EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:
11.11.1998 Bulletin 1998/46

Application number: 94111303.7

Date of filing: 20.07.1994

Bearing sealing plate and method of manufacturing thereof
Lagerdichtungsplatte und ihr Herstellungsverfahren
Plaque d’étanchéité pour palier et sa méthode de fabrication

Designated Contracting States:
DE FR GB

Date of publication of application:
01.02.1995 Bulletin 1995/05

Proprietor: TOYO SEAL INDUSTRIES, Co., Ltd.
Ikoma-gun, Nara-ken (JP)

Inventor: Saigusa, Shigeharu
Tenri-shi, Nara-ken (JP)

Representative: VOSSIUS & PARTNER
Siebertstrasse 4
81675 München (DE)

References cited:
EP-A-0 474 950
GB-A-1 101 464

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The present invention relates to sealing of a bearing, and more particularly, to a sealing plate for a bearing, and a method of manufacturing thereof.

In a conventional sealing plate 56 for a bearing shown in Fig. 26, a core metal formed by punching a metallic plate is placed in a recess or concave portion of a metal mold for molding. Then, elastic material is poured into the mold, subsequently heated and pressurized, simultaneously vulcanized, and thus the bearing sealing plate is formed. The forward edge diameter of the formed sealing plate 56 is larger than an opening diameter of a bearing sealing groove 51a, and a wall face of the sealing groove of an outer ring 51 or an inner ring 52 of the bearing is sunken so as to force the bearing sealing plate 56 into the sealing groove 51a, thus causing the elastic forward edge portion of the sealing plate 56 to depress the wall face of the sealing groove 51a to achieve the sealing. In Fig. 26, reference numeral 50 denotes a ball of the bearing, 53 a retainer, 54 the core metal of the sealing plate 56, and 55 a ring-plate made of elastic material such as synthetic rubber and having a lip 55a sliding on a tapered face 52a of the inner ring 52.

In the conventional manufacturing method of the bearing sealing plate as described above, however, there have been such disadvantages that, not only the metal mold is necessary, but much expenses are required for the mold due to complicated relation in constructions and shapes between the bearing sealing plate and the sealing groove of the bearing, while a considerable time is required for the vulcanization of rubber with the mold, and removal of burr from the bearing sealing plate is also required after the molding, thus resulting in an increase of the number of manufacturing steps and time, with a consequent rise in cost.

Prior art document US-A- 4 078 287 discloses a known method of manufacturing sealing members which comprises the following steps. An elastic material layer having adhesive property is formed on a surface of one of a metallic plate and a vulcanized elastic material plate. Punching holes are made in the metallic plate by a punching press. Then the metallic plate is overlapped with the elastic material having the adhesive property being positioned between the metallic and the elastic materials. The metallic and the elastic materials are bonded via the elastic material layer to each other through pressurization or pressurization and heating. Eventually several sealing plates are punched from said composite plate.

Said prior art US-A further discloses a sealing plate having all the features of the preamble portion of independent claim 8.

Accordingly, an object of the present invention is to provide a bearing sealing plate and a manufacturing method thereof, in which no metal mold, vulcanization of rubber, and removal of burr is required, while particular consideration is not necessary for the construction and configuration of the bearing seal groove.

Another object of the present invention is to provide a bearing sealing plate and a manufacturing method thereof, which are simple in construction and processing, and can be readily incorporated in a production line at low cost.

These objects are solved with the features of the claims.

Preferably, the elastic material layer is formed on a surface of one of the metallic plate and the vulcanized elastic material plate and having adhesive property for bonding the metallic ring-plate and the vulcanized elastic material ring-plate by overlapping the metallic ring-plate and the elastic material ring-plate, with the elastic material layer having the adhesive property being positioned between the metallic ring-plate and the elastic material ring-plate and with centers of the metallic ring-plate and the vulcanized elastic material ring-plate being aligned with each other, and pressing or pressing and heating, thereby to form the sealing plate.

According to an aspect of the present invention, there is provided a sealing plate for a bearing as defined by the features of claim 8.

The elastic material layer having the adhesive property, formed on the surface of the metallic plate or vulcanized elastic material plate is formed by bonding the metallic ring-plate blanked or punched from the metallic plate with the elastic material ring-plate blanked or punched from the vulcanized elastic material plate through pressurization or heating and pressurization.

The metallic ring-plate serves as a core metal of the sealing plate, and the elastic material ring-plate seals the bearing at its outer peripheral portion.

The outer peripheral edge portion of the elastic material ring-plate extending outwardly from the outer peripheral edge of the metallic ring-plate readily gets to fit the configuration of the sealing groove for deformation, and wraps the outer peripheral edge of the metallic ring-plate therein so as to depress the upper shoulder portion and the bottom portion of the sealing groove for close contact therewith, thereby perfectly sealing the bearing.

These and other objects and features of the present invention will become clear from the following description taken in conjunction with the preferred embodiments thereof with reference to the accompanying drawings, in which:

Fig. 1 is a schematic diagrams for explaining steps of applying an elastic material on a surface of a metallic plate and punching a metallic ring-plate punched from the metallic plate on which the elastic material is applied in a method for manufacturing a bearing sealing plate according to an embodiment of the present invention;

Figs. 2 and 3 are a plan view and a cross-sectional side view of the punched metallic ring-plate in Fig. 1;

Fig. 4 is a schematic diagrams for explaining a step...
of punching an elastic material ring-plate from an elastic material plate in the method for manufacturing a bearing sealing plate according to the embodiment of the present invention;

Figs. 5 and 6 are a plan view and a cross-sectional side view of the punched elastic metallic ring-plate in Fig. 4;

Fig. 7 is a schematic diagram for explaining a step of bonding between the metallic ring-plate and the elastic material ring-plate;

Figs. 8, 9, 10, and 11 are schematic views for explaining steps of punching the metallic ring-plate punched from the metallic plate on which the elastic material is applied in a concrete method of the method in Fig. 1;

Fig. 12 is a schematic view for explaining a step of punching the elastic material ring-plate from the elastic material plate in a concrete method of the method in Fig. 4;

Figs. 13 and 14 are schematic views for explaining steps of attracting one of the metallic ring-plate from a holder in the concrete method;

Figs. 15, 16, and 17 are schematic views for explaining steps of overlapping and bonding the metallic ring-plate and the elastic material ring-plate in the concrete method;

Fig. 18 is a perspective view of the sealing plate manufactured by the concrete method;

Fig. 19 is a partial and enlarged cross-sectional side view of the bearing on which the sealing plate in Fig. 18 is mounted;

Fig. 20 is a schematic view for explaining a step of overlapping and bonding the metallic ring-plate and the elastic material ring-plate in another concrete method;

Fig. 21 is a perspective view of the sealing plate manufactured by the concrete method in Fig. 20;

Fig. 22 is a partial and enlarged cross-sectional side view of the bearing on which the sealing plate in Fig. 21 is mounted;

Fig. 23 is a schematic view for explaining a step of overlapping and bonding the metallic ring-plate and the elastic material ring-plate in still another concrete method;

Fig. 24 is a perspective view of the sealing plate manufactured by the concrete method in Fig. 23;

Fig. 25 is a partial and enlarged cross-sectional side view of the bearing on which the sealing plate in Fig. 24 is mounted; and

Fig. 26 is a partial and enlarged cross-sectional side view of a bearing on which a conventional sealing plate is mounted.

Before the description of the present invention proceeds, it is to be noted that like parts are designated by like reference numerals throughout the accompanying drawings.

Referring now to the drawings, Figs. 1-7 show schematic diagrams for explaining steps for manufacturing a bearing sealing plate according to an embodiment of the present invention.

In Fig. 1, a metallic plate 1 wound in a roll form (not shown) is successively drawn out, and elastic material having adhesive property, e.g., thermo-plastic resin or adhesive material capable of bonding by pressurization is sprayed or painted on the surface of the metallic plate 1 so as to form an elastic material layer 2 with adhesive property thereon, and then a metallic plate 4 composed of the metallic plate 1 and the elastic material layer 2 formed thereon is blanked by upper and lower dies 3a and 3b of a blanking or punching press 3 to obtain a metallic ring-plate 4a as shown in Figs. 1-3.

Meanwhile, as shown in Fig. 4, a vulcanized elastic material plate 5 made of natural or synthetic rubber such as NBR, acrylic rubber, or fluororubber or elastic synthetic resin wound in a roll form (not shown) is successively drawn out, and is blanked by upper and lower dies 6a and 6b of a blanking press 6 to obtain an elastic material ring-plate 5a as shown in Figs. 4-6. The process may, for example, be so modified that the elastic material layer 2 having the adhesive property is formed on the surface of the elastic material plate 5 instead of being formed on the surface of the metallic plate 1.

In the embodiment, the outer diameter d3 of the elastic material ring-plate 5a is set to be larger than an outer diameter d1 of the metallic ring-plate 4a, and when the metallic ring-plate 4a is overlapped with the elastic material ring-plate 5a, with centers thereof aligned with each other, the outer peripheral edge portion 5c of the elastic material ring-plate 5a is adapted to protrude or extend outwardly from the peripheral edge of the metallic ring-plate 4a by a width a = (d3-d1)/2 as shown in Fig. 18.

The diameter d2 of an inner hole 4b of the metallic ring-plate 4a can be equal to the diameter d4 of an inner hole 5b of the elastic material ring-plate 5a as shown in Figs. 20-22, but when the diameter d4 of the inner hole 5b for the elastic material ring-plate 5a is made smaller than the diameter d2 of the inner hole 4b for the metallic ring-plate 4a so that, upon overlapping the both plates 4a and 5a, with the centers thereof aligned with each other, the inner peripheral edge portion 5f of the elastic material ring-plate 5a protrudes from the peripheral edge of the metallic ring-plate 4a by a width b = (d2-d4)/2 as shown in Fig. 18, and the inner peripheral edge portion 5f of the elastic material ring-plate 5a can contact the inner ring 42 of the bearing for perfect sealing as described more in detail later.

Subsequently, as shown in Fig. 7, the surface of the elastic material layer 2 of thermo-plastic resin of the metallic ring-plate 4a is adapted to contact the elastic material ring-plate 5a for overlapping, with centers thereof aligned with each other, and the both plates 4a and 5a are bonded to each other through heating and pressurization by bonding dies 9a and 9b of a bonding press 9 heated by a heater 8, thereby to or the sealing plate 12.
In the case where an adhesive material capable of bonding by pressurization is employed instead of the thermoplastic resin of the elastic material layer 2, the bonding is effected by pressurization through employment of a press not heated.

Various modifications are considered for the method to overlap and bond the metallic ring-plate 4a and the elastic material ring-plate 5a to each other, with the centers thereof aligned with each other. A concrete example of the method will be described below with reference to Figs. 8-17.

As shown in Figs. 8 and 9, the material plate 4 composed of the metallic plate 1 covered with the elastic material layer 2 is held by a punching press 13. The punching press 13 includes an upper die 13a, 13b and a lower die 13c, 13d. The upper die is composed of a first die 13a having a center column portion and an outer cylindrical portion to achieve punching function and a second die 13b of a cylindrical body which is inwardly and outwardly surrounded by the first die 13a. The first and second dies 13a and 13b being independently and vertically driven by driving devices (not shown). The lower die is composed of a second die 13c of a cylindrical body and a forth die 13d of a static cylindrical body which is outwardly surrounded by the third die 13c. The third die 13c being independently and vertically driven by a driving device (not shown) with respect to the fourth die 13d which is not driven. First, the material plate 4 is held by the first through fourth dies 13a-13d of the upper and lower dies of the punching press 13 as shown in Fig. 9.

Then, the first die 13a of the upper die moves downwardly together with the third die 13c with respect to the second and fourth dies 13b and 13d, and thus, a ring portion of the material plate 4 is held by the second and fourth dies 13b and 13d while a center portion and a peripheral portion of the ring portion, i.e. the remain portion of the material plate 4 is downwardly moved together with the first and third dies 13a and 13c, thus forming from the material plate 4 the metallic ring-plate 4a and a circular plate 4c which is cut out from the metallic ring-plate 4a to form a hole 4b at the center thereof. At the above pressing time, the center portion of the first die 13a is inserted into the center hole 13e of the fourth die 13d to cut out a circular plate 4c from the elastic material plate 4. The formed metallic ring-plate 4a is held in a holder 10 described patters.

A punching press 16 including similar upper and lower dies 16a-16d to those dies 13a-13d is used for forming the elastic material ring-plate 5a from the elastic material plate 5. The upper and lower dies used in the formation of the elastic material ring-plate 5 have different sizes from those dies of the metallic ring-plate 5 in correspondence with the size of the elastic material ring-plate 5. Here, the first, second, third, and fourth dies 13a, 13b, 13c, and 13d for the formation of the metallic ring-plate 4a correspond to a first, second, third, and fourth dies 16a, 16b, 16c, and 16d for the formation of the elastic material ring-plate 5a in Fig. 12. That is, the first die 16a of the upper die moves downwardly together with the third die 16c with respect to the second and fourth dies 16b and 16d, and thus, a ring portion of the elastic material plate 5 is held by the second and fourth dies 16b and 16d while a center portion and a peripheral portion of the ring portion, i.e. the remain portion of the elastic material plate 5 is downwardly moved together with the first and third dies 16a and 16c, thus forming from the elastic material plate 5 the elastic material ring-plate 5a and a circular plate 5c which is cut out from the elastic material ring-plate 5a to form a hole 5b at the center thereof, as clearly shown in Fig. 12. At the above pressing time, the center portion of the first die 16a is inserted into the center hole 16e of the fourth die 16d to cut out a circular plate 5c from the elastic material plate 5. The formed elastic material ring-plate 5a is held on the third and fourth dies 16c and 16d.

Subsequently, as shown in Fig. 13, a plurality of metallic ring-plates 4a formed above are piled upon a pushing 10b of the holder 10, with their center points aligned with each other by restricting the outer peripheries of the metallic ring-plates 4 by a recess 10a thereof, and one of the metallic plates 4a is fitted and attracted by a magnetic force into a shallow recess 11b of an attracting means 11. The attracting means 11 includes a ring-shaped guide portion 11a having an inner diameter coinciding with an outer peripheral diameter of the third die 16c of the punching press 16. The shallow recess 11b receives one of the metallic plates 4a having the same inner diameter and center point as those of the guide portion 11a by the magnetic force of the attracting means 11 as shown in Fig. 14. Then, with respect to the elastic material ring-plate 5a blanked and placed on the fourth die 16d of the punching press 16, the guide portion 11a is fitted over the outer periphery of the fourth die 16d so as to overlap the metallic ring-plate 4a with the elastic material ring-plate 5a for subsequent pressurization as shown in Figs. 15 and 16. In this case, the center point of the metallic ring-plate 4a is automatically aligned with that of the elastic material ring-plate 5a. When the elastic material layer having the adhesive property formed on the metallic ring-plate 4a is of thermoplastic resin, a heating means such as the heater 8 is provided on the attracting means 11 for heating and pressurization of the overlapped elastic material ring-plate 5a and the metallic ring-plate 4a.

The attraction of the metallic ring-plate 4a onto the attracting means 11 can be effected by air instead of a magnet.

Instead of using the holder 10, it can be so modified that the third die 13c of the punching press 13 having the outer peripheral diameter equal to the inner diameter of the guide portion 11a of the attracting means 11 is utilized as it is so as to attract the metallic ring-plate 4a blanked and placed on the third and fourth dies 13c and 13d, by the attracting means 11.

It is to be noted here that the metallic ring-plate 4a can be adapted to be attracted by the attracting means
11 every time one metallic ring-plate 4a is blanked by the punching press 13, and that the third and fourth dies 13c and 13d is so modified as to successively overlap and collect the blanked metallic ring-plates 4a, with the center points thereof aligned with each other. When the metallic ring-plates 4a are held in the holder 10, the elastic material ring-plates 5a can be held in a holder similar to the holder 10.

Moreover, in the method as described above with reference to Figs. 8-17, it can be so arranged to attract the elastic material ring-plate 5a by the attracting means 11, and to bond the elastic material ring-plates 5a in the overlapped state on the metallic ring-plate 4a.

As another method of overlapping the metallic ring-plate 4a and the elastic material ring-plate 5a, with the center points thereof aligned with each other, it can be so modified that instead of using the ring-shaped guide portion 11a as the guide means 11, a protrusion (not shown) which can be fitted into each hole of the metallic ring-plate 4a and the elastic material ring-plate 5a is provided on the third die 13c and the fourth die 13d of the punching press 13 or on a separate base to serve as a guide means.

More specifically, in the case where the diameters of the inner holes 4b, 5b for the metallic ring-plate 4a and the elastic material ring-plate 5a are equal to each other as shown in Figs. 20 and 21, the protrusion having a diameter coinciding with the inner hole diameter is provided, while when the inner hole diameter of the metallic ring-plate 4a is larger than that of the elastic material ring-plate 5a as shown in Figs. 17 and 18, the protrusion is arranged to have stepped portions, i.e., a first portion coinciding with the inner hole diameter of the metallic ring-plate 4a, and a second portion coinciding with the inner hole diameter of the elastic material ring-plate 5a, with center points of the two portions being aligned.

When the metallic ring-plate 4a and the elastic material ring-plate 5a are fitted over the above protrusion for overlapping, and are pressurized through a pressurized gas and pressurized subsequently, the metallic ring-plate 4a and the elastic material ring-plate 5a are automatically bonded, with the same center points as shown in Fig. 16.

Hereinafter, a method of mounting the sealing plate 12 shown in Fig. 17 and 18 produced in the practice as described so far onto a bearing will be explained with reference to Figs. 18 and 19.

With the elastic material ring-plate 5a of the sealing plate 12 directed downwards, a forward edge portion of an inner ring 42 of a bearing is inserted into the inner hole 4b, 5b of the sealing plate 12, and when the edge portion of the sealing plate 12 is forced into a sealing groove 41a of an outer ring 41, the outer peripheral edge portion 5e of the elastic material ring-plate 5a protruding from the outer peripheral edge of the metallic ring-plate 4a is bent or folded, and further, an extreme edge portion of the portion 5e is depressed by an upper shoulder portion 41b of the sealing groove 41a, and extends out of the sealing groove 41a above the outer edge of the metallic ring-plate 4a in such a manner as to wrap the outer peripheral edge of the metallic ring-plate 4a, and thus, the bent portion of the outer peripheral edge portion 5e of the elastic material ring-plate 5a is forced into the sealing groove 41a under pressure. Consequently, the curved face of the outer peripheral portion 5e closely contacts the upper shoulder portion 41b of the sealing groove 41a and the bottom portion, while the inner peripheral edge portion 5f of the elastic material ring-plate 5a also closely contacts a stepped portion 42a of the inner ring 42, thereby to seal the bearing. In the above case, since the outer peripheral edge portion 5e of the elastic material ring-plate 5a has resiliency to be bent, the curved face gets to fit the shape of the sealing groove 41a, and therefore, it is not necessary to pay particular attention to the shape of the sealing groove 41a.

It is to be noted here that when the elastic material layer 2 having the adhesive property is formed on the metallic plate 1 as shown in Fig. 1, such elastic material layer 2 is not required to be formed on the elastic material plate 5, and thus, such elastic material layer 2 with the adhesive property has only to be formed on either one of the metallic plate 1 or elastic material plate 5.

The embodiment is described in the case where the sealing plate 12 is so constructed that the diameter of the inner hole 4b of the metallic ring-plate 4a is larger than that of the inner hold 5b of the elastic material ring-plate 5a. However, the present invention can be applied to another sealing plate 22 wherein the diameter of the inner hole 4b of the metallic ring-plate 4a is equal to that of the inner hole 5b of the elastic material ring-plate 15a as shown in Figs. 20-22, or another sealing plate 32 wherein the diameter of the inner hole 4b of the metallic ring-plate 4a is smaller than that of the inner hole 25b of the elastic material ring-plate 25a as shown in Figs. 23-25. Those sealing plates 22 and 32 can have the same function and effects as those of the sealing plate 12. Specially, in the sealing plate 32, a space defined by the retainer and the sealing plate 32 can be enlarged to increase the holding amount of grease therein because the inner hole diameter of the elastic material ring-plate 25a is larger than that of the metallic ring-plate 4a.

The outer peripheral edge portion 5e of each elastic material ring-plate 5a, 15a, and 25a is preferably adapted to protrude or extend outwardly from the peripheral edge of the metallic ring-plate 4a by the width a for achieving the above sealing function.

The elastic material layer 2 can be formed on the metallic plate 1 by placing or bonding onto the metallic plate 1 a sheet previously formed by elastic material, instead of spraying or painting the elastic material onto the metallic plate 1.

As is clear from the foregoing description, in the manufacturing method of the bearing sealing plate according to the embodiments, since no metal mold is required, the step for removal of burr can be dispensed with, and owing to the fact that the preliminarily vulcan-
ized elastic material is sued, process for vulcanization is not required, and thus, the sealing plate can be readily obtained only by blanking or punching and bonding at low cost.

Furthermore, the sealing plate thus produced is simple in construction and can be readily attached to the bearing without requiring any particular consideration for the bearing sealing groove.

Claims

1. A method of manufacturing a sealing plate (12,22,32) for a bearing, which comprises the steps of:

 forming an elastic material layer (2) having adhesive property on a surface of one of a metallic plate (1) and a Vulcanized elastic material plate (5);

 punching a metallic ring-plate (4a) from the metallic plate (1) by a punching press (13), and punching from the elastic material plate (5) an elastic material ring-plate (5a) having an outer diameter (d3) larger than the outer diameter (d1) of the metallic ring-plate (4a) by a punching press (16);

 overlapping the metallic ring-plate (4a) and the elastic material ring-plate (5a), with the elastic material layer (2) having the adhesive property being positioned between the metallic ring-plate (4a) and the elastic material ring-plate (5a), and with centers thereof being aligned with each other, and bonding the metallic ring-plate (4a) and the elastic material ring-plate (5a) via the elastic material layer (2) to each other through pressurization or pressurization and heating, thereby to form the sealing plate, wherein the outer peripheral edge portion (5e) of the elastic material ring-plate (5a) extends outwardly from the outer peripheral edge of the metallic ring-plate (4a) by such a width (a) as to be bent for wrapping the outer peripheral edge of the metallic ring-plate (4a) therein, when it is forced into a sealing groove (41a) of the bearing for sealing.

2. The method as claimed in claim 1, wherein in the punching step, the metallic ring-plate (4a) is punched from the metallic plate (1) by holding the metallic ring-plate (4a) by upper and lower dies (13b,13d) of the punching press (13) while the metallic plate (1) is moved in a direction of a thickness of the metallic plate (1) by another upper and lower dies (13a,13c) of the punching press (13), and the elastic material ring-plate (5a) is punched from the elastic material plate (5) by holding the elastic material ring-plate (5a) by upper and lower dies (16b,16d) of the punching press (16) while the elastic material plate (5) is moved in a direction of a thickness of the elastic material plate (5) by another upper and lower dies (16a,16c) of the punching press (16).

3. The method as claimed in claim 1 or 2, wherein in the overlapping step,

 the elastic material ring-plate (5a) is held on a lower die (16b,16c) of the punching press (16) after the punching step,

 the metallic ring-plate (4a) is attracted by an attracting device (11) having a ring-shaped guide portion (11a) which is fitted around the lower die (16b,16d) of the punching press (16) with centers of the guide portion and the lower die being aligned with each other and held in a recess (11b) of the attracting device (11) with center of the elastic material ring-plate (5a), and centers of the recess (11b) and the guide portion (11a) of the attracting device (11) being aligned with each other, and then

 the guide portion (11a) of the attracting device (11) having the metallic ring-plate (4a) is fitted around the lower die (16b,16d) of the punching press (16) on which the elastic material ring-plate (5a) is placed to overlap the metallic ring-plate (4a) and the elastic material ring-plate (5a).

4. The method as claimed in claim 1 or 2, wherein in the overlapping step,

 the elastic material ring-plate (5a) is held on a lower die (16b,16c) of the punching press (16) after the punching step,

 the metallic ring-plate (4a) is held in a recess (10a) of a holder (10) with a center of the metallic ring-plate (4a) being aligned with a center of the recess (10a) of the holder (10),

 the metallic ring-plate (4a) held in the recess (10a) of the holder (10) is attracted by an attracting device (11) having a ring-shaped guide portion (11a) which is fitted around the lower die (16b,16d) of the punching press (16) with centers of the guide portion and the lower die being aligned with each other and held in a recess (11b) of the attracting device (11) with center of the elastic material ring-plate (5a), and centers of the recess (11b) and the guide portion (11a) of the attracting device (11) being aligned with each other, and then

 the guide portion (11a) of the attracting device (11) having the metallic ring-plate (4a) is fitted around the lower die (16b,16d) of the punching press (16) on which the elastic material ring-plate (5a) is placed to overlap the metallic ring-plate (4a) and the elastic material ring-plate (5a).
5. The method as claimed in any one of claims 1 to 4, wherein the elastic material ring-plate (5a) is made of selected one of Vulcanized natural rubber and vulcanized synthetic rubber.

6. The method as claimed in any one of claims 1 to 5, wherein a diameter (d2) of an inner hole (4b) of the metallic ring-plate (4a) is larger than a diameter (d4) of an inner hole (5b) of the elastic material ring-plate (5a).

7. The method as claimed in any one of claims 1 to 5, wherein a diameter (d2) of an inner hole (4b) of the metallic ring-plate (4a) is not larger than a diameter (d4) of an inner hole (5b) of the elastic material ring-plate (5a).

8. A sealing plate (12, 22, 32) for a bearing, which comprises:

 a metallic ring-plate (4a);
 a Vulcanized elastic material ring-plate (5a); and
 an elastic material layer (2) having adhesive property for bonding the metallic ring-plate (4a) and the vulcanized elastic material ring-plate (5a) wherein the centers of the metallic ring-plate (4a) and the Vulcanized elastic material ring-plate (5a) are aligned with each other, characterized in that the vulcanized elastic material ring-plate (5a) has an outer peripheral edge portion (5e) outwardly protruded from an outer peripheral edge of the metallic ring-plate (4a) by such a width (a) as to be bent for wrapping the outer peripheral edge of the metallic ring-plate (4a) therein, when it is forced into a sealing groove (41a) of the bearing for sealing.

9. The sealing plate as claimed in claim 8, wherein the elastic material ring-plate (5a) is made of selected one of vulcanized natural rubber and vulcanized synthetic rubber.

10. The sealing plate as claimed in claim 8 or 9, wherein a diameter (d2) of an inner hole (4b) of the metallic ring-plate (4a) is larger than a diameter (d4) of an inner hole (5b) of the elastic material ring-plate (5a).

11. The sealing plate as claimed in claim 8 or 9, wherein a diameter (d2) of an inner hole (4b) of the metallic ring-plate (4a) is not larger than a diameter (d4) of an inner hole (5b) of the elastic material ring-plate (5a).

Patentansprüche

1. Verfahren zum Herstellen einer Dichtungsplatte (12, 22, 32) für ein Lager mit den Schritten:

 1. Bilden einer Schicht (2) aus elastischem Material mit einer Haftfähigkeit auf einer Oberfläche einer Metallplatte (1) oder einer Platte (5) aus vulkanisiertem elastischem Material;
 2. Ausstanzen einer metallischen Ringsplatte (4a) aus der Metallplatte (1) durch eine Lochstanze (13) und Ausstanzen einer Ringsplatte (5a) aus elastischem Material mit einem Außendurchmesser (d3), der größer ist als der Außendurchmesser (d1) der metallischen Ringsplatte (4a), aus der Platte (5) aus elastischem Material mit einer Lochstanze (16);
 3. Überlappen der metallischen Ringsplatte (4a) und der Ringsplatte (5a) aus elastischem Material, wobei die Schicht (2) aus elastischem Material mit der Haftfähigkeit zwischen der metallischen Ringsplatte (4a) und der Ringsplatte (5a) aus elastischem Material positioniert wird, wobei ihre Mittelpunkte miteinander ausgerichtet werden; und
 4. Verbinden der metallischen Ringsplatte (4a) und der Ringsplatte (5a) aus elastischem Material über die Schicht (2) aus elastischem Material durch Druckausübung oder Druckausübung und Erwärmen, um dadurch die Dichtungsplatte zu bilden, wobei sich der äußere Umfangsrandabschnitt (5e) der Ringsplatte (5a) aus elastischem Material um eine solche Breite (a) über den äußeren Umfangsrand der metallischen Ringsplatte (4a) erstreckt, daß er so gebogen wird, daß er den äußeren Umfangsrand der metallischen Ringsplatte (4a) umwickelt, wenn er zum Dichten in eine Dichtrille (41a) des Lagers gedrängt wird.

2. Verfahren nach Anspruch 1, bei welchem beim Stanzschritt die metallische Ringsplatte (4a) aus der Metallplatte (1) ausgestanzt wird, indem die metallische Ringsplatte (4a) durch einen unteren Stempel (13b, 13d) der Lochstanze (13) gehalten wird, während die Metallplatte (1) durch einen anderen oberen und unteren Stempel (13a, 13c) der Lochstanze (13) in Dickenrichtung der Metallplatte (1) bewegt wird, und die Ringsplatte (5a) aus elastischem Material aus der Platte (5) aus elastischem Material ausgestanzt wird, indem die Ringsplatte (5a) aus elastischem Material durch einen oberen und einen unteren Stempel (16b, 16d) der Lochstanze (16) gehalten wird, während die Platte (5) aus elastischem Material durch einen anderen oberen und unteren Stempel (16a, 16c) der Lochstanze (16) in Dickenrichtung der Platte (5) aus elastischem Material bewegt wird.
3. Verfahren nach Anspruch 1 oder 2, bei welchem beim Überlappungsschnitt

die Ringplatte (5a) aus elastischem Material nach dem Stanzschnitt auf einem unteren Stempel (16b, 16c) der Lochstanz (16) gehalten wird,
die metallische Ringplatte (4a) mit einer Anziehvorräumung (11) angezogen wird, die einen ringförmigen Führungsabschnitt (Ila) aufweist,
der um den unteren Stempel (16b, 16d) der Lochstanz (16) gepaßt wird, wobei die Mittelpunkte des Führungseabschnitts und des unteren Stempels miteinander ausgerichtet werden
und in einer Vertiefung (1b) der Anziehvorräumung (11) gehalten werden, wobei der Mittelpunkt der Ringplatte (5a) aus elastischem Material und die Mittelpunkte der Vertiefung (11b) und des Führungsabschnitts (11a) der Anziehvorräumung (11) miteinander ausgerichtet werden
und wobei dann der Führungsabschnitt (11a) der Anziehvorräumung (11) mit der metallischen Ringplatte (4a) um den unteren Stempel (16b, 16d) der Lochstanz (16) gepaßt wird, wobei die die Ringplatte (5a) aus elastischem Material so angeordnet wird, daß die die metallische Ringplatte (4a) und die Ringplatte (5a) aus elastischem Material überlappt werden.

5. Verfahren nach einem der Ansprüche 1 bis 4, bei welchem die Ringplatte (5a) aus elastischem Material aus vulkanisiertem Naturgummi oder vulkanisiertem Kunstgummi besteht.

6. Verfahren nach einem der Ansprüche 1 bis 5, bei welchem ein Durchmesser (d2) eines inneren Lochs (4b) der metallischen Ringplatte (4a) größer ist als ein Durchmesser (d4) eines inneren Lochs (5b) der Ringplatte (5a) aus elastischem Material.

7. Verfahren nach einem der Ansprüche 1 bis 5, bei welchem ein Durchmesser (d2) eines inneren Lochs (4b) der metallischen Ringplatte (4a) nicht größer ist als ein Durchmesser (d4) eines inneren Lochs (5b) der Ringplatte (5a) aus elastischem Material.

8. Dichtungsplatte (12, 22, 32) für ein Lager, die aufweist:
eine metallische Ringplatte (4a);
eine Ringplatte (5a) aus vulkanisiertem elastischem Material und
eine Schicht (2) aus elastischem Material mit einer Haftfähigkeit zum Verbinden der metallischen Ringplatte (4a) und der Ringplatte (5a) aus vulkanisiertem elastischem Material, wobei die Mittelpunkte der metallischen Ringplatte (4a) und der Ringplatte (5a) aus vulkanisiertem elastischem Material miteinander ausgerichtet werden,
dadurch gekennzeichnet, daß

die Ringplatte (5a) aus vulkanisiertem elastischem Material einen äußeren Umfangsrandabschnitt (5e) aufweist, der um eine solche Breite (a) über den äußeren Umfangsrand der metallischen Ringplatte (4a) übersteht, daß er so gebogen wird, daß er den äußeren Umfangsrand der metallischen Ringplatte (4a) umwickelt, wenn er zum Dichten in eine Dichtrinde (41a) des Lagers gedrängt wird.

9. Dichtungsplatte nach Anspruch 8, bei welcher die Ringplatte (5a) aus elastischem Material aus vulkanisiertem Naturgummi oder vulkanisiertem Kunstgummi besteht.
10. Dichtungspalte nach Anspruch 8 oder 9, bei welcher der Durchmesser (d2) eines inneren Lochs (4b) der metallischen Ringplatte (4a) größer ist als ein Durchmesser (d4) eines inneren Lochs (5b) der Ringplatte (5a) aus elastischem Material.

11. Dichtungspalte nach Anspruch 8 oder 9, bei welcher ein Durchmesser (d2) eines inneren Lochs (4b) der metallischen Ringplatte (4a) nicht größer ist als ein Durchmesser (d4) eines inneren Lochs (5b) der Ringplatte (5a) aus elastischem Material.

Revendications

1. Procédé de fabrication d'une plaque d'étanchéité (12, 22, 32) destinée à un palier, qui comprend les étapes consistant à :

- former une couche (2) en matière élastique ayant une propriété d'adhérence sur une face de l'une entre une plaque métallique (1) et une plaque (5) en une matière élastique vulcanisée,
- découper une plaque annulaire métallique (4a) dans la plaque métallique (1) à l'aide d'une presse à découper (13), et découper dans la plaque (5) en matière élastique une plaque annulaire (5a) en matière élastique ayant un diamètre extérieur (d3) plus grand que le diamètre extérieur (d1) de la plaque annulaire métallique (4a) à l'aide d'une presse à découper (16),
- faire se recouvrir la plaque annulaire métallique (4a) et la plaque annulaire (5a) en matière élastique, la couche (2) en matière élastique possédant la propriété d'adhérence étant placée entre la plaque annulaire métallique (4a) et la plaque annulaire (5a) en matière élastique, et les centres de celles-ci étant alignés l'un avec l'autre, et
- lier l'une avec l'autre la plaque annulaire métallique (4a) et la plaque annulaire (5a) en matière élastique par l'intermédiaire de la couche (2) en matière élastique par mise en pression ou mise en pression et chauffage, pour former ainsi la plaque d'étanchéité,

dans lequel la partie (5e) de bord périphérique extérieur de la plaque annulaire (5a) en matière élastique s'étend vers l'extérieur depuis le bord périphérique extérieur de la plaque annulaire métallique (4a) sur une largeur (a) lui permettant d'être pliée pour y envelopper le bord périphérique extérieur de la plaque annulaire métallique (4a), lorsqu'elle est introduite en force dans une gorge d'étanchéité (41a) du palier pour rendre étanche.

2. Procédé selon la revendication 1, dans lequel dans l'étape de découpage, la plaque annulaire métalli-
dans un évidement (10a) d'un support (10), le centre de la plaque annulaire métallique (4a) étant aligné avec le centre de l'évidement (10a) du support (10), la plaque annulaire métallique (4a) retenue dans l'évidement (10a) du support (10) est attirée par un dispositif d'attraction (11) présentant une partie de guidage annulaire (11a) qui est adaptée autour de la matrice inférieure (16b, 16d) de la presse à découper (16), les centres de la partie de guidage et de la matrice inférieure étant alignés l'un avec l'autre et retenus dans un évidement (11b) du dispositif d'attraction (11), le centre de la plaque annulaire (5a) en matière élastique, et les centres de l'évidement (11b) et de la partie de guidage (11a) du dispositif d'attraction (11) étant alignés les uns avec les autres, et ensuite - la partie de guidage (11a) du dispositif d'attraction (11) comportant la plaque annulaire métallique (4a) est adaptée autour de la matrice inférieure (16b, 16d) de la presse à découper (16) sur laquelle la plaque annulaire (5a) en matière élastique est placée pour faire se recouvrir la plaque annulaire métallique (4a) et la plaque annulaire (5a) en matière élastique.

5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la plaque annulaire (5a) en matière élastique est en l'un choisir entre un caoutchouc naturel vulcanisé et un caoutchouc synthétique vulcanisé.

6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le diamètre (d2) d'un trou intérieur (4b) de la plaque annulaire métallique (4a) est plus grand que le diamètre (d4) d'un trou intérieur (5b) de la plaque annulaire (5a) en matière élastique.

7. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le diamètre (d2) d'un trou intérieur (4b) de la plaque annulaire métallique (4a) n'est pas plus grand que le diamètre (d4) d'un trou intérieur (5b) de la plaque annulaire (5a) en matière élastique.

8. Plaque d'étanchéité (12, 22, 32) destinée à un palier, qui comprend :

- une plaque annulaire métallique (4a),
- une plaque annulaire (5a) en une matière élastique vulcanisée, et
- une couche (2) en matière élastique possédant une propriété d'adhérence pour lier la plaque annulaire métallique (4a) et la plaque annulaire (5a) en matière élastique vulcanisée, dans laquelle les centres de la plaque annulaire métallique (4a) et de la plaque annulaire (5a) en matière élastique vulcanisée sont alignés l'un avec l'autre, caractérisée en ce que la plaque annulaire (5a) en matière élastique vulcanisée présente une partie (5e) de bord périphérique extérieur s'avancant vers l'extérieur depuis un bord périphérique extérieur de la plaque annulaire métallique (4a) sur une largeur (a) lui permettant d'être pliée pour y envelopper le bord périphérique extérieur de la plaque annulaire métallique (4a), lorsqu'elle est introduite en force dans une gorge d'étanchéité (41a) du palier pour rendre étanche.

9. Plaque d'étanchéité selon la revendication 8, dans laquelle la plaque annulaire (5a) en matière élastique est en l'un choisir entre un caoutchouc naturel vulcanisé et un caoutchouc synthétique vulcanisé.

10. Plaque d'étanchéité selon la revendication 8 ou 9, dans lequel le diamètre (d2) d'un trou intérieur (4b) de la plaque annulaire métallique (4a) est plus grand que le diamètre (d4) d'un trou intérieur (5b) de la plaque annulaire (5a) en matière élastique.

11. Plaque d'étanchéité selon la revendication 8 ou 9, dans lequel le diamètre (d2) d'un trou intérieur (4b) de la plaque annulaire métallique (4a) n'est pas plus grand que le diamètre (d4) d'un trou intérieur (5b) de la plaque annulaire (5a) en matière élastique.
Fig. 2

Fig. 3
Fig. 16

Fig. 17