between secreted forms of APP recognized by antibodies 6C6 and 92. SDS-PAGE was performed on a 5% Laemmli gel. MW = molecular mass markers (indicated in kilodaltons).

Fig. 5: Demonstration of truncated βAPP in conditioned medium from human 293 cells transfected with Swedish mutation.

[0076] Fig. 5 shows results from duplicate transfections for both normal and Swedish forms. Lanes 1-4 are α5+; lanes 5-8 are 6C6+; and lanes 9-12 are 6C6-, α5- samples. Lanes 1, 2, 5, 6, 9 and 10 are from normal βAPP, lanes 3, 4, 7, 8, 11 and 12 are from Swedish βAPP. The Swedish mutation results in the production of increased AFT-αAPP as lanes 11 and 12 contain more ATF-βAPP material than lanes 9 and 10.

Results

[0077] Monoclonal antibody 6C6 which recognizes an epitope of βAPP within residues 1-16 was used to immuno-deplete certain βAPP fragments from various samples. The monoclonal antibody 6C6 was coupled to resin (as described above) and incubated with the conditioned medium from human fetal brain cell cultures as described above. As can be seen (Fig. 2, lane C2), this resin effectively removes the βAPP containing βAP 1-6 from the conditioned medium of the cell culture. Substantial βAPP immunoreactivity, however, is not captured by the resin as detected by anti-5 antibody directed against an epitope N-terminal to the βAP region (Fig. 2, lane A2).

[0078] In order to characterize this apparently novel form of βAPP, we raised antibodies against a synthetic peptide which included βAPP residues 591-596 (as described above). This antibody (designated 92) was found to recognize the species of βAPP not captured by the resin, (Fig. 2, lane B2) but surprisingly did not react with the secreted form of βAPP containing the βAP 1-16 sequence (lane B3).

[0079] The explanation for this lack of cross reactivity appears to be that the 92 antibody recognizes an epitope in βAPP including the carboxy-terminal methionine, corresponding to residue 596. Accordingly, we examined the ability of various synthetic peptides to block the immunoreactivity generated with 92. As can be seen in Fig. 3, βAPP sequence-based peptides ending with the equivalent of methionine 596 substantially block the reaction of 92, while peptides one amino acid longer or shorter at their carboxy-termini are comparatively ineffective in competition. The same pattern of peptide competition was observed in cell culture supernatants (data not shown) and in CSF. A series of pulse-chase experiments revealed that detectable amounts of antibody 92 immunoprecipitable material are produced by 293 cells overexpressing either the 695 or 751 isoforms of βAPP (Fig. 4, lanes 5 and 8). Similar experiments on human fetal brain cell cultures show that 92 immunoprecipitable material can be resolved from 6C6 reactive βAPP by low percentage (5%) SDS-PAGE (Fig. 4, lanes 9-11). In the fetal brain cell cultures, the alternative processing of Kunitz protease inhibitory domain (KPI)-containing βAPP forms is less apparent, although faint co-migrating bands are observed with antibody 92 and anti-KPI antibody 7H5 immunoprecipitations (lanes 11, 12).

[0080] The ability to resolve the antibody 92 and 6C6 precipitable materials in mixed brain cultures is due, at least in part, to the nearly equal amounts of the respective forms produced as compared to the situation in 293 cells. Estus et al. (1992), supra, observed that compared with other tissues, human brain contained a relatively higher amount of the potentially amyloidogenic carboxy-terminal fragment that, based upon size, appears to begin at or near the amino-terminus of βAP.

[0081] The temporal coincidence of the appearance of antibody 92 and 6C6 precipitable βAPP materials argues against the likelihood of a second proteolytic event occurring post-secretion, particularly since longer chase times do not result in a noticeable alteration in the ratio of the 92 and 6C6 reactive species (data not shown). The resolution of the secreted forms by SDS-PAGE, coupled with the complete lack of immunological cross-reactivity of these species, further demonstrate the existence of an alternative secretory pathway. The alternative cleavage site was designated as the β-secretase site to emphasize that cleavage occurs amino-terminal to the βAP as distinct from the cleavage described by Esch et al. (1990) supra which occurs within the βAP.

[0082] Although the foregoing invention has been described in detail for purposes of clarity of understanding, it will be obvious that certain modifications may be practiced within the scope of the appended claims.
Claims

1. A method for monitoring the processing of β-amyloid precursor protein (βAPP) in cells comprising specifically detecting a soluble amino-terminal fragment of β-amyloid precursor protein (ATF-βAPP) secreted from the cells, wherein the amino acid sequence of the ATF-βAPP extends from the amino-terminus of βAPP to the amino-terminus of β-amyloid peptide, wherein ATF-βAPP is distinguished from other cleaved forms of βAPP which may be present.

2. A method as claimed in claim 1, wherein the ATF-βAPP is detected by a technique selected from the group consisting of (1) exposure to a substance which specifically binds to an epitope of the ATF-βAPP which terminates in a C-terminal residue which has been exposed by the cleavage of β-amyloid peptide from βAPP, and (2) two-dimensional gel electrophoresis of βAPP fragments secreted from the cells followed by exposure of the electrophoresed fragments to a substance which is cross-reactive with βAPP fragments.

3. A method for detecting a secreted amino-terminal fragment of β-amyloid precursor protein (ATF-βAPP) resulting from cleavage of βAPP at the amino-terminus of β-amyloid peptide (βAPP) in a biological sample, the method comprising:
 - exposing the sample to a substance which binds specifically to a C-terminal region on the secreted ATF-βAPP; and
 - detecting binding between the substance and the secreted fragment.

4. A method as claimed in claim 3, wherein the substance is an antibody specific for the C-terminal residue of a fragment of βAPP having at its carboxy-terminus, methionine, which antibody is isoform 695, 751 or 770.

5. A method as claimed in any of claims 3 to 5, wherein the amino acid sequence of the ATF-βAPP extends from the amino-terminus of βAPP to the amino-terminus of β-amyloid peptide, in a biological sample, the method comprising:
 - exposing the sample to an antibody which binds specifically to an epitope at the carboxy-terminal end of a fragment of βAPP having at its carboxy-terminus, methionine, which antibody is substantially free of cross-reactivity with other fragments of βAPP having amino acids beyond methionine; and
 - detecting binding between the substance and the secreted fragment.

6. A method as claimed in claim 1, wherein the ATF-βAPP is detected in conditioned medium from a cell culture.

7. A method as claimed in any of claims 3 to 11, wherein the ATF-βAPP is detected in a patient sample.

8. A method as claimed in claim 12 or claim 13, wherein the antibody had been raised against a peptide comprising residues 591-596 of βAPP with residue 596 being exposed.

9. A method as claimed in claim 1 or claim 2, wherein the ATF-βAPP is detected in a biological sample.

10. A method as claimed in claim 9, wherein the βAPP is isoforms 695, 751 or 770.

11. A method as claimed in claim 9 or claim 10, wherein the antibody had been raised against a peptide comprising residues 591-596 of βAPP with residue 596 being exposed.

12. A method as claimed in claim 1 or claim 2, wherein the ATF-βAPP is detected in a patient sample.

13. A method as claimed in any of claims 3 to 11, wherein the biological sample is a patient sample.

14. A method as claimed in claim 12 or claim 13, wherein the patient sample is cerebrospinal fluid.

15. A method as claimed in claim 1 or claim 2, wherein the ATF-βAPP is detected in conditioned medium from a cell culture.

16. A method as claimed in any of claims 3 to 11, wherein the biological sample is conditioned medium from a cell line.

17. An in vitro method of screening compounds to identify β-amyloid production inhibitors, the method comprising:
 - (a) culturing cells under conditions which result in a secretion of a soluble amino-terminal fragment of β-amyloid precursor protein (ATF-βAPP) wherein the amino acid sequence of the soluble ATF-βAPP extends from the amino-terminus of βAPP to the amino-terminus of β-amyloid peptide;
 - (b) exposing the cultured cells to a test compound; and
 - (c) detecting an amount of the soluble ATF-βAPP; whereby a decrease in the amount of the
soluble ATF-βAPP as compared to the amount of soluble ATF-βAPP from cells not exposed to the compound indicates that the compound is a β-amyloid production inhibitor.

18. A method as claimed in claim 17, wherein the cells are cultured human fetal brain cells.

19. A method as claimed in claim 17 or claim 18, wherein the test compound is exposed at a concentration from 1 nM to 1 mM.

20. A method as claimed in any of claims 17 to 19, wherein the test compound is a small molecule.

21. A method as claimed in any of claims 17 to 19, wherein the test compound is a biological polymer.

22. A method as claimed in any preceding claim, wherein the ATF-βAPP has a carboxy-terminus at methionine596, methionine652 or methionine671.

23. A method as claimed in any of claims 1 to 22, wherein the ATF-βAPP has a carboxy-terminus at leucine596, leucine652 or leucine671.

24. An antibody composition comprising antibody molecules that specifically recognize an amino-terminal fragment of β-amyloid precursor protein (ATF-βAPP) which is cleaved at the amino-terminus of β-amyloid peptide, but which antibody molecules do not specifically recognize a secreted fragment of βAPP whose sequence extends into the sequence of β-amyloid peptide.

25. An antibody composition as claimed in claim 24, wherein the antibody specifically recognizes the C-terminal region including a C-terminal residue exposed by the cleavage of the β-amyloid peptide from βAPP.

26. An antibody composition as claimed in claim 25, wherein the βAPP is isoform 695, 751 or 770.

27. An antibody composition as claimed in claim 24 or claim 25, wherein the antibody molecules comprise intact immunoglobulins or immunoglobulin fragments.

28. An antibody composition as claimed in any of claims 24 to 27, wherein the antibody molecules have been raised against a peptide comprising at least residues 591-596 of βAPP with residue 596 being the carboxy-terminal amino acid of the peptide.

29. An antibody composition as claimed in any of claims 24 to 28, comprising antisera raised against the peptide.

30. An antibody composition as claimed in any of claims 24 to 29, wherein the ATF-βAPP has a carboxy-terminal residue that corresponds to methionine596 or leucine596.

31. An antibody composition as claimed in any of claims 24 to 30 comprising monoclonal antibodies.

32. An antibody composition as claimed in any of claims 24 to 31, wherein the antibody molecules are mouse antibody molecules, rabbit antibody molecules, sheep antibody molecules or goat antibody molecules.

33. An antibody composition as claimed in any of claims 24 to 32, wherein the antibody molecules are recombinantly produced.

34. An antibody composition as claimed in claim 27, wherein the immunoglobulin fragment is an F(ab) fragment, and Fv fragment, a VL fragment or a VH fragment.

35. A hybridoma that produces antibody molecules that specifically recognize an amino-terminal fragment of β-amyloid precursor protein (ATF-βAPP) which is cleaved at the amino-terminus of β-amyloid peptide, but which antibody molecules do not specifically recognize a secreted fragment of βAPP whose sequence extends into the sequence of β-amyloid peptide.

36. A hybridoma as claimed in claim 35, wherein the ATF-βAPP has a carboxy-terminal residue that corresponds to:
 (a) methionine596 or leucine596;
 (b) methionine652 or leucine652; or
 (c) methionine671 or leucine671.

37. A soluble fragment of β-amyloid precursor protein (βAPP) in purified and isolated form, said fragment having a C-terminal methionine or leucine which results from cleavage of β-amyloid peptide from intact βAPP.

38. A soluble fragment as claimed in claim 37, isolated from a natural source selected from the group consisting of cerebrospinal fluid and conditioned medium from cultured cells.

39. A soluble fragment as claimed in claim 37 or claim 38, the amino acid sequence of which fragment consists of residues 18-596 of βAPP isoform 695, residues 18-612 of βAPP isoform 751, or residues 18-671 of βAPP isoform 770.

40. The use of an antibody composition of any of claims
24 to 34 for monitoring the processing of β-amyloid precursor protein.

41. The use of a soluble fragment of any of claims 37 to 39 for monitoring the processing of β-amyloid precursor protein.

Patentansprüche

2. Verfahren nach Anspruch 1, wobei das ATF-βAPP durch eine Technik bestimmt wird, ausgewählt aus der Gruppe, bestehend aus (1) in Kontakt Bringen mit einer Substanz, welche spezifisch an ein Epitop des ATF-βAPP bindet, das mit einem C-terminalen Rest endet, welcher durch die Spaltung von β-Amyloidpeptid von βAPP freigelegt worden ist, und (2) zweidimensionale Gelelektrophorese von aus den Zellen sezernierten βAPP-Fragmenten, gefolgt von in Kontakt Bringen der elektrophoretisch aufgetrennten Fragmente mit einer Substanz, welche mit βAPP-Fragmenten kreuzreaktiv ist.

3. Verfahren zum Nachweisen eines sezernierten Amino-terminalen Fragments von β-amyloidvorläuferprotein (ATF-βAPP), welches aus der Spaltung von βAPP am Aminoterminus von β-Amyloidpeptid (βAP) resultiert, in einer biologischen Probe, wobei das Verfahren umfasst:

 in Kontakt Bringen der Probe mit einer Substanz, die spezifisch an eine C-terminale Region auf dem sezernierten ATF-βAPP bindet, und Nachweisen einer Bindung zwischen der Substanz und dem sezernierten Fragment.

4. Verfahren nach Anspruch 3, wobei die Substanz ein Antikörper ist, der spezifisch ist für die C-terminale Region, umfassend einen durch die Spaltung des β-Amyloidpeptids von βAPP freigelegten C-terminalen Rest.

5. Verfahren nach Anspruch 4, wobei das βAPP Isoform 695, 751 oder 770 ist.

6. Verfahren nach einem der Ansprüche 3 bis 5, wobei der C-terminale Rest Methionin ist.

7. Verfahren nach einem der Ansprüche 3 bis 5, wobei der C-terminale Rest Leucin ist.

8. Verfahren nach einem der Ansprüche 3 bis 7, wobei der Antikörper gegen ein Peptid erzeugt worden ist, umfassend die Reste 591-596 von βAPP, mit freigelegtem Rest 596.

9. Verfahren zum Nachweisen der Gegenwart eines sezernierten Amino-terminalen Fragments von β-amyloidvorläuferprotein (ATF-βAPP) in einer biologischen Probe, wobei die Aminosäuresequenz von ATF-βAPP sich vom Aminoterminus von βAPP zum Aminoterminus von β-Amyloidpeptid erstreckt, wobei das Verfahren umfasst:

 in Kontakt Bringen der Probe mit einem Antikörper, der spezifisch an ein Epitop am Carboxy-terminalen Ende eines βAPP-Fragments bindet, welches Methionin an seinem Carboxyterminus hat, wobei der Antikörper im Wesentlichen frei ist von Kreuzreaktivität mit anderen β-APP-Fragmenten mit Aminosäuren über Methionin hinaus, und

 Nachweisen einer Bindung zwischen der Substanz und dem sezernierten Fragment.

10. Verfahren nach Anspruch 9, wobei das βAPP Isoform 695, 751 oder 770 ist.

11. Verfahren nach Anspruch 9 oder Anspruch 10, wobei der Antikörper gegen ein Peptid erzeugt worden ist, umfassend die Reste 591-596 von βAPP, mit freigelegtem Rest 596.

12. Verfahren nach Anspruch 1 oder Anspruch 2, wobei das ATF-βAPP in einer Probe aus einem Patienten nachgewiesen wird.

13. Verfahren nach einem der Ansprüche 3 bis 11, wobei die biologische Probe eine Probe aus einem Patienten ist.

14. Verfahren nach Anspruch 12 oder Anspruch 13, wobei die Probe aus einem Patienten Zerebrospinalfluid ist.

15. Verfahren nach Anspruch 1 oder Anspruch 2, wobei das ATV-βAPP in konditioniertem Medium einer Zellkultur nachgewiesen wird.

16. Verfahren nach einem der Ansprüche 3 bis 11, wobei die biologische Probe konditioniertes Medium einer Zelllinie ist.

17. In vitro Verfahren zum Screening nach Verbindungen, um Inhibitoren der β-Amyloidproduktion zu
identifizieren, wobei das Verfahren umfasst:

(a) das Kultivieren von Zellen unter Bedingungen, welche zu einer Sekretion eines löslichen Amino-terminalen Fragments von β-Amyloidvorläufersproteinn (ATF-βAPP) führen, wobei die Aminosäuresequenz des löslichen ATF-βAPP sich vom Aminoterminus von βAPP zum Aminoterminus von β-Amyloidpeptid erstreckt,

(b) das in Kontakt Bringen der kultivierten Zellen mit einer Testverbindung

(c) das Nachweisen einer Menge des löslichen ATF-βAPP, wobei eine Verringerung der Menge des löslichen ATF-βAPP, verglichen zu der Menge an löslichem ATF-βAPP aus Zellen, welche nicht mit der Verbindung in Kontakt gebracht wurden, anzeigt, dass die Verbindung ein Inhibitor der β-Amyloidproduktion ist.

18. Verfahren nach Anspruch 17, wobei die Zellen kultivierte, humane, fötale Hirnzellen sind.

19. Verfahren nach Anspruch 17 oder Anspruch 18, wobei die Testverbindung in einer Konzentration von 1 nM bis 1 mM eingesetzt wird.

20. Verfahren nach einem der Ansprüche 17 bis 19, wobei die Testverbindung ein kleines Molekül ist.

21. Verfahren nach einem der Ansprüche 17 bis 19, wobei die Testverbindung ein biologisches Polymer ist.

22. Verfahren nach einem der vorhergehenden Ansprüche, wobei das ATF-βAPP einen Carboxyterminus bei Methionin596, Methionin652 oder Methionin671 hat.

23. Verfahren nach einem der Ansprüche 1 bis 22, wobei das ATF-βAPP einen Carboxyterminus bei Leucin596, Leucin652 oder Leucin671 hat.

25. Antikörperzusammensetzung nach Anspruch 24, wobei der Antikörper spezifisch die C-terminale Region, umfassend einen durch die Spaltung des β-Amyloidpeptids von βAPP freigelegten C-terminalen Rest erkennt.

27. Antikörperzusammensetzung nach Anspruch 24 oder Anspruch 25, wobei die Antikörpermoleküle inaktive Immunglobuline oder Immunglobulinfragmente umfassen.

28. Antikörperzusammensetzung nach einem der Ansprüche 24 bis 27, wobei die Antikörpermoleküle gegen ein Peptid erzeugt worden sind, umfassend mindestens die Reste 591-596 von βAPP, wobei Rest 596 die Carboxyterminale Aminosäure des Peptids ist.

29. Antikörperzusammensetzung nach einem der Ansprüche 24 bis 28, umfassend Antiseren, die gegen das Peptid erzeugt worden sind.

30. Antikörperzusammensetzung nach einem der Ansprüche 24 bis 29, wobei das ATF-βAPP einen Carboxy-terminalen Rest hat, welcher Methionin596 oder Leucin652 entspricht.

31. Antikörperzusammensetzung nach einem der Ansprüche 24 bis 28 oder 30, umfassend monoklonale Antikörper.

32. Antikörperzusammensetzung nach einem der Ansprüche 24 bis 31, wobei die Antikörpermoleküle Antikörpermoleküle aus Maus, Antikörpermoleküle aus Kaninchen, Antikörpermoleküle aus Schaf oder Antikörpermoleküle aus Ziege sind.

33. Antikörperzusammensetzung nach einem der Ansprüche 24 bis 32, wobei die Antikörpermoleküle rekombinant produziert worden sind.

34. Antikörperzusammensetzung nach Anspruch 27, wobei das Immunglobulinfragment ein F(ab) Fragment, ein Fv Fragment, ein VL Fragment oder ein VH Fragment ist.

35. Hybridom, das Antikörpermoleküle produziert, die spezifisch ein Amino-terminales Fragment von β-Amyloidvorläufersproteinn (ATF-βAPP) erkennen, welches am Aminoterminus von β-Amyloidpeptid gespalten ist, wobei die Antikörpermoleküle jedoch kein sezerniertes βAPP-Fragment spezifisch erkennen, dessen Sequenz sich in die Sequenz von β-Amyloidpeptid hinein erstreckt.

36. Hybridom nach Anspruch 35, wobei das ATF-βAPP einen Carboxy-terminalen Rest hat, welcher entspricht:

(a) Methionin596 oder Leucin596,
(b) Methionin652 oder Leucin652, oder
Revendications

1. Procédé pour contrôler la maturation de la protéine précurseur du peptide β-amyloïde (βAPP) dans des cellules comprenant la détection spécifique d'un fragment amnio-terminal soluble de protéine précurseur du peptide β-amyloïde (ATF-βAPP) sécréte par les cellules, dans lequel la séquence d'acides aminés de l'ATF-βAPP s'étend de l'extrémité amnio-terminale de la βAPP jusqu'à l'extrémité ammino-terminale du peptide β-amyloïde, dans lequel le βAPP est distingué d'autres formes clivées de βAPP qui peuvent être présentes.

2. Procédé selon la revendication 1, dans lequel l'ATF-βAPP est détecté par une technique choisie dans le groupe constitué de (1) l'exposition à une substance qui se lie spécifiquement à un épitope de l'ATF-βAPP qui se termine par un résidu C-terminal ayant à son extrémité carboxy-terminale une méthionine, lequel anticorps est pratiquement dépourvu de réactivité croisée avec d'autres fragments de la βAPP ayant des acides aminés au-delà de la méthionine ; et (2) l'électrophorèse sur gel bidimensionnelle de fragments de βAPP sécrétés par les cellules suivie par l'exposition des fragments passés en électrophorèse à une substance qui réagit de manière croisée avec les fragments de la βAPP.

3. Procédé pour détecter un fragment amnio-terminal sécréte de protéine précurseur du peptide β-amyloïde (ATF-βAPP) résultant du clivage de la βAPP à l'extrémité amino-terminal du peptide β-amyloïde (βAP) dans un échantillon biologique, le procédé comprenant :

- l'exposition de l'échantillon à une substance qui se lie spécifiquement à une région C-terminale sur l'ATF-βAPP sécréte ; et
- la détection d'une liaison entre la substance et le fragment sécréte.

4. Procédé selon la revendication 3, dans lequel la substance est un anticorps spécifique de la région C-terminale incluant un résidu C-terminal exposé par le clivage du peptide β-amyloïde de la βAPP.

5. Procédé selon la revendication 4, dans lequel la βAPP est l'isoforme 695, 751 ou 770.

6. Procédé selon l'une quelconque des revendications 3 à 5, dans lequel le résidu C-terminal de la βAPP + est la méthionine596.

7. Procédé selon l'une quelconque des revendications 3 à 5, dans lequel le résidu C-terminal de la βAPP est la leucine596.

8. Procédé selon l'une quelconque des revendications 3 à 7, dans lequel l'anticorps avait été produit contre un peptide comprenant les résidus 591-596 de la βAPP avec le résidu 596 qui est exposé.

9. Procédé pour déterminer la présence d'un fragment amnio-terminal sécréte de protéine précurseur du peptide β-amyloïde (ATF-βAPP), dans lequel la séquence d'acides aminés de l'ATF-βAPP s'étend de l'extrémité amnio-terminale de la βAPP jusqu'à l'extrémité ammino-terminale du peptide β-amyloïde, dans lequel le βAPP est distingué d'autres formes clivées de βAPP qui peuvent être présentes.

10. Procédé selon la revendication 9, dans lequel la βAPP est l'isoforme 695, 751 ou 770.

11. Procédé selon la revendication 9 ou la revendication 10, dans lequel l'anticorps avait été produit con-
tre un peptide comprenant les résidus 591-596 de la βAPP avec le résidu 596 qui est exposé.

12. Procédé selon la revendication 1 ou la revendication 2, dans lequel l'ATF-βAPP est détecté dans un échantillon de patient.

13. Procédé selon l'une quelconque des revendications 3 à 11, dans lequel l'échantillon biologique est un échantillon de patient.

14. Procédé selon la revendication 12 ou la revendication 13, dans lequel l'échantillon de patient est du liquide céphalo-rachidien.

15. Procédé selon la revendication 1 ou la revendication 2, dans lequel l'ATF-βAPP est détecté dans un milieu conditionné provenant d'une culture cellulaire.

16. Procédé selon l'une quelconque des revendications 3 à 11, dans lequel l'échantillon biologique est un milieu conditionné provenant d'une lignée cellulaire.

17. Procédé in vitro de criblage de composés pour identifier des inhibiteurs de la production du peptide β-amyloïde, le procédé comprenant :

 (a) la culture de cellules dans des conditions qui donnent lieu à la sécrétion d'un fragment amino-terminal soluble de protéine précurseur du peptide β-amyloïde (ATF-βAPP), dans lequel la séquence d'acides aminés de l'ATF-βAPP soluble s'étend de l'extrémité amino-terminale de la βAPP jusqu'à l'extrémité amino-terminale du peptide β-amyloïde ;
 (b) l'exposition des cellules cultivées à un composé candidat ; et
 (c) la détection d'une quantité de l'ATF-βAPP soluble ;

où une diminution de la quantité de l'ATF-βAPP soluble comparée à la quantité d'ATF-βAPP soluble issu de cellules non exposées au composé indique que le composé est un inhibiteur de la production de peptide β-amyloïde.

18. Procédé selon la revendication 17, dans lequel les cellules sont des cellules de cerveau de foetus humain cultivées.

19. Procédé selon la revendication 17 ou la revendication 18, dans lequel le composé d'essai est exposé à une concentration de 1 nM à 1 mM.

20. Procédé selon l'une quelconque des revendications 17 à 19, dans lequel le composé candidat est une petite molécule.

21. Procédé selon l'une quelconque des revendications 17 à 19, dans lequel le composé candidat est un polymère biologique.

22. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'ATF-βAPP a un carboxy-terminal au niveau de la méthionine596, de la méthionine652 ou de la méthionine671.

23. Procédé selon l'une quelconque des revendications 1 à 22, dans lequel l'ATF-βAPP a un carboxy-terminal au niveau de la leucine596, de la leucine652 ou de la leucine671.

24. Composition d'anticorps comprenant des molécules d'anticorps qui reconnaissent spécifiquement un fragment amino-terminal de protéine précurseur du peptide β-amyloïde (ATF-βAPP) qui est clivé à l'extrémité amino-terminale du peptide β-amyloïde, mais lesdites molécules d'anticorps ne reconnaissent pas spécifiquement un fragment sémé de βAPP dont la séquence s'étend dans la séquence du peptide β-amyloïde.

25. Composition d'anticorps selon la revendication 24, dans laquelle l'anticorps reconnaît spécifiquement la région C-terminale incluant un résidu C-terminal exposé par le clivage du peptide β-amyloïde de la βAPP.

26. Composition d'anticorps selon la revendication 25, dans laquelle la βAPP est l'isoforme 695, 751 ou 770.

27. Composition d'anticorps selon la revendication 24 ou la revendication 25, dans laquelle les molécules d'anticorps comprennent des immunoglobulines entières ou des fragments d'immunoglobuline.

28. Composition d'anticorps selon l'une quelconque des revendications 24 à 27, dans laquelle les molécules d'anticorps ont été produites contre un peptide comprenant au moins les résidus 591-596 de βAPP, le résidu 596 étant l'acide aminé carboxy-terminal du peptide.

29. Composition d'anticorps selon l'une quelconque des revendications 24 à 28, comprenant des antisérums produits contre le peptide.

30. Composition d'anticorps selon l'une quelconque des revendications 24 à 29, dans laquelle l'ATF-βAPP a un résidu carboxy-terminal qui correspond à la méthionine596 ou à la leucine596.

31. Composition d'anticorps selon l'une quelconque
des revendications 24 à 28 ou 30 comprenant des anticorps monoclonaux.

32. Composition d’anticorps selon l’une quelconque des revendications 24 à 31, dans laquelle les molécules d’anticorps sont des molécules d’anticorps de souris, des molécules d’anticorps de lapin, des molécules d’anticorps de mouton ou des molécules d’anticorps de chèvre.

33. Composition d’anticorps selon l’une quelconque des revendications 24 à 32, dans laquelle les molécules d’anticorps sont produites par des procédés recombinants.

34. Composition d’anticorps selon la revendication 27, dans laquelle le fragment d’immunoglobuline est un fragment F(ab), et un fragment Fv, un fragment VL ou un fragment VH.

35. Hybridome qui produit des molécules d’anticorps qui reconnaissent spécifiquement un fragment amino-terminal de protéine précurseur du peptide β-amyloïde (ATF-βAPP) qui est clivé à l’extrémité aminono-terminale du peptide β-amyloïde, mais lesdites molécules d’anticorps ne reconnaissent pas spécifiquement un fragment sécrété de βAPP dont la séquence s’étend dans la séquence du peptide β-amyloïde.

36. Hybridome selon la revendication 35, dans lequel l’ATF-βAPP a un résidu carboxy-terminal qui correspond à :

(a) la méthionine596 ou la leucine596 ;
(b) la méthionine652 ou la leucine652 ; ou
(c) la méthionine671 ou la leucine671.

37. Fragment soluble de protéine précurseur du peptide β-amyloïde (βAPP) sous forme purifiée et isolée, ledit fragment ayant une méthionine ou leucine C-terminale qui résulte du clivage du peptide β-amyloïde de la βAPP entière.

38. Fragment soluble selon la revendication 37, isolé à partir d’une source naturelle choisie dans le groupe constitué du liquide céphalo-rachidien et d’un milieu conditionné issu de cellules cultivées.

39. Fragment soluble selon la revendication 37 ou la revendication 38, la séquence d’acides aminés du dit fragment étant constituée des résidus 18-596 de l’isoforme 695 de la βAPP, des résidus 18-612 de l’isoforme 751 de la βAPP, ou des résidus 18-671 de l’isoforme 770 de la βAPP.

40. Utilisation d’une composition d’anticorps de l’une quelconque des revendications 24 à 34 pour cont-
FIG. 2A.

FIG. 2B.

FIG. 2C.

1 2 3 4 5 6 7

MW

200 —
97 —
69 —
46 —
30 —
21.5 —
14.3 —
6.5 —
3.4 —

FIG. 3.
FIG. 4.