EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

(21) Application number: 92924920.9
(22) Date of filing: 15.12.1992

(51) Int. Cl.²: D03D 1/00, D03D 11/00

(86) International application number:
PCT/JP92/01632

(87) International publication number:
WO 94/13872 (23.06.1994 Gazette 1994/14)

(54) THICK BELT
DICKER RIEMEN
COURROIE EPAISSE

(84) Designated Contracting States:
BE CH DE ES FR GB IT LI NL SE

(43) Date of publication of application:
04.01.1995 Bulletin 1995/01

(73) Proprietor:
KIKUCHI WEB TECH CO., LTD.
Haibara-gun, Shizuoka 421-0301 (JP)

(72) Inventors:
• KIKUCHI, Koichi
 Shimada-shi, Shizuoka 427-01 (JP)
• WATANABE, Masao
 Haibara-gun, Shizuoka 421-03 (JP)

(74) Representative:
Cohausz & Florack
Patentanwälte
Postfach 33 02 29
40435 Düsseldorf (DE)

(56) References cited:
US-A- 4 209 044

• Microfilm of the Specification and Drawings
 Annexed to the Written Application of Japanese
 Utility Model Application No. 60737/1982 (Laid-
 Open No. 163959/1983), (Kopal K.K.), November
 1, 1983 (01.11.83), fig. 1 (Family: none).

• Microfilm of the Specification and Drawings
 Annexed to the Written Application of Japanese
 Utility Model Application No. 128560/1981 (Laid-
 Open No. 34871/1983), (Kanebo Gosel Kagaku
 K.K. and another), March 7, 1983 (07.03.83),
 (Family: none).

• Microfilm of the Specification and Drawings
 Annexed to the Written Application of Japanese
 Utility Model Application No. 62490/1980 (Laid-
 Open No. 165081/1981), (Sanshin Seisen K.K.),
 December 7, 1981 (07.12.81), (Family: none).

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a thick belt, particularly to a thick high-strength belt used, in place of a rope, as a safety belt or for a sling for a flexible container.

BACKGROUND ART

A safety belt generally comprises a metal member attached to one end of a rope and a hook attached to the other end thereof. In a sling for a flexible container, a rope is connected to a metal member attached to a container body. Usually the connection of the rope with the metal member is carried out manually by a process in which a rope end is untwisted to a group of strands which are then fixedly incorporated into the rope body. Since this process requires skill as well as considerable strength, it is difficult to obtain operators therefor nowadays. If a narrow width woven fabric is used in place of a rope, the connection may be easily carried out through a sewing operation, but the handling thereof is inferior to a rope due to its width.

In a woven fabric used for a sling requiring a high strength, it is necessary to weave a number of warps into a predetermined width of the fabric, whereby the fabric must be three layered, or two layered while adding a plurality of reinforcing core yarns. An inspection of eight slings available in the market showed that the average thickness was 4.17 mm and the maximum thickness was 5.2 mm (nylon). An estimate was obtained, from the investigation of these weave structures, that the average breakage strength is 7820 Kgf and the maximum is 10680 Kgf (polyester) if a strength utilization ratio is assumed to be 80%. As there is a limit in the number of warp which can be woven into a predetermined width, it is necessary to weave fabrics with unwillingly widening its width, so that the strength requirement is fulfilled. Of course, specially high-strength yarns, such as aramide fiber yarns, may be used for this requirement, but these are so expensive that they cannot be used for general purposes.

In a needle-type narrow loom, a weft is picked into a warp shed from one side thereof, and received by a latch needle positioned on the other side so that a knitted selvage is formed. During the formation of the selvage, the weft is first caught by a hook of the latch needle. There is no problem when the weft is received by the hook from a back layer of a multilayered thick fabric, but when it is received from a front layer, the weft is liable to detach from the hook if the weft is positioned above a tip end of the hook. Accordingly, a fabric thickness under which a weaving operation is stably carried out is less than 5 mm in a gray fabric, and less than 4.5 mm after the heat-set was carried out thereto.

In a rack-and-pinion type narrow loom, the weaving operation can be relatively smoothly continued even if a number of warps are woven, because a shuttle passes through a center of shedding while being gripped. However, there is one drawback therein. That is, it is necessary to increase the lengths of shuttle and shuttle box relative to the dimensions of the weaving window so that the shuttle is retained in the original shuttle box until a rack of the shuttle engages with a pinion of an opposite shuttle box. This results in the lowering of loom rotational speed, and since a wider space is required, the loom is generally designed as narrow as possible provided the shuttle can be safely passed. Therefore, if a shedding motion is even slightly disturbed when an extremely thick belt is woven, the passage of shuttle is obstructed and this causes a machine failure.

In a slide-hook motion-type narrow loom, a slide bar movable both in the right direction and left direction with reference to Fig. 10A, is provided in part of a shuttle race. A vertical groove is provided in the slide bar, in which a hook is movable upward and downward by a cam provided inside a sley. Two holes are bored, respectively in the right and left areas of the bottom wall of the shuttle for receiving the hook therein when the shuttle is in the shuttle box to move the shuttle along by the displacement of the slide bar, while the hook is lowered when the shuttle passes through the weaving window. After the shuttle has passed through the weaving window, the hook returns to the hole in the bottom wall of the shuttle to assist the movement of the shuttle.

In a slide-hook motion-type narrow loom, lower side warps forming a shed are brought into contact with the race and the shuttle runs thereon. When an extremely thickened belt is woven in which a warp volume exceeds a certain level, the shuttle cannot clear the same, and becomes liable to float, resulting in unstable running and machine failure.

Further, while all parts in the loom frame, the motor arrangement, the weft picking mechanism, the shedding mechanism such as a doby or the like, and the take-up device must be constructed to be resistant to the high warp tension, this requirement is not satisfactorily fulfilled by the conventional loom.
GB-A-333 275 discloses a multiple ply textile fabric suitable for band conveyors, friction linings of brakes, transmission bands or clutches. In particular it describes a multiple ply textile fabric of three or more plies in which each ply is formed of interwoven ground weft threads and of ground warp threads which do not pass from ply to ply, the plies being bound together by separate additional binder threads.

The belt is to offer greater resistance presented to the fasteners against pulling through and is to have an increased flexibility whereby it presents a better gripping surface to the pulleys or driving rollers if one or more of the inner plies have a greater number of weft threads per unit area in the outer plies.

US-A-4,209,044 discloses a belt which is suitable especially for a sling to lift or hoist an object. The sling belt chiefly comprises a sheath of filament yarns made of polyamide synthetic fibers, and a core of filament yarns made of polyester synthetic fibers. The sheath covering the core has two sides, i.e., an upper or face side, which is to be brought into direct contact with the object, and a lower or back side which is apart from the object. Both sides comprise a layer of textile. The face side is made thicker than the back side to improve its anti-abrasiveness to extend the life of the sling belt as a whole.

An object of the present invention is, in a wider sense, to provide a narrow width fabric having a thickness and a breakage strength per unit width exceeding conventional knowledge.

A first specific object is to produce a thick belt having a cross-sectional shape as close as possible to that of a rope.

A second specific object is to produce a narrow fabric having a thickness more than 6 mm and a high breakage strength, which has not been obtainable by a conventional art.

A third specific object is to obtain connection means for the belt of the first object as with a rope, by forming the fabric end wider, and with a suitable thickness, to allow a sewing operation thereon.

A thick belt comprising a core region and at least four layers of weave structure including two outer layers and at least two remaining inner layers, said two outer layers being woven into a hollow tube by respective warps and a common weft and said at least two remaining inner layers being woven by respective warps and a second common weft, wherein said core region is formed by core yarns and said core yarns being arranged only an area formed within the most inner side hollow fabric layer of said layers or being arranged in an area formed within the most inner side hollow fabric layer of said layers and in an area formed between two layers thereof adjacently arranged to each other, the belt having a width and a weaving structure and the weaving structure providing a portion having a rope-like cross sectional shape in a central area and the thickness of said belt being greater than one quarter of the belt width.

Since the thick belt defined in the present invention comprises the above technical constituents, a high density, multilayered woven structure can be effectively obtained by utilizing a loom, while, in the conventional process, a plurality of yarns are knitted into a rope in an ineffective manner. This novel thick belt has a strength equal to that of the conventional rope and can be used in place thereof. According to the thick belt, a required rope-like structure can be obtained through a usual sewing process instead of the process used for a conventional rope.

Fig. 1 is a cross-sectional view of a thick belt according to the present invention, illustrating one example of woven structure thereof;

Fig. 2 is a cross-sectional view of another thick belt according to the present invention, illustrating another example of woven structure thereof;

Fig. 3 is a plan view of a thick belt, illustrating an arrangement of the basic section and the wider sections;

Fig. 4 is a cross-sectional view of a shuttle race used in the present invention, illustrating a shape of a stepped recess formed therein;

Fig. 5 is a side view of a take-up motion used in the present invention;

Figs. 6A through 6F illustrate a shape of combination of take-up roller and pressing roller in a take-up motion mechanism, respectively;

Fig. 7 illustrates a slide hook mechanism of a shuttle loom used in the present invention.

A thick belt according to the present invention will be described below in more detail with reference to the drawings. In the description, "layer" stands for a unit of woven structure formed by the intersection of warp and weft. A
structure, such as reinforcing core yarn group in which the warp and weft are not intersected with each other is not referred to as “layer”.

[0021] Fig. 1 is a schematic illustration of cross-section of a thick belt woven using double shuttles for one belt. In the illustrated example, the thick belt 1 consists of four layers: outer layers 2, 3 and inner layers 5, 6. For simplicity, the respective layer is shown in a weave structure of 1/1, but other structures such as 2/1, 2/2, 3/1 or 3/3 may be preferably used because a number of warps can be woven into a predetermined width of the belt. In the outer layers 2, 3, warps 61, 71 thereof are woven in a hollow weave by a common weft 41. Also in the inner layers 5, 6, warps 51, 52 thereof are woven in a hollow weave by a common weft 42. It is possible to form the inner layers as more than three layers. In the latter case, although the inner layers are not tubular, there is no problem at all. In the usual multilayered weave, connecting yarn is used for connecting the respective layers with each other. However, the connecting yarn is not used in this case, and the warps 61, 71 are not restricted by the connecting yarn and liable to be in a tubular form if the weft is picked at a high tension. Thus, the belt has a substantially oval shape in cross-section as shown in Fig. 1. To obtain such the shape, it is indispensable to weave the outer layers 2, 3 in a tubular form while using the common weft 41 and to form the inner layer with at least two layers 5, 6 while using another weft 42 to thicken the central area of the belt. Although the warps 61, 71 of the outer layers are preferably of the same material and thickness, this is not an indispensable condition. Since the inner warps are invisible from outside, they are preferably arranged so that thicker yarns are closer to a widthwise central area of the belt, whereby the central area is further thickened. In this case, the connecting yarn may preferably be used only in the inner layers. The connecting yarn used is preferably one having a good elasticity. Reinforcing core yarns may be arranged between the adjacent layers, if necessary. A group of reinforcing core yarns 7 is arranged within the inner layer 6. In the example shown in Fig. 1. More warps are preferably distributed in a central area of a front reed than in the remaining area. According to these weaving conditions, it is possible to obtain a thick belt with a cross-sectional shape closer to that of a rope. In addition, when a heat set is applied thereto, the cross-section of the belt becomes circular, whereby a product far from the concept of the conventional belt and having a cross-sectional shape similar to that of a rope can result. It is necessary that, after the heat set, the belt has a thickness of at least one quarter of the belt width in a widthwise central area thereof, which is the smallest thickness for easy manipulation. For example, when the belt width is 32 mm, the thickness in the central area should be more than 8 mm.

[0022] Fig. 2 shows a schematic cross-section of one embodiment of a thick belt which is similar to a sling. In the illustrated embodiment, the thick belt 1 consists of two outer layers (front and back) 2, 3, a group of reinforcing core yarns 7 interposed between both the layers and a connecting yarn 8 connecting the front and back layers. Even though three or four layers are comprised, they may be woven by only one weft 41. The use of single weft is not an indispensable condition but two wefts may be used as shown in Fig. 1. Fig. 2 illustrates a very common structure of a thick belt, having characteristics in that the total decitex of the warps used is larger than the conventional thick belt, resulting in a high breakage strength per unit width and a thickness, except for the selvage area, of more than 6 mm after heat setting operation was carried out. The characteristics will be described below in more detail.

[0023] The following factors determine the breakage strength and thickness of a narrow woven fabric.

1. Quality (breakage strength), decitex and number (total decitex) of warps used in the fabric
2. Weave structure, weft decitex and picks of weft per unit length

[0024] When a woven fabric is designed, it is usual that material, decitex and number of warps to be used are first decided while taking a required fabric strength into account, then a weave structure, weft decitex and picks of weft per unit length are selected in a limited range defined in accordance with a weaving technology. Regarding slings belonging to a field in which the maximum strength is required as a narrow width fabric, an analysis was made on the marketed products available from various makers and listed on Table 1. According to this table, a thickness of warp bundle used in the following formula was 2.02 mm on average value and 2.42 mm maximum, obtained by dividing a cross-sectional area of all warps by a belt width; and a belt thickness was 4.17 mm on average value and 5.20 mm maximum. It was assumed that nylon and polyester yarns have a breakage strength of 9 g/d and the strength utilization ratio is 80%.

[0025] Calculation formulas:

\[
\frac{0.00125 \sqrt{(\text{total decitex of warps} \div \text{fiber specific gravity})}}{\text{woven width of belt (mm)}} = \text{diameter of warp bundle assuming the same has a circular cross-section (mm)}
\]

[0026] Cross-sectional area of warp bundle obtained by the above formula \((\text{mm}^2) \div \text{woven width of belt (mm)} = \text{thickness of warp bundle (mm)}\) (1)
From the analysis of the conventional narrow fabrics shown in Table 1, which are thought to be high-quality, it is decided in the present invention that the thickness of warp bundle should be at least 2.5 mm and the belt thickness

<table>
<thead>
<tr>
<th>Maker</th>
<th>Weave</th>
<th>Loom</th>
<th>Material</th>
<th>Thickness (mm)</th>
<th>Width (mm)</th>
<th>Total denier</th>
<th>Assumed strength (Kgf)</th>
<th>Decitex</th>
<th>Diameter</th>
<th>Thickness</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/1</td>
<td>shuttle</td>
<td>nylon</td>
<td>3.50</td>
<td>51.9</td>
<td>946620</td>
<td>6816</td>
<td>2024.56</td>
<td>4.76</td>
<td>1.78</td>
<td>1313</td>
</tr>
<tr>
<td>B</td>
<td>1/1</td>
<td>shuttle</td>
<td>nylon</td>
<td>3.95</td>
<td>49.6</td>
<td>1022280</td>
<td>7360</td>
<td>2207.77</td>
<td>5.06</td>
<td>2.01</td>
<td>1484</td>
</tr>
<tr>
<td>C</td>
<td>1/1</td>
<td>shuttle</td>
<td>nylon</td>
<td>4.00</td>
<td>52.6</td>
<td>1038240</td>
<td>7475</td>
<td>2190.96</td>
<td>4.95</td>
<td>1.92</td>
<td>1421</td>
</tr>
<tr>
<td>D</td>
<td>1/1</td>
<td>shuttle</td>
<td>nylon</td>
<td>5.20</td>
<td>51.2</td>
<td>1155840</td>
<td>8322</td>
<td>2505.82</td>
<td>5.30</td>
<td>2.20</td>
<td>1625</td>
</tr>
<tr>
<td>E</td>
<td>1/1</td>
<td>shuttle</td>
<td>nylon</td>
<td>4.10</td>
<td>52.2</td>
<td>1000440</td>
<td>7203</td>
<td>2127.37</td>
<td>4.88</td>
<td>1.87</td>
<td>1380</td>
</tr>
<tr>
<td>F</td>
<td>2/2</td>
<td>shuttle</td>
<td>nylon</td>
<td>4.20</td>
<td>49.7</td>
<td>1051680</td>
<td>7572</td>
<td>2348.83</td>
<td>5.13</td>
<td>2.06</td>
<td>1524</td>
</tr>
<tr>
<td>G</td>
<td>2/1</td>
<td>needle</td>
<td>nylon</td>
<td>3.50</td>
<td>51.1</td>
<td>990360</td>
<td>7131</td>
<td>2151.27</td>
<td>4.91</td>
<td>1.89</td>
<td>1395</td>
</tr>
<tr>
<td>H</td>
<td>1/1</td>
<td>needle</td>
<td>polyester</td>
<td>4.88</td>
<td>49.4</td>
<td>1483000</td>
<td>10670</td>
<td>3332.24</td>
<td>5.55</td>
<td>2.42</td>
<td>2161</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.17</td>
<td>51.0</td>
<td>1086058</td>
<td>7820</td>
<td>2371.1</td>
<td>5.07</td>
<td>2.02</td>
<td>1538</td>
</tr>
<tr>
<td>Ref.</td>
<td>nylon</td>
<td>6.00</td>
<td>50.0</td>
<td>1280000</td>
<td>9216</td>
<td>2841.6</td>
<td>5.64</td>
<td>2.50</td>
<td>1863</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref.</td>
<td>polyester</td>
<td>6.00</td>
<td>50.0</td>
<td>1550000</td>
<td>11160</td>
<td>3441.0</td>
<td>5.64</td>
<td>2.50</td>
<td>2232</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Calculations were made while assuming the specific gravity of nylon is 1.14 and that of polyester is 1.38.
* Assumed strength was calculated by [(total decitex x 9 (g/d)) x 0.00888 + 1000].
should be at least 6.0 mm so as to exceed the quality of the conventional products. Values cited as reference in Table 1 are obtained by the reverse calculation while defining the thickness of warp bundle as 2.5 mm.

Fig. 3 illustrates a belt comprising a basic section 10 having a rope-like shape shown in Fig. 1, wider width sections 11 extending from the lengthwise opposite ends of the basic section 10 and joint sections 12, 13 connecting both of the former two sections with each other and having a gradually varying width. The basic section 10 is a belt formed of a woven structure consisting of more than four layers, in which outer two layers are woven in a hollow weave by a common weft and the remaining layers other than the outer two layers are woven as inner layers by another weft. The thickness in the widthwise central area of the belt is larger than a quarter of the belt width.

The wider section 11 is formed wider and thinner relative to the basic section 10 to be suitable for the sewing operation. The width of the wider section is preferably wider by at least 50% than that of the basic section 10. Assuming that the belt is woven from the left to the right as seen in Fig. 3, the joint section 12 is formed so that the width thereof is gradually narrowed and the thickness thereof is gradually thicker, while the joint section 13 is formed so that the width thereof is gradually wider and the thickness thereof is gradually thinner. Lengths of the basic section 10 and the wider width section 11 are selected to be suitable for the expected use. The weaving process will be described below in detail.

Basically, the belt width is adjusted using a sector-shaped front reed which is movable upward and downward. In this regard, since the basic section 10 is thicker in the widthwise central area thereof, it is necessary to widen the thickness portion as much as possible in the wider section 11. For this purpose, the reed pitch is not uniform in the wider section, but coarser in the central area and gradually finer toward the outside.

In the conventional belt with varying width, the same weave structure is used in both the narrower and wider sections. However, according to the present invention, since the basic section 10 comprises more than four layers in its weave structure and is difficult to widen while maintaining this weave structure, the number of layers in the basic section 10 is reduced in the joint section 13 so that the width can be readily increased. That is, if the basic section 10 has four layers, the number of layers is reduced to two in the joint section 13 and in the wider section. If the width variation is greater, the number of layers in the joint section may be further reduced from two to one for the wider section. Beside the reduction of the number of layers, it is possible to convert the weave structure of the respective layer, for example, from 2/2 twill weave to 1/1 plain weave. However, it is better to vary the number of yarns in a warp unit, while maintaining the weave structure as it is, so that the number of layers can be reduced without affecting the product appearance. When the joint section 12 changes from the wider section 11 to the basic section 10, the weaving process is carried out in a reverse manner to the above.

The basic section 10 having the wider section 11 is designed so that a reduction or increase of layers is facilitated. For example, it is preferable not to use reinforcing core yarns in the basic section 10 because the conversion of weave structure becomes difficult. In this regard, it may be possible to build a proper number of reinforcing core-like yarns into the basic section 10 and use the same as connecting yarns when the number of layers is reduced to two or three in the wider section 11, so that the wider section is stable.

While it is necessary to vary a weft picking number per unit length in accordance with the reduction or increase of layers and the change of width, the detailed description thereof is eliminated in this specification because such the procedure is well-known from the prior art.

Next, looms and other devices for producing the thick belt described with reference to Figs. 1 and 2, and having a thickness larger than that of the conventional belt, will be explained.

As stated in the prior art, the maximum number of warps capable of being woven into a predetermined width of narrow fabric is mainly decided by the limitations of a loom, and it was found that the thick belt of the present invention cannot be produced while using a conventional loom. Accordingly, the present inventors have studied how to develop a loom, and devices thereof, capable of producing a thick belt according to the present invention.

Two shuttles are necessary for the production of the belt shown in Fig. 1. In the rack-and-pinion type loom, a double shuttle mechanism becomes complicated because one shuttle is exchanged with the other while moving upward and downward, which results in the reduction of the loom rotational speed. The slide hook motion type loom is thus preferably used, because two shuttles are positioned in a side-by-side manner in the same shed and either can be selected by a relatively simple means. In the conventional loom of this type, however, as explained with reference to Fig. 1, when a thick belt is woven thereon, having a thickness in the widthwise central area larger than one quarter of its width after heat setting, the thickness of the warp bundle becomes more than 5 mm in the widthwise central area during the weaving process, if the warps are drawn into, for example, a 35 mm wide front reed. The shuttle cannot run over lower side warps forming the shed when the warp bundle is extremely voluminous.

To solve this problem a stepped groove is provided in the shuttle race so that the lower warp bundle is positioned below the upper surface of the shuttle race when the shed is formed. In addition, a plurality of exchangeable parts are prepared, with varying groove depths and/or widths, so that a suitable stepped groove is provided corresponding to various belts of different widths and thicknesses.

The detailed description will be made of the exchangeable part for the stepped groove with reference to Fig.
4. Fig. 4 illustrates one embodiment, in which an exchanging part 24 having a stepped groove 22 is fixed in a weaving window of a shuttle race 21 provided on the upper surface of a slay 20. The cross-sectional shape of the stepped groove 22 is preferably selected while taking into account the maximum volume of the lower warp bundle 26 forming a shed. It is variable in accordance with the weave structure, with reference to the cross-sectional shape of the thick belt to be woven, yarn material, denier or number of the warps. In Fig. 6, examples of the cross-sectional shape of the stepped groove 22 are shown. A total length B, bottom length A, maximum depth C and end depth D of the stepped groove are listed in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>35 mm</td>
<td>65 mm</td>
<td>5 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>2.</td>
<td>20 mm</td>
<td>40 mm</td>
<td>8 mm</td>
<td>4 mm</td>
</tr>
<tr>
<td>3.</td>
<td>50 mm</td>
<td>50 mm</td>
<td>5 mm</td>
<td>5 mm</td>
</tr>
</tbody>
</table>

In this regard, the use of the exchangeable part 24 is not indispensable, but the stepped groove having, for example, dimensions listed in item 3 of Table 2 may be directly formed on the shuttle race. That is, the groove having the maximum dimensions for the expected use may be originally provided.

According to such the arrangement, it is possible for the shuttle 23 to smoothly run through the shed 27 between the upper side warp bundle 25 and the lower side warp bundle 26 even though the lower side warp bundle is at the maximum volume when the warp bundle woven to be the thick belt forms the shed, because the lower side warp bundle can be accommodated in the groove 22.

An embodiment of a slide hook motion mechanism used for the present invention will be explained with reference to Figs. 7 (A) through 7 (C). In Figs. 7 (B), 7 (C), a channel 94 opening to the shuttle race 21 is provided in the slay 20, for guiding a slide bar 90, and a cam 92 is provided in the inner side wall of the channel 94 in the lengthwise direction thereof (in the right or left directions in Fig. 7 (A)). The cam 92 is closer to the shuttle race 21 beneath a non-illustrated shuttle box so that a tip end of a hook 91 enters a bore formed in the shuttle bottom, while the cam 92 is farther from the shuttle race 21 beneath the stepped groove 22 so that the tip end of the hook 91 can pass under the stepped groove 22. In short, the upper surface of the slide bar 90 is at a level lower than the bottom of the stepped groove 22 having the maximum depth, while in the conventional slide hook motion mechanism, it is at substantially the same level as the shuttle race 21.

Fig. 7 (B) is the illustration of a positional relationship between shuttle race 21, slide bar 90, hook 91, cam 92 and shuttle 23 beneath the shuttle box, and Fig. 7 (C) is that beneath the stepped groove 22. According to a protrusion 93 of the hook entering the cam 92, the hook is movable up and down according to the height variation of the cam 92. In this regard, the slide bar 90 is reciprocated right and left by a non-illustrated drive means. Through such the structure, the tip end of the hook 91 is projected upward and engages with the bottom bore of the shuttle 23 to displace the same in the right/left directions, or the tip end of the hook 91 disengages therefrom when the shuttle 23 passes the weaving window so that the displacement of the shuttle is stably carried out.

A slant section of the cam 92 is elongated compared with the conventional one to mitigate a shock caused by a longer up-down stroke of hook 91 due to the lower arrangement of the slide bar 90 and length of the shuttle 23 is also elongated. However, since such a modification can be designed when the length of the weaving window and the maximum depth of the stepped groove 22 are determined, a specific description is not given.

Next, a mechanism for taking up a thick belt according to the present invention during the weaving process will be explained.

A take-up motion mechanism is provided in a narrow width loom, comprising at least two sets of roller unit, each consisting of a take-up roller and a press roller contacting the same, in which at least one roller in the respective roller unit has a circumferential groove 35 or 36 on the outer periphery thereof.

Fig. 5 illustrates one embodiment of the take-up mechanism. As shown in Fig. 5(A), a woven belt 1 is taken up by a first take-up roller 30 and press roller 31 set, and transferred to a second take-up roller 32 and press roller 33 set via an intermediate roller 37. The shape of groove 35, 36 provided on the outer periphery of at least one of take-up roller and press roller in the respective roller unit is designed to be conformable with the cross-sectional shape of the thick belt to be woven, as shown in Figs. 5(B) and 5(C). Examples of the groove shape are illustrated in Fig. 6.

In Figs. 6A and 6B, grooves of various shapes are provided on both of the take-up rollers and press rollers.

In Figs. 6C and 6D, grooves of various shapes are provided only on the take-up rollers.

In Figs. 6E and 6F, grooves of various shapes are provided only on the press rollers.
When the wider section is woven while varying the cross-sectional shape thereof, two press rollers with different grooves are preferably used while being combined with one take-up roller. In practice, a plurality of these take-up rollers or press rollers, each having a groove different from the other, are preliminarily prepared as exchangeable parts so that replacement is easy. The take-up roller shown in Fig. 5 has a relatively large diameter of 150 mm for taking up a thick belt.

While the structures of the loom, such as a loom frame, motor arrangement, picking motion, shedding motion or take-up motion mechanism are designed to be durable against high power for weaving a thick belt according to the present invention, compared with the conventional loom, they are not special but can be designed or selected on demand, whereby a detailed explanation is not given.

Since the present invention comprises the above-mentioned technical features, it is possible to provide a narrow woven fabric having a large thickness and a superior breakage strength per unit width exceeding a level of the strength thereof which could be conventionally obtained. Further, it is possible to provide mechanisms for a loom capable of producing such a thick belt. The effects of the present invention are as follows:

a. Firstly, a narrow fabric is obtained, capable of being easily manipulated and having a cross-sectional shape closer to that of rope. This narrow width fabric can be used in a field in which a rope has been conventionally used.
b. Secondly, it is possible to produce a thick belt having a width of more than 6 mm which is the upper limit of the prior art product. As a result, a thick belt is obtainable which has a greater breakage strength relative to the conventional thick belt of the same material and width. Thereby it is possible to reduce the fabric width to maintain the breakage strength at the same level relative to the conventional product made of the same material.
c. Thirdly, since a wider section is provided while extending a basic section corresponding to the thick belt of the first invention, it is possible to connect the fabric by the sewing the wider width section when the same is used in place of a rope. Thus, the popular and conventional rope connecting method called as "satsuma" (splice) in Japanese, is no more required to use for connecting at least two ropes therefore, the operability for connecting ropes is greatly improved. Particularly, such the product is suitable as a safety belt or a sling for a flexible container.
d. Fourthly, the present thick belt can be effectively woven.

Claims

A thick belt (1) comprising a core region and at least four layers (2, 3, 5, 6) of weave structure including two outer layers (2, 3) and at least two remaining inner layers (5, 6), said two outer layers (2, 3) being woven into a hollow tube by respective warps (61, 71) and a common weft (41) and said at least two remaining inner layers (5, 6) being woven by respective warps (51, 52) and a second common weft (42), wherein said core region is formed by core yarns (7) and said core yarns (7) being arranged only an area formed within the most inner side hollow fabric layer (6) of said layers or being arranged in an area formed within the most inner side hollow fabric layer (6) of said layers and in an area formed between two layers thereof adjacent to each other, the belt having a width and a weaving structure and the weaving structure providing a portion having a rope-like cross sectional shape in a central area and the thickness of said belt being greater than one quarter of the belt width.

A thick belt (1) as defined by the above mentioned claim 1, which comprises a basic portion (10) consisting of a thick belt construction having a rope-like cross sectional shape and a wider section (11) having a cross sectional shape corresponding to a flat section thinner and wider relative to said basic portion (10) and arranged lengthwise thereof, said basic portion (10) and said wider section (11) being of different woven structures, said basic portion (10) having a thickness larger than that of said wider section (11) and a width smaller than that of said wider section (11).

Patentansprüche

Dicker Gurt (1), umfassend einen Kernbereich und mindestens vier Schichten (2, 3, 5, 6) Gewebestruktur, die zwei äußere Schichten (2, 3) und mindestens zwei übrige innere Schichten (5,6) enthält, wobei die äußeren Schichten (2, 3) durch entsprechende Kettfäden (61, 71) und einen gemeinsamen Schußfäden (41) zu einer hohlen Röhre gewebt sind, und wobei die mindestens zwei übrigen inneren Schichten (5, 6) durch entsprechende Kettfäden (51, 52) und einen zweiten gemeinsamen Schußfäden (42) gewebt sind, wobei der Kernbereich durch Kerngarne (7) gebildet ist und die Kerngarne (7) nur in einem Bereich angeordnet sind, der innerhalb der innersten Reihe der hohlen Faserschicht (6) der Schichten ausgebildet ist, oder in einem Bereich, der innerhalb der innersten Reihe der hohlen Faserschicht (6) der Schichten ausgebildet ist, und in einem Bereich, der zwischen zwei nebeneinanderliegenden Schichten derselben gebildet ist, angeordnet sind, wobei der Gurt eine Breite und Gewebestruktur aufweist, und die Gewebestruktur einen Abschnitt mit einer seilartigen Querschnittsform in einem mittleren Bereich.
bereitstellt, und die Dicke des Gurts größer als ein Viertel der Gurtbreite ist.

2. Dicker Gurt (1) nach Anspruch 1, der einen Grundabschnitt (10) umfaßt, der aus einer dicken Gurtkonstruktion mit seilartiger Querschnittsform besteht, sowie einen breiteren Abschnitt (11) mit einer Querschnittsform, die einem flach en Abschnitt entspricht, der dünner und breiter als der Grundabschnitt (10) ist und in dessen Längsrichtung angeordnet ist, wobei der Grundabschnitt (10) und der breitere Abschnitt (11) aus verschiedenen Gewebestrukturen bestehen, wobei der Grundabschnitt (10) eine Dicke hat, die größer als jene des breiteren Abschnittes (11) ist, und eine Breite, die geringer als jene des breiteren Abschnittes (11) ist.

Revendications

1. Sangle épaisse (1) comprenant une âme et au moins quatre couches (2, 3, 5, 6) d'une structure de tissage comprenant deux couches externes (2, 3) et au moins deux autres couches internes (5, 6), les deux couches externes (2, 3) étant tissées pour former un tube creux par des chaînes respectives (61, 71) et une trame commune (41), et les couches internes restantes (5, 6), au moins deux, étant tissées par des chaînes respectives (51, 52) et une seconde trame commune (42), l'âme étant constituée de fils d'âme (7), lesdits fils d'âme (7) étant disposés unique- ment dans une zone ménagée à l'intérieur de la couche d'étoffe creuse (6) située du côté le plus à l'intérieur desdites couches, ou étant disposés dans une zone ménagée à l'intérieur de la couche d'étoffe creuse (6) située du côté le plus à l'intérieur desdites couches et une zone ménagée entre deux couches parmi celles-ci, voisines l'une de l'autre, la sangle présentant une largeur et une structure de tissage, et la structure de tissage procurant une por- tion ayant une forme de section transversale pareille à celle d'un cordage dans une zone centrale, et l'épaisseur de la sangle étant supérieure à un quart de la largeur de la sangle.

2. Sangle épaisse (1) selon la revendication 1 ci-dessus, comprenant une portion de base (10) constituée d'une construc- tion de sangle épaisse ayant une forme de section transversale pareille à celle d'un cordage, et une section plus large (11) ayant une forme de section transversale correspondant à une section plate plus fine et plus large que la portion de base (10) et disposée dans le sens de la longueur de cette dernière, la portion de base (10) et la section plus large (11) étant de structures tissées différentes, la portion de base (10) ayant une épaisseur supé- rieure à celle de la section plus large (11) et une largeur plus petite que celle de la section plus large (11).