EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 09.09.1998 Bulletin 1998/37

(51) Int Cl.8: H04L 12/24

(21) Application number: 94480021.8

(22) Date of filing: 08.03.1994

(54) System and method for monitoring simple network management protocol tables

Anordnung und Verfahren zur Überwachung von Tafeln von einfachen Netzverwaltungsprotokollen
Système et méthode pour surveiller des tables de protocoles simples de gestion de réseaux

(84) Designated Contracting States: DE FR GB

(30) Priority: 05.04.1993 US 42952

(43) Date of publication of application: 26.10.1994 Bulletin 1994/43

(73) Proprietor: International Business Machines Corporation
Armonk, N.Y. 10504 (US)

(72) Inventors:
• Chen, David De-Hui
 Cary, NC 27513 (US)
• McKenzie, William Frank, Jr.
 Raleigh, NC 27615 (US)
• Ordanic, Zvonimir
 Raleigh, NC 27615 (US)
• Temoshenko, Leo
 Raleigh, NC 27612 (US)

(74) Representative: de Pena, Alain et al
Compagnie IBM France
Département de Propriété Intellectuelle
06610 La Gaude (FR)

(56) References cited:
EP-A-0 224 681

• THE SIMPLE BOOK AN INTRODUCTION TO MANAGEMENT OF TCP/IP-BASED INTERNETS, ENGLEWOOD CLIFFS, US, pages 131-158, M.T.ROSE 'Mechanism: SNMP'

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

I. Field of the Invention

The present invention relates to network management using the Simple Network Management Protocol (SNMP) and, more particularly, to a system and method for monitoring SNMP tables.

II. Background and Prior Art

Data communication has become a fundamental part of computing. World-wide networks gather data about such diverse subjects as atmospheric conditions, crop production, and airline traffic. These networks evolved as independent entities without the ability, or, until recently, the need, to interconnect with one another. New technologies, generically named "internetworking", have emerged making it possible to interconnect many disparate physical networks and make them function as a coordinated unit. Using internetworking technologies, a host, for example, on one network, may traverse multiple networks and communicate with another host on a different network.

The size of an "internet", or group of interconnected networks, can vary quite significantly. For instance, the resulting network may be enormously large, such as the nation-wide DARPA (Defense Advanced Research Projects Agency)/NSF (National Science Foundation) Internet which connects most major research institutions, including universities, corporate and government labs. Conversely, the network may be relatively small, characterized in that it comprises only a single corporation's individual local area networks (LANs).

No matter the size of the network, it is clear that the task of effectively managing the resulting interconnected network is quite important and has been given a great deal of attention in the networking community. In managing a network, a network manager must keep track of the devices on the networks, monitor the network's performance and load, and diagnose and correct any problems.

While products that manage homogeneous networks have been available, managing heterogeneous networks is more complex and, until recently, no generally accepted heterogeneous network management standard existed. The Simple Network Management Protocol (SNMP), which originated as a means for managing the TCP/IP (Transmission Control Protocol/Internet Protocol) and Ethernet networks, has broadened rapidly since its monitoring and control transactions are completely independent of TCP/IP and Ethernet.

Using SNMP, network administrators can address queries and commands to network nodes and devices. SNMP monitors network performance and status; controls operational parameters; and reports, analyzes and isolates faults. The protocol accomplishes these functions by transporting management information between "Managers" and "Agents".

SNMP defines the following three basic components: 1. An Agent, a component housed within a managed network device such as a host, gateway, or terminal server. Each Agent stores management data and responds to the Manager's requests for this data, and may send a "TRAP", a special unsolicited SNMP message, to the Manager after sensing a prespecified condition. 2. A Manager, a component housed within a Network Management Station. The Manager queries/controls Agents using various SNMP commands. 3. A Management Information Base (MIB), a managed object database, accessible to Agents and manipulated via SNMP for network management application.

To carry out the Agent's and Manager's duties, SNMP specifies five types of commands or verbs, called Protocol Data Units (PDUs): GetRequest, GetNextRequest, SetRequest, GetResponse and Trap. Agents inspect and retrieve the management data after receiving either a GetRequest or a GetNextRequest PDU from a Manager. Managers use GetRequest for retrieving single values of the managed objects. The GetNextRequest is issued by the Manager to begin a primitive block transfer and the Agent returns the selected data with a GetResponse verb. Managers use SetRequest commands for instructing Agents to alter MIB variables while Traps are unsolicited messages sent by Agents to Managers after sensing prespecified conditions.

SNMP managed objects are logically grouped. For example, MIB II, the current Internet standard MIB, defines the following logical groups: system, interfaces, at, ip, icmp, tcp, udp, transmission, and snmp. Some of these groups are optional and may or may not be present in an SNMP managed device, depending upon the device's capability, i.e., if a device is performing exterior gateway protocol (egp) routing, the group must be present. Other, proprietary groups of objects can be created by following the proper registration scheme.

The Manager is charged with, among other things, monitoring network performance and status, controlling operational parameters, and reporting, analyzing and isolating faults in its managed domain. In order to effectively accomplish these functions, the Manager requires precise and timely data regarding the network and the nodes in the network.

Figure 1 illustrates a simplified network having four interconnected nodes, Node 1, Node 2, Node 3 and Node 4. The nodes are logically interconnected by transmission groups (TGs). As can be seen, Node 1 is connected to Node 2 by TG A, Node 1 to Node 4 by TG E, and so forth. Each node is a managed network device in the SNMP sense and has an Agent for storing management data and for responding to the Manager, which is logically connected to each Agent. The management data in this case may include node characteristics, such as its name, type, uptime, level of service, etc., as well
as TG characteristics, such as owner of the TG, destination of the TG, whether the particular TG is presently operational, etc. In this case, some of the node characteristics data are interrelated to some of the TG characteristics data. For instance, if a new node is added to the network, it would be reflected in the node characteristics data. Likewise, new TGs would be reflected in the TG characteristics data as any new TG connects to the node.

The Simple Book: *An introduction to management of TCP/IP based internets*, Englewood Cliffs, US, Prentice Hall, Chapter 5, describes the mechanism of SNMP protocol for traversing a table in column-row order using the powerful "get-next" operator. Multiple operands are given to the "get-next" operator when calling it, the value of the columns corresponding to the operands for the first row of the table is obtained in return. The rows are successively read from the first row to the end of the table with successive "get-next" operations. No operation authorizes to directly point to one specific row in the table if the corresponding operands are not known.

Using present management systems and methods, the Manager periodically polls the Agent for the managed objects maintained by the Agents. For example, a Manager may need to provide a graphical user interface (GUI) depicting a network map. The Manager initially polls each Agent using GetNextRequest PDUs for retrieving each respective Agent's entire managed object table(s) until all of the data is retrieved for building the network map GUI. Subsequently, after some of the conditions may or may not have changed, the Manager repeats the process of polling the Agents to retrieve their respective entire managed object table(s) so that changed conditions may be noted. Figure 2 illustrates the traditional table retrieval where the Manager issues a series of GetNextRequest commands to the Agent which responds with corresponding GetResponse messages along with the requested data. For example, when the Manager issues a GetNextRequest (Index=FIRST) PDU, the Agent responds with a GetResponse (Index=FIRST+1) PDU along with the requested record. This process is repeated until an "End of Table" response is received by the Manager. After the Manager has a predetermined time, it duplicates this process and again retrieves the entire managed object table(s).

Some of the managed objects are quite dynamic but there is no present mechanism for retrieving only the changed objects - rather each Agent's entire managed object table(s) must be retrieved forcing the Manager to sort through the relevant and irrelevant data. This strategy is deemed unacceptable from both a usability and a performance perspective as the overhead of reprocessing the entire table(s) of thousands of entries severely impacts the performance of the network. Agent and Manager.

Figure 3 illustrates a traditional method of receiving change/update notifications. This method of indicating to the Manager that a change has occurred in an Agent's managed object database is done by having the Agent issue an unsolicited Trap PDU with the changed data. This strategy is deemed unacceptable from a reliability perspective as an update may never reach the Manager - and/or cannot be controlled by the Manager.

Further, many times, groups of managed objects are interrelated so that, when an object in one group changes, one or more corresponding objects in another group may need to be subsequently changed. (The node and TG tables, each previously described, are an example of this situation.)

Clearly, these interrelated tables need to be in "sync" from the Manager's perspective, that is, the Manager needs to have the latest updates for each of the tables in order to have an accurate picture of the network. If the tables are not in sync, the Manager's network map depicted by the GUI could, for instance, show TGs extending into space having no destination nodes or, alternatively, could show nodes having no interconnecting TGs.

Presently, there is no mechanism for allowing the Manager to effectively maintain views of its tables which are consistent with those of the Agents.

SUMMARY OF THE INVENTION

A new system and method allows a Manager in a Simple Network Management Protocol (SNMP) environment to gather updates from its Agents. The system and method comprise the unique provision of an index which is used in each of the Agent's tables for indicating the various revisions thereof. The index lexicographically increases with each revision to the table. The Manager maintains a record of the index of the data which it has received from its Agents, requesting only that data having a lexicographically larger indexing. Further, the index is used in related tables so that the tables will be kept in "sync" in that the Manager will know whether it has the latest updates so that an accurate picture may be portrayed.

BRIEF DESCRIPTION OF THE DRAWINGS

While the technical description concludes with claims particularly pointing out and distinctly claiming that which is regarded as the invention, details of a preferred embodiment of the invention may be more readily ascertained from the following technical description when read in conjunction with the accompanying drawings, where:

Fig. 1 is a block diagram of a representative communications network within which the present invention may be practiced.

Fig. 2 depicts a flow diagram showing traditional SNMP table retrieval using GetNextRequest and GetResponse PDUs between a Manager and an Agent.

Fig. 3 depicts a flow diagram showing a traditional
SNMP change/update mechanism between an Agent and a Manager using an SNMP Trap PDU.

Fig. 4 depicts a record of the type stored by the SNMP Agent of the present invention.

Fig. 5 depicts another record of the type stored by the SNMP Agent of the present invention.

Fig. 6 is a flow diagram showing the flow of messages between a Manager and an Agent of the present invention.

Fig. 7 is a flow diagram performed at the Manager for retrieving an initial table and subsequent record updates.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The method of the present invention is utilized in a system conforming to the Simple Network Management Protocol (SNMP). In such a system, an SNMP Manager can address queries and commands to Agents responsible for monitoring network nodes and devices. The Manager monitors network performance and status; controls operational parameters; and reports, analyzes and isolates faults in its managed domain. Using the present invention, the Manager initially queries its Agents using GetNextRequest PDUs to retrieve the managed objects maintained by the Agents to obtain the initial status of the network. Subsequently, because the Agents use an indexing system which uniquely identifies record updates, the Manager merely polls the Agents for the updates using the last index from the previous retrieval. This process reduces the overhead of re-processing the entire table(s) of thousands of entries which would severely impact the performance of the network, Agent and Manager.

The method of the present invention can best be described in the context of a communications network having a plurality of network nodes, each network node maintaining its own tables defining managed objects and, in addition, having update information therein. In particular, the invention can be implemented in a system as described in commonly assigned U. S. Patent No. 5,101,348 relating to a method of reducing the amount of information included in topology database update messages between network nodes in a communications network. In such a system, each network node maintains its own list of network resources in a topology database. When the state of a resource "owned" by a particular node changes, the node broadcasts a topology database update (TDU) message to the adjacent nodes. Each adjacent node updates its own topology database and rebroadcasts the message. To minimize the amount of information that must be included in TDU messages when two nodes are reconnected after an outage, each node assigns flow reduction sequence numbers (FRSNCs) to TDU messages and keeps a record of the FRSN for the last TDU message sent to an adjacent node. The node also records, for each resource in its database, the FRSN of the last TDU message including that resource. When two nodes are reconnected after an outage, for example, the sending node includes in the TDU message only those resources having a FRSN greater than the FRSN assigned to the last TDU sent to the adjacent node to which the TDU message is directed.

The method of the present invention uniquely takes advantage of the information stored in the network nodes of the described system. Specifically, the Agents for each SNMP managed device maintain the managed objects and utilize FRSNs in building the index for the managed objects in its tables so that changes to the tables can be identified and only the updates are requested by the Manager after an initial retrieval of the managed objects is completed. In other words, along with each managed object, a FRSN (in this case) is included as part of the index in order to identify the revision level of the object.

Resource records of the types stored in the node characteristics table and of the transmission group (TG) characteristics table are shown in Figure 4 and Figure 5, respectively. For instance, each node record 30 is made up of a flow reduction sequence number (FRSN) field 32, a node name field 34, and a plurality of attributes fields 36 for storing the particular node characteristics which are being managed such as its type, level of service, etc. The FRSN and node name (or "FRSN, NodeName") are used to index the record to differentiate it from the remaining records in the database. Likewise, each TG record 40 is made up of an FRSN field 42, an origin node field 44, a destination node field 46, a TG name field 48 and a plurality of attributes fields 49 for storing the managed TG attributes, such as its cost, security level, etc. The TG record is indexed using the FRSN field 42, the origin node field 44, the destination field 46 and the TG name field 48 (or "FRSN, OriginNode, DestNode, TGName") thereby assigning it a unique index per record.

The Agent of the managed network device builds node and TG tables with these records. For example, initially, the Agent is able to build its node and TG tables using the information that it has available to it regarding the managed objects for which it is responsible. Subsequently, each time a node receives updated information in the form of a TDU from one of its adjacent nodes, the updated information, as well as the FRSN assigned by this Agent, is recorded in the respective table by the Agent. In this manner, the tables include not only the present status of the managed objects but in addition a running history of the object changes. The Manager merely has to retrieve the initial table(s) and to periodically retrieve the table updates in order to consistently maintain an accurate network picture.

The Manager is able to retrieve these records using GetNextRequest PDUs as defined by SNMP. As discussed above, the GetNextRequest command retrieves the next following object from the object specified. The
GetNextRequest verb is particularly useful in update retrieval where the GetNextRequests are based upon the index where part of the index reflects incremental updates to the table and only the record updates are obtained. Where no updates have occurred, an "End of Table" response is returned. This response is actually the next object in the MIB tree or a "noSuchName" response.

Figure 6 illustrates the message flow between an SNMP Manager and an Agent where the Manager is initially retrieving a table and subsequently retrieving updates to the table. In order to retrieve the initial table, the Manager issues a GetNextRequest having a NULL index to the Agent. The Agent responds with the entry corresponding to the first index of the table. The Manager continues to issue GetNextRequests until an "End of Table" response is returned by the Agent. The Manager then stores the last index (LAST_1) returned by the Agent, and waits for some given period of time. When the predetermined time interval has expired, the Manager issues a GetNextRequest using the last index returned by the Agent (LAST_1). The Agent will then return only updates to the table, if any have occurred, or an "End of Table" response. Thus, only table updates or an "End of Table" response is returned to the Manager in response to subsequent GetNextRequests.

Figure 7 illustrates the general logic flow used by the Manager in monitoring and synchronizing two tables such as the Agent's node and TG tables. The Manager, beginning at 70, proceeds to retrieve node table updates, at 71, from the Agent. If the Agent returns a node update in response to the Manager's request, at 72, the Manager performs another retrieve node update at 71. When the Agent does respond with an "End of Table" message to the node update request, the Manager proceeds to retrieve a TG update, at 73 from the Agent. If the Agent returns a TG update in response to the Manager's request, at 74, the Manager performs another retrieve TG update at 73. When the Agent responds with an "End of Table" message to the node update request, the Manager proceeds to retrieve a node update, at 75, from the Agent. If the Agent returns a node update in response to the Manager's request, at 76, the Manager repeats this sequence again beginning at 71. If the Agent returns an "End of Table" response, at 76, the process is complete; and the two tables are in "sync".

Although not shown in Figure 7, the Manager logic would normally include a retry test and a consistency test. The retry test would be executed after attempting to retrieve a node table update, at 71 and 75, and after attempting to retrieve a TG table update at 73. This retry test would be performed to handle the case where the Agent did not respond to the Manager's request due to some error condition such as the request or response was lost in the network. Similarly, the consistency test would be performed to insure that the Agent was not re-started between the time the Agent last responded and the Manager issued the next request. This test could be based upon the Agent's uptime. If the Agent's uptime was inconsistent (less than that provided in the last response), the Manager would discard the Agent's previous response data and commence the process from the start.

The method and system described allow an SNMP Manager to retrieve an initial picture of the status of specified managed objects and to monitor the status of those objects with minimal message flow between the Manager and the Agent. The reduction of message flow between the Manager and Agent allows the network to perform optimally as it is not saturated with network management message flows. The method and system of the present invention have been described in terms of a system having network nodes each maintaining its own list of network resources in a topology database and utilizing an index which reflects updates to the table. The present invention is not specifically directed at this type of system, however, and may be implemented using any type of index number where a lexicographically larger index indicates an update.

This system and method has significant advantages over traditional retrieval systems and methodologies. It can provide significant performance benefits to the network, Agent and Manager. It can provide an atomic snapshot of a table at a given point in time. It can provide synchronization between multiple tables.

The system and method of the present invention also has advantages over traditional Trap methods. It can be controlled by the Manager and insures the delivery of updates.

Claims

1. A method for use in a Manager of a network conforming to the Simple Network Management Protocol SNMP comprising at least one Agent, said Agent maintaining at least one table comprising individual records defining one or more individual managed objects, each individual record having a unique index assigned thereto, said method monitoring said table and being characterized in that it comprises the steps of:

 requesting from said Agent said individual records for said managed objects;

 receiving from said Agent said individual records for said managed objects;

 maintaining a record of said index of the most recently received record for each managed object; and

 periodically requesting from said Agent the next record for each managed object as indicated by said index of the most recently received record
for each managed object,
said next record having an index lexicographically larger than the index of said most recently received record for each managed object.

2. The method defined in Claim 1 characterized in that it comprises, after said periodically requesting step, the steps of receiving a next record for a managed object and maintaining a record of said lexicographically larger index.

3. The method defined in Claim 1 or 2 wherein said network comprises a plurality of nodes and a corresponding plurality of Agents, each of said Agents maintaining a node characteristics table and a transmission group characteristics table.

4. A method for use in an Agent in a network having a plurality of nodes, said network conforming to the Simple Network Management Protocol SNMP, said method maintaining a table comprising individual records defining one or more individual managed objects and being characterized in that it comprises the steps of:
maintaining an initial table of individual records representing the initial status of said one or more individual managed objects, each of said records having an index; and

adding to said initial table a further individual record representing a changed status of one of said individual managed objects, said further additional record having a lexicographically larger index than the initial said one of said individual managed objects.

5. A Manager, in a network conforming to the Simple Network Management Protocol SNMP comprising at least one Agent, said Agent maintaining at least one table comprising individual records defining one or more individual managed objects, each individual record having a unique index assigned thereto, said Manager monitoring said table and being characterized in that it comprises:

means for requesting from said Agent said individual records for said managed objects;

means for receiving from said Agent said individual records for said managed objects;

means for maintaining a record of said index of the most recently received record for each managed object; and

Agent the next record for each managed object as indicated by said index of the most recently received record for each managed object, said next record having an index lexicographically larger than the index of said most recently received record for each managed object.

6. The Manager defined in Claim 5 characterized in that it comprises means for receiving a next record for a managed object and means for maintaining a record of the index of said next record.

7. The Manager defined in Claim 5 or 6 wherein said network comprises a plurality of nodes and a corresponding plurality of Agents, each of said Agents maintaining a node characteristics table and a transmission group characteristics table, said Manager characterized in that it comprises

means for receiving the records of said tables and means for periodically polling said Agents for updates to said tables.

8. An Agent in a network having a plurality of nodes, said network conforming to the Simple Network Management Protocol SNMP, said Agent maintaining a table comprising individual records defining one or more individual managed objects and being characterized in that it comprises:

means for maintaining an initial table of individual records representing the initial status of said one or more individual managed objects, each of said records having an index; and

means for adding to said initial table a further individual record representing a changed status of one of said individual managed objects, said further additional record having a lexicographically larger index than the initial said one of said individual managed objects.

9. The Agent defined in Claim 8 characterized in that it comprises means for receiving requests from a Manager for retrieving one or more of said individual records and for forwarding said requests to said Manager.

10. The Agent defined in Claim 8 or 9 characterized in that it comprises means for maintaining a plurality of tables including a node characteristics table and a transmission group characteristics table.

Patentansprüche

1. Ein Verfahren zur Nutzung im Manager eines Netzes, das mit dem einfachen Netzverwaltungsproto-
koll SNMP übereinstimmt und das wenigstens einen Agenten enthält, wobei der Agent wenigstens eine Tafel mit Individualaufzeichnungen pflegt, die ein verwaltetes Individualobjekt oder mehrere verwaltete Individualobjekte definiert, wobei jede einzelne Aufzeichnung einen einzigartigen Index hat, der diesem/diesen zugeordnet ist, und das Verfahren die Tafel überwacht und dadurch gekennzeichnet ist, daß es Schritte enthält, um

von dem Agenten die Individualaufzeichnungen für die verwalteten Objekte anzufordern;

von dem Agenten die Individualaufzeichnungen für die verwalteten Objekte zu empfangen;

von dem Agenten regelmäßig die nächste Aufzeichnung für jedes verwaltete Objekt anfordern, wie dies von dem Index von der vor kurzem empfangenen Aufzeichnung für jedes verwaltete Objekt angegeben wird,

wobei die nächste Aufzeichnung einen Index hat, der lexicographisch größer als der Index der erst vor kurzem empfangenen Aufzeichnung für jedes verwaltete Objekt ist.

2. Das Verfahren wie in Anspruch 1 definiert, das dadurch gekennzeichnet ist, daß es nach dem Schritt für die regelmäßige Anforderung Schritte enthält, um eine nächste Aufzeichnung für ein verwaltetes Objekt zu empfangen und eine Aufzeichnung von dem lexikographisch größeren Index zu pflegen.

3. Das Verfahren wie in Anspruch 1 oder 2 definiert, wobei das Netz eine Vielzahl von Knoten und eine entsprechende Anzahl von Agenten enthält, wobei jeder der Agenten eine Knoten-Kenndatentafel und eine Übertragungsgruppen-Kenndatentafel pflegt.

4. Ein Verfahren zur Nutzung in einem Agenten innerhalb eines Netzes, das eine Vielzahl von Knoten hat, wobei das Netz mit dem einfachen Netzverwaltungsprotokoll SNMP übereinstimmt, und das Verfahren eine Tafel mit Individualaufzeichnungen pflegt, die ein verwaltetes Individualobjekt oder mehrere verwaltete Individualobjekte definiert und das dadurch gekennzeichnet ist, daß es Schritte enthält, um

eine Anfangstafel mit Individualaufzeichnungen zu pflegen, die den Anfangsstatus von einem der verwalteten Individualobjekte oder von mehreren verwalteten Individualobjekten dar-

stellt, wobei jede der Aufzeichnungen einen Index hat; und

um zu dieser Anfangstafel eine weitere Individualaufzeichnung hinzuzufügen, die einen geänderten Status von einem der verwalteten Individualobjekte darstellt, wobei weitere zusätzliche Aufzeichnungen einen lexicographisch größeren Index als derjenige der verwalteten Individualobjekte haben.

5. Einen Manager in einem Netz, das mit dem einfachen Netzverwaltungsprotokoll SNMP übereinstimmt und der wenigstens einen Agenten enthält, wobei der Agent wenigstens eine Tafel mit Individualaufzeichnungen pflegt, die ein verwaltetes Individualobjekt oder mehrere verwaltete Individualobjekte definiert, wobei jede einzelne Aufzeichnung einen einzigartigen Index hat, der diesem/diesen zugeordnet ist, und der Manager die Tafel überwacht und dadurch gekennzeichnet ist, daß er Mittel enthält, um

von dem Agenten die Individualaufzeichnungen für die verwalteten Objekte anzufordern;

von dem Agenten die Individualaufzeichnungen für die verwalteten Objekte zu empfangen;

eine Aufzeichnung von diesem Index mit der vor kurzem empfangenen Aufzeichnung für jedes verwaltete Objekt zu pflegen; und

von dem Agenten regelmäßig die nächste Aufzeichnung für jedes verwaltete Objekt anfordern, wie dies von dem Index von der vor kurzem empfangenen Aufzeichnung für jedes verwaltete Objekt angegeben wird,

wobei die nächste Aufzeichnung einen Index hat, der lexikographisch größer als der Index der erst vor kurzem empfangenen Aufzeichnung für jedes verwaltete Objekt ist.

6. Der Manager wie in Anspruch 5 definiert, der dadurch gekennzeichnet ist, daß er Mittel enthält, um eine nächste Aufzeichnung für ein verwaltetes Objekt zu empfangen, und Mittel, um eine Aufzeichnung des Index von der nächsten Aufzeichnung zu pflegen.

7. Der Manager wie in Anspruch 5 oder 6 definiert, wobei das Netz eine Vielzahl von Knoten und eine entsprechende Anzahl von Agenten enthält, wobei jeder der Agenten eine Knoten-Kenndatentafel und eine Übertragungsgruppen-Kenndatentafel pflegt, wobei der Manager dadurch gekennzeichnet ist, daß er Mittel enthält.
recevoir dudit Agent lesdits enregistrements individuels pour lesdits objets gérés;

conservier un enregistrement dudit index dans l'enregistrement reçu le plus récemment pour chaque objet géré; et

faire requête périodiquement, par ledit Agent, de l'enregistrement suivant, pour chaque objet géré tel qu'indiqué par ledit index, dudit enregistrement reçu le plus récemment pour chaque objet géré,

ledit enregistrement suivant ayant un index qui est lexicographiquement plus grand que l'index dudit enregistrement reçu le plus récemment pour chaque objet géré.

2. La méthode définie selon la revendication 1, caractérisée en ce qu'elle comprend, après ladite étape de requête périodique, les étapes de réception d'un enregistrement suivant pour un objet géré et de conservation d'un enregistrement dans ledit index lexicographiquement plus grand.

3. La méthode définie selon la revendication 1 ou 2, dans laquelle ledit réseau comprend une pluralité de noeuds et une pluralité correspondante d'Agents, chacun desdits Agents conservant une table de caractéristiques de noeuds et une table de caractéristiques de groupes de transmission.

4. Une méthode destinée à être utilisée dans un Agent dans un réseau ayant une pluralité de noeuds, ledit réseau se conformant au Protocole de Gestion de Réseau Simple SNMP, ladite méthode conservant une table comprenant des enregistrements individuels définissant un ou plusieurs objets gérés individuels et étant caractérisée en ce qu'elle comprend les étapes consistant à :

conserver une table initiale des enregistrements individuels représentant l'état initial dudit un ou plusieurs objets gérés individuels, chacun desdits enregistrements ayant un index; et

ajouter à ladite table initiale un autre enregistrement individuel représentant un état modifié de l'un desdits objets gérés individuels, ledit enregistrement additionnel, supplémentaire, ayant un index lexicographiquement plus grand que ledit objet géré initial parmi lesdits objets gérés individuels.

5. Un gestionnaire, dans un réseau se conformant au Protocole de Gestion de Réseau Simple SNMP comprenant au moins un Agent, ledit Agent maintenant au moins une table comprenant des enregis-

Revendications

1. Une méthode à utiliser dans un Gestionnaire de réseau, se conformant à un Protocole de Gestion de Réseau Simple SNMP, comprenant au moins un Agent, ledit Agent maintenant au moins une table comprenant des enregistrements individuels définissant un ou plusieurs objets gérés individuels, chaque enregistrement individuel se voyant affecter un index unique, ladite méthode surveillant ladite table et étant caractérisée en ce qu'elle comprend les étapes consistant à :

faire requête, par ledit Agent, desdits enregistrements individuels pour lesdits objets gérés;
lements individuels définissant un ou plusieurs objets gérés individuels, chaque enregistrement individuel se voyant affecter un index unique, ledit gestionnaire surveillant ladite table étant caractérisé en ce qu'il comprend :

5 des moyens pour faire requête, à partir dudit Agent, desdits enregistrements individuels pour lesdits objets gérés;

des moyens pour recevoir, depuis ledit Agent, lesdits enregistrements individuels pour lesdits objets gérés;

des moyens pour maintenir un enregistrement dudit index de l'enregistrement reçu le plus récemment pour chaque objet géré, et

des moyens pour faire requête périodiquement, à partir dudit Agent, de l'enregistrement suivant pour chaque objet géré tel qu'indiqué par ledit index de l'enregistrement reçu le plus récemment pour chaque objet géré, ledit enregistrement suivant ayant un index qui est lexigraphiquement plus grand que l'index dudit enregistrement reçu le plus récemment pour chaque objet géré.

6. Le gestionnaire défini selon la revendication 5, caractérisé en ce qu'il comprend des moyens pour recevoir un enregistrement subséquent pour un objet géré et des moyens pour maintenir un enregistrement de l'index dudit enregistrement suivant.

7. Le gestionnaire défini selon la revendication 5 ou 6, dans lequel ledit réseau comprend une pluralité de noeuds et une pluralité correspondante d'Agents, chacun desdits Agents maintenant une table de caractéristiques de noeuds et une table de caractéristiques de groupes de transmission, ledit Gestionnaire étant caractérisé en ce qu'il comprend : des moyens pour recevoir les enregistrements desdites tables et des moyens pour scruter périodiquement lesdits Agents en vue d'effectuer des mises à jour desdites tables.

8. Un Agent, dans un réseau ayant une pluralité de noeuds, ledit réseau se conformant au Protocole de Gestion de Réseau Simple SNMP, ledit Agent maintenant une table comprenant des enregistrements individuels définissant un ou plusieurs objets gérés individuels et étant caractérisé en ce qu'il comprend :

 des moyens pour maintenir une table initiale des enregistrements individuels représentant l'état initial dudit un ou plusieurs objets gérés individuels, chacun desdits enregistrements

 ayant un index; et

des moyens pour ajouter à ladite table initiale un autre enregistrement individuel représentant un état modifié d'un desdits objets gérés individuels, ledit enregistrement additionnel supplémentaire ayant un index lexigraphiquement plus grand que ledit index desdits objets gérés individuels.

9. L'Agent défini selon la revendication 8, caractérisé en ce qu'il comprend des moyens pour recevoir des requêtes depuis un Gestionnaire pour récupérer un ou plusieurs desdits enregistrements individuels et pour transmettre lesdits enregistrements audit Gestionnaire.

10. L'Agent défini selon la revendication 8 ou 9, caractérisé en ce qu'il comprend des moyens pour maintenir une pluralité de tables comprenant une table de caractéristiques de noeuds et une table de caractéristiques de groupes de transmission.
Fig. 1

TG A
Node 1

TG B
Node 2

TG C

TG D
Node 4

TG E

Node 3

TG - TRANSMISSION GROUP

10
Fig. 4

<table>
<thead>
<tr>
<th>FRSN</th>
<th>Node Name</th>
<th>Attributes</th>
</tr>
</thead>
</table>

| 32 | 34 | 30 | 36 |

Fig. 5

<table>
<thead>
<tr>
<th>FRSN</th>
<th>Origin Node</th>
<th>Dest Node</th>
<th>TG</th>
<th>Attributes</th>
</tr>
</thead>
</table>

| 42 | 44 | 46 | 48 | 49 |