EUROPEAN PATENT SPECIFICATION

(51) Int.Cl.: G10L 3/00

(86) International application number:
PCT/SE94/00027

(87) International publication number:
WO 94/17515 (04.08.1994 Gazette 1994/18)

METHOD AND APPARATUS FOR ENCODING/DECODING OF BACKGROUND SOUNDS

VERFAHREN UND VORRICHTUNG ZUR KODIERUNG/DEKODIERUNG VON
HINTERGRUNDGERÄUSCHEN

PROCEDURE ET APPAREIL DE CODAGE/DECODAGE DE BRUITS DE FOND

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL PT

(30) Priority: 29.01.1993 SE 9300290

(43) Date of publication of application:
18.01.1995 Bulletin 1995/03

(73) Proprietor: TELEFONAKTIEBOLAGET LM
ERICSSON
126 25 Stockholm (SE)

(72) Inventor: BERGSTROM, Rolf, Anders
S-431 60 Mölndal (SE)

(74) Representative: Mrazek, Werner et al
Dr. Ludwig Brann Patentbyra AB
P.O. Box 1344
751 43 Uppsala (SE)

(56) References cited:
WO-A-89/08910
GB-A- 2 137 791

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The present invention relates to a method and an apparatus for encoding/decoding of background sounds in a digital frame based speech coder and/or decoder including a signal source connected to a filter, said filter being defined by a set of filter defining parameters for each frame, for reproducing the signal that is to be encoded and/or decoded.

BACKGROUND OF THE INVENTION

Many modern speech coders belong to a large class of speech coders known as LPC (Linear Predictive Coders). Examples of coders belonging to this class are: the 4.8 Kbit/s CELP from the US Department of Defense, the RPE-LTP coder of the European digital cellular mobile telephone system GSM, the VSELP coder of the corresponding American system ADC, as well as the VSELP coder of the Pacific Digital Cellular system PDC.

These coders all utilize a source-filter concept in the signal generation process. The filter is used to model the short-time spectrum of the signal that is to be reproduced, whereas the source is assumed to handle all other signal variations.

A common feature of these source-filter models is that the signal to be reproduced is represented by parameters defining the output signal of the source and filter parameters defining the filter. The term "linear predictive" refers to a class of methods often used for estimating the filter parameters. Thus, the signal to be reproduced is partially represented by a set of filter parameters.

The method of utilizing a source-filter combination as a signal model has proven to work relatively well for speech signals. However, when the user of a mobile telephone is silent and the input signal comprises the surrounding sounds, the presently known coders have difficulties to cope with this situation, since they are optimized for speech signals. A listener on the other side may easily get annoyed when familiar background sounds cannot be recognized since they have been "mistreated" by the coder.

SUMMARY OF THE INVENTION

An object of the present invention is a method and an apparatus for encoding/decoding background sounds in such a way that background sounds are encoded and reproduced accurately.

The above object is achieved by a method comprising the steps of:

(a) detecting whether the signal that is directed to said coder/decoder represents primarily speech or background sounds; and

(b) when said signal directed to said coder/decoder represents primarily background sounds, restricting the temporal variation between consecutive frames and/or the domain of at least one filter defining parameter in said set.

The apparatus comprises:

(a) means for detecting whether the signal that is directed to said coder/decoder represents primarily speech or background sounds; and

(b) means for restricting the temporal variation between consecutive frames and/or the domain of at least one filter defining parameter in said set when said signal directed to said coder/decoder represents primarily background sounds.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further objects and advantages thereof, may best be understood by making reference to the following description taken together with the accompanying drawings, in which:

FIGURE 1(a)-(f) are frequency spectrum diagrams for 6 consecutive frames of the transfer function of a filter representing background sound, which filter has been estimated by a previously known coder;

FIGURE 2 is a block diagram of a speech coder for performing the method in accordance with the present invention;

FIGURE 3 is a block diagram of a speech decoder for performing the method in accordance with the
present invention;

FIGURE 4(a)-(c) are frequency spectrum diagrams corresponding to the diagrams of Figure 1, but for a coder performing the method of the present invention;

FIGURE 5 is a block diagram of the parameter modifier of Figure 2, and

FIGURE 6 is a flow chart illustrating the method of the present invention.

Detailed description of the preferred embodiments

In a linear predictive coder the synthetic speech $\hat{S}(z)$ is produced by a source represented by its z-transform $G(z)$, followed by a filter, represented by its z-transform $H(z)$, resulting in the synthetic speech $\hat{S}(z) = G(z)H(z)$. Often the filter is modelled as an all-pole filter $H(z) = 1/A(z)$, where

$$A(z) = 1 + \sum_{m=1}^{M} a_m z^{-m}$$

and where M is the order of the filter.

This filter models the short-time correlation of the input speech signal. The filter parameters, a_m, are assumed to be constant during each speech frame. Typically the filter parameters are updated each 20 ms. If the sampling frequency is 8 kHz each such frame corresponds to 160 samples. These samples, possibly combined with samples from the end of the previous and the beginning of the next frame, are used for estimating the filter parameters of each frame in accordance with standardized procedures. Examples of such procedures are the Levinson-Durbin algorithm, the Burg algorithm, Cholesky decomposition (Rabiner, Schafer: "Digital Processing of Speech Signals", Chapter 8, Prentice-Hall, 1978), the Schur algorithm (Stroebach: "New Forms of Levinson and Schur Algorithms", IEEE SP Magazine, Jan 1991, pp 12-36), the Le Roux-Gueguen algorithm (Le Roux, Gueguen: "A Fixed Point Computation of Partial Correlation Coefficients", IEEE Transactions on Acoustics, Speech and Signal Processing, Vol ASSP-26, No 3, pp 257-259, 1977). It is to be understood that a frame can consist of either more or fewer samples than mentioned above, depending on the application. In one extreme case a "frame" can even comprise only a single sample.

As mentioned above the coder is designed and optimized for handling speech signals. This has resulted in a poor coding of other sounds than speech, for instance background sounds, music etc. Thus, in the absence of a speech signal these coders have poor performance.

Figure 1 shows the magnitude of the transfer function of the filter (in dB) as a function of frequency $\omega (\equiv 2\pi f t_{1/f})$ for 6 consecutive frames in the case where a background sound has been encoded using conventional coding techniques. Although the background sound should be of uniform character over time (the background sound has a uniform "texture"), when estimated during *snapshots* of only 21.25 ms (including samples from the end of the previous and beginning of the next frame), the filter parameters a_m will vary significantly from frame to frame, which is illustrated by the 6 frames (a) - (f) of Figure 1. To the listener at the other end this coded sound will have a "swirling" character. Even though the overall sound has a quite uniform "texture" or statistical properties, these short "snapshots" when analyzed for filter estimation, give quite different filter parameters from frame to frame.

Figure 2 shows a coder in accordance with the invention which is intended to solve the above problem.

On an input line 10 an input signal is forwarded to a filter estimator 12, which estimates the filter parameters in accordance with standardized procedures as mentioned above. Filter estimator 12 outputs the filter parameters for each frame. These filter parameters are forwarded to an excitation analyzer 14, which also receives the input signal on line 10. Excitation analyzer 14 determines the best source or excitation parameters in accordance with standard procedures. Examples of such procedures are VSELP (Gerson, Jasiuk: "Vector Sum Excited Linear Prediction (VSELP)", in Atal et al, eds, "Advances in Speech Coding", Kluwer Academic Publishers, 1991, pp 69-79), TBPE (Salami, "Binary Pulse Excitation: A Novel Approach to Low Complexity CELP Coding", pp 145-156 of previous reference), Stochastic Code Bock (Campbell et al: "The DoD4.8 Kbps Standard (Proposed Federal Standard 1016)", pp 121-134 of previous reference), ACELP (Adoul, Lamblin: "A Comparison of Some Algebraic Structures for CELP Coding of Speech", Proc. International Conference on Acoustics, Speech and Signal Processing 1987, pp 1953-1956) These excitation parameters, the filter parameters and the input signal on line 10 are forwarded to a speech detector 16. This detector 16 determines whether the input signal comprises primarily speech or background sounds. A possible detector is for instance the voice activity detector defined in the GSM system (Voice Activity Detection, GSM-recommendation
A suitable detector is described in EP A 335 521 (BRITISH TELECOM PLC). Speech detector 16 produces an output signal indicating whether the coder input signal contains primarily speech or not. This output signal together with the filter parameters is forwarded to a parameter modifier 18.

Parameter modifier 18, which will be further described with reference to Figure 5, modifies the determined filter parameters in the case where there is no speech signal present in the input signal to the coder. If a speech signal is present the filter parameters pass through parameter modifier 18 without change. The possibly changed filter parameters and the excitation parameters are forwarded to a channel coder 20, which produces the bit-stream that is sent over the channel on line 22.

The parameter modification by parameter modifier 18 can be performed in several ways.

One possible modification is a bandwidth expansion of the filter. This means that the poles of the filter are moved towards the origin of the complex plane. Assuming that the original filter \(H(z) = 1/A(z) \) is given by the expression mentioned above, when the poles are moved with a factor \(r, 0 \leq r \leq 1 \), the bandwidth expanded version is defined by \(A(z^r) \), or:

\[
A(z^r) = 1 + \sum_{m=1}^{N} (a_m r^m) z^{-m}
\]

Another possible modification is low-pass filtering of the filter parameters in the temporal domain. That is, rapid variations of the filter parameters from frame to frame are attenuated by low-pass filtering at least some of said parameters. A special case of this method is averaging of the filter parameters over several frames, for instance 4-5 frames.

Parameter modifier 18 can also use a combination of these two methods, for instance perform a bandwidth expansion followed by low-pass filtering. It is also possible to start with low-pass filtering and then add the bandwidth expansion.

In the embodiment of Figure 2 speech detector 16 is positioned after filter estimator 12 and excitation analyzer 14. Thus, in this embodiment the filter parameters are first estimated and then modified in the absence of a speech signal. Another possibility would be to detect the presence/absence of a speech signal directly, for instance by using two microphones, one for speech and one for background sounds. In such an embodiment it would be possible to modify the filter estimation itself in order to obtain proper filter parameters also in the absence of a speech signal.

In the above explanation of the invention it has been assumed that the parameter modification is performed in the coder in the transmitter. However, it is appreciated that a similar procedure can also be performed in the decoder of the receiver. This is illustrated by the embodiment shown in Figure 3.

In Figure 3 a bit-stream from the channel is received on input line 30. This bit-stream is decoded by channel decoder 32. Channel decoder 32 outputs filter parameters and excitation parameters. In this case it is assumed that these parameters have not been modified in the coder of the transmitter. The filter and excitation parameters are forwarded to a speech detector 34, which analyzes these parameters to determine whether the signal that would be reproduced by these parameters contains a speech signal or not. The output signal of speech detector 34 is forwarded to a parameter modifier 36, which also receives the filter parameters. If speech detector 34 has determined that there is no speech signal present in the received signal, parameter modifier 36 performs a modification similar to the modification performed by parameter modifier 18 of Figure 2. If a speech signal is present no modification occurs. The possibly modified filter parameters and the excitation parameters are forwarded to a speech decoder 38, which produces a synthetic output signal on line 40. Speech decoder 38 uses the excitation parameters to generate the above mentioned source signals and the possibly modified filter parameters to define the filter in the source-filter model.

As mentioned above parameter modifier 36 modifies the filter parameters in a similar way as parameter modifier 18 in Figure 2. Thus, possible modifications are a bandwidth expansion, low-pass filtering or a combination of the two.

In a preferred embodiment the decoder of Figure 3 also contains a postfilter calculator 42 and a postfilter 44. A postfilter in a speech decoder is used to emphasize or de-emphasize certain parts of the spectrum of the produced speech signal. If the received signal is dominated by background sounds an improved signal can be obtained by tilting the spectrum of the output signal on line 40 in order to reduce the amplitude of the higher frequencies. Thus, in the embodiment of Figure 3 the output signal of speech detector 34 and the output filter parameters of parameter modifier 36 are forwarded to postfilter 42. In the absence of a speech signal in the received signal postfilter calculator 42 calculates a suitable tilt of the spectrum of the output signal on line 40 and adjusts postfilter 44 accordingly. The final output signal is obtained on line 46.

From the above description it is clear that the filter parameter modification can be performed either in the coder of the transmitter or in the decoder of the receiver. This feature can be used to implement the parameter modification in the coder and decoder of a base station. In this way it would be possible to take advantage of the improved coding performance for background sounds obtained by the present invention without modifying the coders/decoders of the
mobile stations. When a signal containing background noise is obtained by the base station over the land system, the parameters are modified at the base station so that already modified parameters will be received by the mobile station, where no further actions have to be taken. On the other hand, when the mobile station sends a signal containing primarily background noise to the base station, the filter parameters characterizing this signal can be modified in the decoder of the base station for further delivery to the land system.

Another possibility would be to divide the filter parameter modification between the coder at the transmitter end and the decoder at the receiver end. For instance, the poles of the filter could be partially moved closer to the origin of the complex plane in the coder and be moved closer to the origin in the decoder. In this embodiment a partial improvement of performance would be obtained in mobiles without parameter modification equipment and the full improvement would be obtained in mobiles with this equipment.

To illustrate the improvements that are obtained by the present invention Figure 4 shows the spectrum of the transfer function of the filter in three consecutive frames containing primarily background sound. Figures 4(a)-(c) have been produced with the same input signal as Figures 1(a)-(c). However, in Figure 4 the filter parameters have been modified in accordance with the present invention. It is appreciated that the spectrum varies very little from frame to frame in Figure 4.

Figure 5 shows a schematic diagram of a preferred embodiment of the parameter modifier 18, 36 used in the present invention. A switch 50 directs the unmodified filter parameters either directly to the output or to blocks 52, 54 for parameter modification, depending on the control signal from speech detector 16, 34. If speech detector 16, 34 has detected primarily speech, switch 50 directs the parameters directly to the output of parameter modifier 18, 36. If speech detector 16, 34 has detected primarily background sounds, switch 50 directs the filter parameters to an assignment block 52.

Assignment block 52 performs a bandwidth expansion on the filter parameters by multiplying each filter coefficient $\alpha_m(k)$ by a factor r, where $0 \leq r \leq 1$ and k refers to the current frame, and assigning these new values to each $\alpha_m(k)$. Preferably r lies in the interval 0.85–0.96. A suitable value is 0.89.

The new values $\alpha_m(k)$ from block 52 are directed to assignment block 54, where the coefficients $\alpha_m(k)$ are low pass filtered in accordance with the formula $\alpha_m(k-1)+(1-g)\alpha_m(k)$, where $0 \leq g \leq 1$ and $\alpha_m(k-1)$ refers to the filter coefficients of the previous frame. Preferably g lies in the interval 0.92–0.995. A suitable value is 0.995. These modified parameters are then directed to the output of parameter modifier 18, 36.

In the described embodiment the bandwidth expansion and low pass filtering was performed in two separate blocks. It is, however, also possible to combine these two steps into a single step in accordance with the formula $\alpha_m(k) \leftarrow \alpha_m(k-1)+(1-g)\alpha_m(k)$. Further more, the low pass filtering step involved only the present and one previous frames. However, it is also possible to include older frames, for instance 2–4 previous frames.

Figure 6 shows a flow chart illustrating a preferred embodiment of the method in accordance with the present invention. The procedure starts in step 60. In step 61 the filter parameters are estimated in accordance with one of the methods mentioned above. These filter parameters are then used to estimate the excitation parameters in step 62. This is done in accordance with one of the methods mentioned above. In step 63 the filter parameters and excitation parameters and possibly the input signal itself are used to determine whether the input signal is a speech signal or not. If the input signal is a speech signal the procedure proceeds to step 65 without modification of the filter parameters. If the input signal is not a speech signal the procedure proceeds to step 64, in which the bandwidth of the filter is expanded by moving the poles of the filter closer to the origin of the complex plane. Thereafter the filter parameters are low-pass filtered in step 65, for instance by forming the average of the current filter parameters from step 64 and filter parameters from previous signal frames. Finally the procedure proceeds to full step 66.

In the above description the filter coefficients α_m were used to illustrate the method of the present invention. However, it is to be understood that the same basic ideas can be applied to other parameters that define or are related to the filter, for instance filter reflection coefficients, log area ratios (lar), roots of polynomial, autocorrelation functions (Rabiner, Schafer: "Digital Processing of Speech Signals", Prentice-Hall, 1978), arcsine of reflection coefficients (Gray, Markel: "Quantization and Bit Allocation in Speech Processing", IEEE Transactions on Acoustics, Speech and Signal Processing", Vol ASSP-24, No 6, 1976), line spectrum pairs (Soong, Juang: Line Spectrum Pair (LSP) and Speech Data compression", Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing 1984, pp 1.10.1–1.10.4).

Furthermore, another modification of the described embodiment of the present invention would be an embodiment where there is no post filter in the receiver. Instead the corresponding tilt of the spectrum is obtained already in the modification of the filter parameters, either in the transmitter or in the receiver. This can for instance be done by varying the so called reflection coefficient 1.

It will be understood by those skilled in the art that various modifications and changes may be made to the present invention without departure from the scope thereof, which is defined by the appended claims.
Claims

1. A method of encoding and/or decoding background sounds in a digital frame based speech coder and/or decoder including a signal source connected to a filter, said filter being defined by a set of parameters for each frame, for reproducing the signal that is to be encoded and/or decoded, said method comprising the steps of:

(a) detecting whether the signal that is directed to said coder/decoder represents primarily speech or background sounds; and

(b) when said signal directed to said coder/decoder represents primarily background sounds, restricting the temporal variation between consecutive frames and/or the domain of at least one filter defining parameter in said set.

2. The method of claim 1, wherein the temporal variation of said filter defining parameters is restricted by low pass filtering said filter defining parameters over several frames.

3. The method of claim 2, wherein the temporal variation of the filter defining parameters is restricted by averaging said filter defining parameters over several frames.

4. The method of claim 1, 2 or 3, wherein the domain of said filter defining parameters is modified to move the poles of the filter closer to the origin of the complex plane.

5. The method of any of the preceding claims, wherein the signal obtained by said source and said filter with modified parameters is further modified by a postfilter to de-emphasize predetermined frequency regions therein.

6. An apparatus for encoding and/or decoding background sounds in a digital frame based speech coder and/or decoder including a signal source connected to a filter, said filter being defined by a set of parameters for each frame, for reproducing the signal that is to be encoded and/or decoded, said apparatus comprising:

(a) means (16, 34) for detecting whether the signal that is directed to said coder/decoder represents primarily speech or background sounds; and

(b) means (16, 36) for restricting the temporal variation between consecutive frames and/or the domain of at least one filter defining parameter in said set when said signal directed to said coder/decoder represents primarily background sounds.

7. The apparatus of claim 6, wherein the temporal variation of said filter defining parameters is restricted by a low pass filter (54) that filters said filter defining parameters over several frames.

8. The apparatus of claim 7, wherein the temporal variation of the filter defining parameters is restricted by a low pass filter that averages said filter defining parameters over several frames.

9. The apparatus of claim 6, 7 or 8, wherein the domain of said filter defining parameters is modified in means (52) that move the poles of the filter closer to the origin of the complex plane.

10. The apparatus of any of the preceding claims 6-9, wherein the signal obtained by said source and said filter with modified parameters is further modified by a postfilter (44) to de-emphasize predetermined frequency regions therein.

Patentansprüche

1. Verfahren zum Codieren und/oder Decodieren von Hintergrundgeräuschen in einem Digitalrahmen-gestützten Sprachcodierer und -decodierer mit einer Signalquelle, die mit einem Filter verbunden ist, wobei das Filter durch einen Satz von Parametern für jeden Rahmen definiert ist, um das Signal, das codiert und/oder decodiert werden soll, zu reproduzieren, wobei das Verfahren die folgenden Schritte umfaßt:

(a) Erfassen, ob das Signal, das an den Codierer/Decodierer gerichtet wird, vorwiegend Sprache oder Hin-
tergrundgeräusche darstellt; und

(b) wenn das an den Codierer/Decodierer gerichtete Signal vorwiegend Hintergrundgeräusche darstellt, Bе-
schränken der zeitlichen Veränderung zwischen aufeinanderfolgenden Rahmen und/oder der Domäne von
wenigstens einem Filterdefinitionsparameter in dem Satz.

2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß die zeitliche Veränderung der Filterdefinitionsparameter durch eine Tiefpaßfilter-
zung der Filterdefinitionsparameter über mehrere Rahmen beschränkt wird.

3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet, daß die zeitliche Veränderung der Filterdefinitionsparameter durch Mitteln der Filter-
definitionsparameter über mehrere Rahmen beschränkt wird.

4. Verfahren nach Anspruch 1, 2 oder 3,
dadurch gekennzeichnet, daß die Domäne der Filterdefinitionsparameter modifiziert wird, um die Pole des Filters
näher an den Ursprung der komplexen Ebene zu bewegen.

5. Verfahren nach irgendwelchen der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß das von der Quelle ermittelte Signal und das Filter mit modifizierten Parametern
ferner durch ein Postfilter modifiziert wird, um vorgegebene Frequenzbereiche darin abzuschwächen.

6. Vorrichtung zum Codieren und/oder Decodieren von Hintergrundgeräuschen in einem Digitalrahmen-gestützten
Sprachcodierer und/oder Decoder mit einer Signalquelle, die mit einem Filter verbunden ist, wobei das Filter durch
einen Satz von Parametern für jeden Rahmen definiert wird, um das Signal, das codiert und/oder decodiert werden
soll, zu reproduzieren, wobei die Vorrichtung umfaßt:

(a) eine Einrichtung (16, 34) zum Erfassen, ob das Signal, das an den Codierer/Decodierer gerichtet wird,
vorwiegend Sprache oder Hintergrundgeräusche darstellt; und

(b) eine Einrichtung (18, 36), um die zeitliche Veränderung zwischen aufeinanderfolgenden Rahmen und/oder
die Domäne von wenigstens einem Filterdefinitionsparameter in dem Satz zu beschränken, wenn das an den
Codierer/Decodierer gerichtete Signal vorwiegend Hintergrundgeräusche darstellt.

7. Vorrichtung nach Anspruch 6,
dadurch gekennzeichnet, daß die zeitliche Änderung der Filterdefinitionsparameter durch ein Tiefpaßfilter (54)
beschränkt wird, das die Filterdefinitionsparameter über mehrere Rahmen filtert.

8. Vorrichtung nach Anspruch 7,
dadurch gekennzeichnet, daß die zeitliche Veränderung der Filterdefinitionsparameter durch ein Tiefpaßfilter
beschränkt wird, das die Filterdefinitionsparameter über mehrere Rahmen mittelt.

9. Vorrichtung nach Anspruch 6, 7 oder 8,
dadurch gekennzeichnet, daß die Domäne der Filterdefinitionsparameter in der Einrichtung (52), die die Pole
des Filters näher zu dem Ursprung der komplexen Ebene bewegt, modifiziert wird.

10. Vorrichtung nach irgendeinem der vorangehenden Ansprüche 6 - 9,
dadurch gekennzeichnet, daß das von der Quelle erhaltene Signal und das Filter mit modifizierten Parametern
weiter durch ein Postfilter (44) modifiziert wird, um vorgegebene Frequenzbereiche darin abzuschwächen.

Revendications

1. Procédé de codage et/ou de décodage de bruits de fond dans un codeur et/ou décodeur de la parole sur une base
de trame numérique comprenant une source de signal connectée à un filtre, ledit filtre étant défini par un ensemble
de paramètres pour chaque trame, pour reproduire le signal qui doit être codé et/ou décodé, ledit procédé com-
prenant les étapes consistant à:
(a) détecter si le signal qui est dirigé sur ledit codeur/décodeur représente essentiellement de la parole ou des bruits de fond; et
(b) lorsque ledit signal dirigé sur ledit codeur/décodeur représente essentiellement des bruits de fond, restreindre la variation temporelle entre des trames consécutives et/ou le domaine d’au moins un paramètre de définition de filtre dans ledit ensemble.

2. Procédé selon la revendication 1, dans lequel la variation temporelle desdits paramètres de définition de filtre est restreinte par un filtrage passe-bas desdits paramètres de définition de filtre sur plusieurs trames.

3. Procédé selon la revendication 2, dans lequel la variation temporelle des paramètres de définition de filtre est restreinte en faisant la moyenne desdits paramètres de définition de filtre sur plusieurs trames.

4. Procédé selon la revendication 1, 2 ou 3, dans lequel le domaine desdits paramètres de définition de filtre est modifié de manière à rapprocher les pôles du filtre de l’origine du plan complexe.

5. Procédé selon l’une quelconque des revendications précédentes, dans lequel le signal obtenu par ladite source et ledit filtre avec des paramètres modifiés est encore modifié par un postfiltre de manière à y atténuer des régions de fréquences prédéterminées.

6. Appareil de codage et/ou de décodage de bruits de fond dans un codeur et/ou décodeur de la parole sur une base de trame numérique comprenant une source de signal connectée à un filtre. Ledit filtre étant défini par un ensemble de paramètres pour chaque trame, pour reproduire le signal qui doit être codé et/ou décodé, ledit appareil comprenant:

(a) des moyens (16, 34) pour détecter si le signal qui est dirigé sur ledit codeur/décodeur représente essentiellement de la parole ou des bruits de fond; et
(b) des moyens (18, 36) pour restreindre la variation temporelle entre des trames consécutives et/ou le domaine d’au moins un paramètre de définition de filtre dans ledit ensemble lorsque ledit signal dirigé sur ledit codeur/décodeur représente essentiellement des bruits de fond.

7. Appareil selon la revendication 6, dans lequel la variation temporelle desdits paramètres de définition de filtre est restreinte par un filtre passe-bas (54) qui filtre lesdits paramètres de définition de filtre sur plusieurs trames.

8. Appareil selon la revendication 7, dans lequel la variation temporelle des paramètres de définition de filtre est restreinte par un filtre passe-bas qui fait la moyenne desdits paramètres de définition de filtre sur plusieurs trames.

9. Appareil selon la revendication 6, 7 ou 8, dans lequel le domaine desdits paramètres de définition de filtre est modifié dans un moyen (52) qui rapproche les pôles du filtre de l’origine du plan complexe.

10. Appareil selon l’une quelconque des revendications précédentes 6-9, dans lequel le signal obtenu par ladite source et ledit filtre avec des paramètres modifiés est encore modifié par un postfiltre (44) de manière à y atténuer des régions de fréquences prédéterminées.