EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
13.08.1997 Bulletin 1997/33

(21) Application number: 92900301.0

(22) Date of filing: 25.11.1991

(51) Int. Cl. 6: B01F 3/04, B03D 1/26, B01F 5/04

(86) International application number:
PCT/AU91/00548

(87) International publication number:
WO 92/09360 (11.06.1992 Gazette 1992/13)

(54) GAS PARTICLE FORMATION
GASTEILCHEN HERSTELLUNG
FORMATION DE PARTICULES DE GAZ

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(30) Priority: 23.11.1990 AU 3534/90

(43) Date of publication of application:

(73) Proprietor: ATOMAER PTY. LTD.
Rivervale, W.A. 6103 (AU)

(72) Inventor: BODNARAS, George
Rivervale, W.A. 6103 (AU)

(74) Representative: Spall, Christopher John et al
BARKER, BRETTELL & DUNCAN
138 Hagley Road
Edgbaston Birmingham B16 9PW (GB)

(56) References cited:
EP-A- 0 165 228
WO-A-87/00078
DE-B- 1 245 910
FR-A- 1 181 944
GB-A- 1 294 466
US-A- 3 693 886
US-A- 4 208 276
US-A- 4 272 461

EP-A- 0 190 688
DE-A- 3 712 359
FR-A- 765 713
FR-A- 2 459 677
GB-A- 1 512 565
US-A- 3 263 966
US-A- 3 704 008
US-A- 4 210 534
US-A- 4 917 152

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The present invention relates to a method and apparatus for gas particle formation in liquid media and relates particularly, though not exclusively, to aeration of a liquid/slurry in flotation apparatus.

BACKGROUND TO THE INVENTION

The method and apparatus for gas particle formation according to the invention can be used in any application requiring efficient aeration of liquid media such as, for example, aeration/oxygenation for biological waste liquid purification using aerobic micro-organisms, liquid/slurry preaeration and/or combined shear flocculation, liquid gasification and suspension of minerals or coal enrichment. The following description will be given with particular reference to gas particle formation and dispersion in a liquid/slurry in mineral flotation apparatus, however it will be appreciated that the inventive method and apparatus has much wider applications.

Froth flotation is a process used for concentrating values from low-grade ores. After/during fine grinding the ore is mixed with water to form a slurry. Chemicals are added to the slurry to preferentially develop differences in surface characteristics between the various mineral species present. The slurry is then copiously aerated and the preferred (hydrophobic) mineral species cling to bubbles and float as a mineralised froth which is removed for further processing.

It is well established that a key factor in the performance of the flotation technique is the size, volume and distribution of gas particles or air bubbles that can be dispersed into the slurry. The present invention was developed with a view to providing a method and apparatus for gas particle formation in which the desired size of gas particles can be readily controlled and a relatively uniform distribution of gas particles can be achieved irrespective of the gas flow rates required by the process. Several further improvements to flotation apparatus are also described.

According to one aspect of the present invention there is provided a method of gas particle formation in a liquid medium comprising the steps of:

- forming a substantially continuous film of gas on a surface having a discharge edge submerged in said liquid medium;
- generating a first flow of liquid over said surface, adjacent to and co-current with said film of gas, directed towards said edge;
- generating a second flow of liquid which converges with said first flow from the opposite side of said film of gas at said discharge edge;
- whereby, in use, the gas film is broken into gas particles by shear forces as it escapes from said discharge edge.

Typically the first and second liquid flows have similar velocities and are typically accelerated towards the edge of the surface together with the gas film.

According to another aspect of the present invention there is provided an apparatus for gas particle formation, the apparatus comprising:

- a structure having a surface adapted to form a film of gas thereon, said surface having a discharge edge submerged in a liquid medium;
- gas prefilling means for forming on said surface a substantially continuous film of gas;
- means for generating a first flow of liquid over said surface, adjacent to and co-current with said film of gas, and directed towards said discharge edge; and
- means for generating a second flow of liquid which converges with said first flow on the opposite side of said film of gas at said discharge edge;

whereby, in use, the gas film is broken into gas particles by shear forces as it escapes from said discharge edge.

In an alternative embodiment said structure comprises first and second hollow bodies mounted concentrically within a chamber such that outer circumferential edges of the bodies form at least one annular gap through which liquid and gas can escape. Preferably an outer surface of at least one of said hollow bodies is adapted to form said film of gas thereon. Preferably the chamber is provided with a cylindrical wall having a peripheral edge that forms an annular gap with an outer circumferential edge of one of the bodies.

In a more preferred embodiment said prefilling body is housed in said chamber having an outlet in the form of a circular aperture, said body being located with said annular lip proximate the circular aperture to form an annular gap.

The prefilling body is advantageously provided with gas distribution outlets for delivering gas onto said outer surface on which, in use, said film of gas is formed, said distribution outlets being covered by a self-sealing resilient material.

According to another aspect of the present invention there is provided a flotation apparatus incorporating the above-mentioned gas particle formation apparatus therein, for aerating a liquid/slurry contained therein.

Preferably the flotation apparatus is in the form of a flotation column and said gas particle formation apparatus is located at, or in the vicinity of, a lower end of the column.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the nature of the present invention may be more clearly ascertained preferred embodiments will now be described in detail, by way of example only, with reference to the accompanying drawings, in which:

Figure 1 illustrates schematically one form of gas particle formation apparatus;
Three different embodiments of a gas particle formation apparatus or aeration device will now be described with reference to Figures 2, 3 and 4.

One preferred form of gas dispersion unit or aeration device, illustrated in Figure 2, comprises a cylindrical body 26 having a circumferential edge flared outwardly defining an annular lip 28. The outer surface 30 of the body 26 is adapted to form a thin film of gas thereon. The gas prefiling body 26 is housed within a chamber 32 having a gas inlet 34 and a liquid inlet 36 provided in the walls 37 thereof. The walls 37 of chamber 32 are also provided with an outlet in the form of a circular aperture with an outer escape diameter slightly larger than an outer diameter of the annular lip 28. The gas prefiling body 26 is mounted in the chamber 32 with the outwardly flared edge received in the circular aperture so that an annular gap 38 is formed between the lip 28 and the inner circumference of the circular aperture. In this embodiment the body 26 is adjustable by means of nut 40 so that the width of the gap 38 can be varied as required.

Liquid enters the chamber 32 via inlet 36 in a tangential manner creating a swirling effect around the stem of the body 26. Gas entering inlet 34, being lighter, is forced to concentrate around the outer surface 30 of the body 26 due to centrifugal forces such that the liquid flow ensuing through the gap 38 forces the gas stream to form a thin film on the outer surface 30. Both liquid and gas are forced through the gap 38 and as the gas film escapes from the lip 28 of the body 26 it is broken into gas particles which subsequently mix with both the prefiling liquid flow 42 and the ejected or shearing flow 44.

Gas may also be injected into the chamber 32 onto the outer surface 30 of the body 26 in an annular or plan fashion through scroll 46, 46a. With this alternative method of gas injection it is not necessary for the liquid to enter the chamber in a tangential manner to create the swirling effect, since the gas can be injected directly onto the outer surface 30 of the body 26. In the latter method employed to feed the gas onto the outer surface 30 of the body 26, the gas entry port 47 is covered with resilient or elastic material 48 serving the double function of providing a non-return seal and also enhancing the prefiling effect. In the former method the elastic material 48 provides a non-return seal over gas inlet 34. The position of gas prefiling body 26 can be adjusted manually or automatically for the purpose of obtaining constant or variable gas particle sizes at various liquid/gas ratios and pressures, thereby maintaining a liquid pressure drop between inlet and device discharge within such limits as to obtain the desired gas particle size and subsequent mixing/turbulence parameters.

In the second embodiment of a gas dispersion unit illustrated in Figure 3, liquid enters a chamber 50 also in a tangential manner from liquid inlet 52. Housed within the chamber 50 are a pair of concentrically mounted, hollow frusto-conical bodies 54. Gas inlets 56, 56a inject gas into the chamber 50 directly onto the outer...
surfaces 58 of the gas prefilming bodies 54 in a region of decreasing static pressure gradient. As in the previous embodiment, the gas is forced to concentrate around the outer surfaces 58 of the bodies 54 due to centrifugal forces such that the liquid flow through spaces 62 and further ensuing through the gaps 60 forces the gas stream to form thin films on the outer surfaces 58 of the bodies 54. The hollow bodies 54 are mounted concentrically within the chamber 50 such that the outer circumferential escape edges or lips 57 of bodies 54, together with a peripheral escape edge of the cylindrical wall 59 of chamber 50, form annular gaps 60 through which the liquid and gas can escape from the gas dispersion unit in a specified manner and with the required velocity profile. The gas films formed on the outer surfaces 58 of the bodies 54 are broken into gas particles as they escape from the lips 57, subsequently mixing with both the prefilming liquid flow 62 and the shearing flow 64. Obviously, gas may be fed to either one or both surfaces 58 of the hollow bodies 54.

In the case where liquid enters through inlet 52 in a tangential manner, gas can also be injected directly into the liquid stream in chamber 50 through alternate gas inlet 66. As with the previous embodiment, the gas entry ports 68 may be covered with elastic material 70 which serves the double function of providing a non-return seal and enhancing the prefilming effect. The size of the gaps 60 may be varied by adjusting the position of the bodies 54 within chamber 50 using nut 72. Hence, as with the previous embodiment the desired gas particle size and subsequent mixing/turbulence parameters can be controlled at various liquids/gas ratios by adjusting the relative positions of the frusto-conical bodies 54 and the walls 59 of chamber 50 either manually or automatically.

Although, as described above, the gas dispersion unit illustrated in section view in Figure 3 is of circular or cylindrical configuration, Figure 3 with minor modifications can also represent a section view through a gas dispersion unit of linear or planar configuration. In this alternative arrangement the walls 59 of chamber 50 would be substantially planar extending perpendicularly out of the page, and the bodies 54 would be in the form of planar blades or vanes also extending perpendicularly out of the page. Prefilming of the surfaces 58 of the bodies 54 would not be due to the swirl effect created by tangential liquid flow, but rather due to gas injection directly onto the surfaces 58 through gas inlets 56 and gas ports 68, with the elastic material 70 providing enhanced prefilming. Obviously one or more bodies 54 may be employed to form gaps 60 with the walls 59 of chamber 50 or with adjacent bodies. A plurality of prefilming bodies 54 has the advantage of providing increased gas prefilming surface area and greater control flexibility.

A prefilming body of circular or cylindrical configuration having a circumferential edge flared outwardly in the general direction of the flow is particularly advantageous because the prefilming surface thus formed is of increasing circumferential surface area. Thus the gas film becomes thinner as it flows towards the outwardly flared edge, further enhancing the prefilming effect.

Figure 4 illustrates a still further embodiment of an aeration device according to the present invention, in which a circular prefilming body 74, in the form of an adjustable hollow stem 76, is housed within a liquid chamber 78 having a liquid inlet 80 provided in the wall of the casing 82 thereof. The stem 76 has a head 90 provided with an outwardly flared frusto-conical surface 84 having a circumferential edge defining an annular lip 86 thereon. A portion 88 of the frusto-conical surface 84 is adapted to form a thin film of gas thereon. The casing 82 of the liquid chamber 78 is also provided with a liquid outlet in the form of a circular aperture with an outer escape diameter slightly larger than an outer diameter of the annular lip 86. The adjustable stem 76 is slidably mounted in the casing 82 with the frusto-conical surface 84 of the head 90 received in the circular aperture so that an annular gap 92 is formed between the surface 84 and a convex annular lip 94 of the circular aperture forming the liquid outlet in the casing 82.

In use, gas enters inlet 96 of gas chamber 98, passes through apertures 100 into the hollow stem 76. The gas rises through the hollow stem 76 and passes through apertures 102 into a chamber 104 within the head 90 of the prefilming body 74. The gas is then delivered through distribution outlets 106 onto the prefilming surface portion 88 of the frusto-conical surface 84. The distribution outlets 106 are covered by a self-sealing resilient or elastic spreader 108, typically in the form of an annular rubber washer, which serves the double function of providing a non-return seal and also enhancing the prefilming effect. In use, both liquid/slurry and gas are forced through the gap 92 and as the gas film escapes from the lip 86 it is broken into gas particles which subsequently mix with both the prefilming liquid flow 110 and the recirculating or shearing flow from volume 114 above the head 90. The difference in flow velocity between the slurry and the gas film creates wavelets at the liquid/gas interface in gap 92, and the curvature of convex lip 94 continuously changes the direction of the flow generating centrifugal forces that produce migration of solid particles present in the slurry away from the lip 94. The migrating solid particles then penetrate the gas film and strike the prefilming surface portion 88 on head 90 as well as passing through the broken-up gas film after it escapes into the volume 114 of gas/slurry mixture above the head 90. Hence, each solid particle that passes through the gas film and rejoins the slurry flow in volume 114 will entrain a gas particle thereby producing the required gas dispersion and bubble size enhancing the shearing effect. Both the convex lip 94 and the prefilming surface portion of the head 90 are coated with an abrasion resistant coating, for example, a ceramic coating.

The slurry pressure differential between chamber 78 and volume 114 can be adjusted between 10kPa and 100kPa by varying the height of stem 76 guided by a
sliding assembly formed by a guide 116, which may be provided with a removable sleeve 118 to form an air tight seal between the stem 76 and guide 116. This arrangement is protected from slurry ingress by a flexible bellows 120 held at one end by a compression washer 122 and nut 124 on stem 76, and at the other end by a flange, provided on guide 116, and a bottom plate 126 of the casing 82. The actuating mechanism for positioning the stem 76 (not illustrated) can be manual or automatic, and is protected from slurry ingress into gas chamber 98 through the hollow stem 76 by the self-sealing spreader 108 made of resilient material. The self centring rod 128 protrudes from chamber 98 through gland 130. The air feed pressure in chamber 98 is typically equal or slightly above the slurry pressure in chamber 78.

In this embodiment of the aeration device, the bubble size can be controlled by varying the gap 92 as a function of the proportion of solids in the slurry between operational values of, for example, 0 and 75%. The pressure differential between chamber 78 and volume 114 can be varied such that bubble sizes in the dimensional range of between 0.2 to 3.0mm can be obtained for slurry velocities in the gap 92 of between 1.5 and 12 metres per second and gas velocities in the gas film formed on surface 88 of up to 340 metres per second. The resulting swarm of gas particles or bubbles mixes uniformly with the ensuing slurry flow from gap 92 and the recirculating flow 112 from the volume 114 of slurry/gas mixture such that the ratio between the dispersed gas volume and the slurry passing through the device can be as high as 6:1.

The embodiment of the gas dispersion device illustrated in Figure 4 is provided with only one prefilming body 74. However, in order to increase the prefilming surface area an additional prefilming body (or bodies) may be provided in the form of an annulus concentric with the prefilming body 74.

The above described gas dispersion units can be used in conjunction with flotation apparatus for mineral or coal enrichment processes to achieve enhanced performance with minimum energy consumption. A flotation apparatus which employs a gas dispersion unit similar to that described above will now be described.

The flotation apparatus illustrated in Figure 5 employs a gas dispersion unit or aerator 140, similar to that illustrated in Figure 4, at the lower end of an elongate riser 142. Gas is injected into the aeration unit 140 through gas inlet 141 and slurry is fed to the unit 140 through slurry feed pipe 143. Riser 142 may be constructed from a variety of materials including high density polypropylene (HDP) pipe sections joined end to end up to a length of 30 metres. Between the riser 142 and gas dispersion unit 140 there is provided a reactor vessel 144 of larger diameter than the riser 142. The reactor vessel 144 is typically manufactured of heavy gauge mild steel sheet with a ceramic coating on the inside. The aeration unit 140 discharges into the reactor producing high shear velocities of up to 10.0 metres per second. The gas bubbles with entrained particles escape from the aeration unit 140 typically in a radial direction and are dispersed uniformly throughout the slurry/gas mixture in reactor 144. Reactor 144 is sized and shaped to facilitate uniform dispersion but to prevent recombination of the gas particles to form larger bubbles, such that most of the flow kinetic energy is dissipated within its volume. The reactor 144 is thus normally the only part of the flotation apparatus where intense turbulence is present, the rest of the flows within the unit being predominantly quiescent.

The gas/slurry mixture rises up through the riser 142 and through a flared end section 146 at the top of the riser, in such a way that when the gas/slurry mixture escapes into the volume 148 of the separation unit 150 it slows down sufficiently for the gas bubbles to separate from the slurry liquid at the discharge mouth of the riser 142. The unattached slurry liquid separates from the froth and drains into the outer vessel 152 from which it can be either recirculated back into the aeration unit 140 as non-aerated pulp through recirculation line 154 or removed as tailings through line 156.

The flow of gas/slurry mixture in the riser 142 is typically turbulence-free or laminar flow and provides the necessary conditions for efficient mineral collection. Bubbly flow conditions are maintained at all times with an air lift figure of up to 85%, more typically between 50 to 70%. The velocity of the gas/slurry mixture in the riser 142 is maintained within the range 0.1-2.0 metres per second, more typically between 0.3-1.0 metres per second. Due to the low discharge pressure "seen" by the aeration unit 140, as a direct result of such high air lift values, coupled with the full slurry column pressure at the liquid inlet of the aeration unit, sufficient pressure drop is produced to generate the gas bubble dispersion and recirculation of the slurry through the flotation apparatus, thereby using the gas energy to drive the whole process. The mouth of the outer vessel 152 is sufficiently large relative to the mouth of the riser 142 so that the non-aerated slurry velocity is kept low enough to prevent re-entrainment of gas into the recirculation circuit or tailings discharge.

The pulp level within the outer vessel 152 is maintained below the discharge mouth of the riser 142 by a weir arrangement formed by the tailings outlet line 156. The atmospheric discharge of the tailings line 156 is so positioned that the recombined pulp level in the outer vessel 152 is never above the mouth of the flared end section 146 of the riser 142, and typically 0.05 to 0.25 metres below, such that the riser bottom pressure is not increased by pulp reingestion which could generate turbulence, and recirculation is avoided in the riser.

The froth discharged from the riser forms a deep froth layer 160 rising through a parallel duct 162 connected to a top flange of the outer vessel 152. The froth duct 162 may be partitioned vertically to prevent froth macro recirculation which could result in substantial loss of values. Froth height can be varied by removing one or more sections which form the froth duct 162 or by
having froth duct of variable height.

Above the froth duct 162 is a froth wash system 164 in which the froth is washed by a dispersed flow of water mixed with additives from a manifold fed through port 165. The froth wash system 164 may be combined with a froth removal system 166 which collects the final concentrate to drain from outlet 168 for storage and/or further processing.

The slurry pressure drop can be varied by increasing/decreasing the prefining gap in the aeration unit 140, thereby controlling the bubble size at the same time as the recirculation rate. The flotation unit is typically sized such that the volume of slurry recirculated is 4 to 20 times the likely slurry feed flow, which is a significant advantage over the current practise of "single pass", thereby improving the values attachment probability and therefore improved recovery of low floating values. Furthermore, as the slurry flow rate through the aerator is dictated solely by the operating pressure drop its value is not affected by variations in feed flow since the recirculated flow of slurry varies to compensate, thereby maintaining unchanged gas dispersion characteristics. An added advantage resulting from the above mentioned features is that the flotation apparatus exhibits typically short residence times, for example between 30-120 seconds.

An alternative feed method for the pulp is to use feed inlets 170 at the top of the recirculation line 154, and/or to use feed pipe 172 feeding directly into the vessel 152. Feed pipe 172 can be used provided the feed discharge into the top of the recirculation line 154 is totally decoupled from the entry to the tailings outlet line 156. The recirculation line 154 can be provided with a control valve 174 to control the flow of slurry fed to the aeration unit 140.

The flotation apparatus of Figure 6 employs only one aeration unit 140, however two or more aeration units could be coupled to the riser 142 if desired. Each unit would typically be provided with its own reactor vessel for gas dispersion. One or more risers can be incorporated in a flotation apparatus if desired. Furthermore, the basic principle of having an aeration unit with reactor and riser could be employed with a conventional flotation column by having the riser located adjacent the column with concentrated slurry from the column's quiescent zone just under the pulp/froth interface being recirculated therethrough. The riser could also be located within the column of a conventional flotation apparatus suitably modified.

Although all four described embodiments of the gas particle formation apparatus employ a circular or cylindrical structure, it will be obvious that the gas prefining surface may be any shape, for example, planar by being formed on a flat vane or blade, or a plurality of such vanes or blades, the circular configuration being preferable because of its compact construction. Furthermore, it will be apparent to the skilled addressee that the gas particle formation apparatus of the invention can be employed in many other types of flotation apparatus, and indeed many other applications where efficient aeration of a liquid media is required.

Claims

1. A method of gas particle formation in a liquid medium comprising the steps of:

 forming a substantially continuous film of gas on a surface having a discharge edge submerged in said liquid medium;
 generating a first flow of liquid over said surface, adjacent to and co-current with said film of gas, directed towards said discharge edge;
 generating a second flow of liquid which converges with said first flow from the opposite side of said film of gas at said discharge edge;
 whereby the gas film is broken into gas particles by shear forces as it escapes from said discharge edge.

2. A method of gas particle formation as claimed in claim 1, wherein the first and second liquid flows have dissimilar velocities.

3. A method of gas particle formation as claimed in claim 1, wherein the first and second liquid flows are both accelerated towards the discharge edge together with the gas film.

4. A method of gas particle formation as claimed in claim 3, wherein the velocity of the first liquid flow is in the range 1.5 to 12 m/s and the velocity of the gas film is up to 340 m/s.

5. An apparatus for gas particle formation, the apparatus comprising:

 a structure having a surface [10, 30, 58, 88] adapted to form a film of gas [18] thereon, said surface having a discharge edge [20, 28, 57, 86] submerged in a liquid medium;
 gas prefining means [14, 48, 56, 106] for forming on said surface a substantially continuous film of gas [18];
 means for generating a first flow [16, 42, 62, 110] of liquid over said surface, adjacent to and co-current with said film of gas, and directed towards said discharge edge; and
 means for generating a second flow [22, 44, 64, 112] of liquid which converges with said first flow on the opposite side of said film of gas at said discharge edge;
 whereby, in use, the gas film is broken into gas particles by shear forces as it escapes from said discharge edge.

6. An apparatus for gas particle formation as claimed in claim 5, wherein said discharge edge is in the
form of a lip whereby, in use, said first flow of liquid converges with said second flow of liquid at said lip.

7. An apparatus for gas particle formation as claimed in claim 6, wherein said structure comprises a prefilming body of circular configuration having a circumferential edge flared outwardly defining an annular lip at one end, an outer surface of said body being adapted to form said film of gas thereon.

8. An apparatus for gas particle formation as claimed in claim 7, wherein said prefilming body is housed in a chamber having a liquid inlet and having an outlet in the form of a circular aperture with an outer escape diameter slightly larger than an outer diameter of said annular lip, said body being located with said annular lip proximate the circular aperture to form an annular gap.

9. An apparatus for gas particle formation as claimed in claim 8, wherein said prefilming body is provided with gas distribution outlets for delivering gas onto said outer surface on which, in use, said film of gas is formed, said distribution outlets being covered by a self-sealing resilient material.

10. An apparatus for gas particle formation as claimed in claim 9, wherein the position of the annular lip relative to the circular aperture can be varied to vary the size of the annular gap whereby, in use, the size of the gas particles produced can be varied.

11. A flotation apparatus incorporating an aeration unit for aerating a co-current flow of slurry within the flotation apparatus, the aeration unit being in the form of a gas particle formation apparatus as claimed in any one of claims 6 to 10, and wherein a sufficient pressure differential is produced at said aeration unit to generate both gas particle dispersion and recirculation of the slurry through the flotation apparatus.

12. A flotation apparatus as claimed in claim 11, comprising an elongate riser having said aeration unit provided at its lower end whereby, in use, substantially turbulence free flow in which a high gas lift occurs in said riser can be generated.

13. A flotation apparatus as claimed in claim 12, further comprising a reactor vessel provided between the aeration unit and the riser, said reactor vessel having a larger cross-sectional area than said riser wherein the reactor is adapted to facilitate uniform gas dispersion, in use, but to minimise recombination of gas particles in a gas/slurry mixture formed therein.

14. A flotation apparatus as claimed in claim 13, wherein the riser has a flared end section at its upper end adapted to further slow down the flow of the gas/slurry mixture rising in the riser whereby, in use, the mixture slows down sufficiently for gas particles in the form of froth to separate from the slurry liquid at a discharge mouth of the riser.

15. A flotation apparatus as claimed in claim 14, wherein said riser discharges into a separation unit of the apparatus, and wherein the separated slurry liquid recovered from the separation unit can be recirculated through the aeration unit to increase the probability of values attachment to the gas particles.

16. A flotation apparatus as claimed in claim 15, wherein the airlift generated in the riser exerts a sufficiently low pressure on the discharge of the aeration unit such that the required bubble size, gas dispersion and slurry recirculation are obtained due to the pressure differential obtained between the liquid inlet to the aeration unit pressurised by a height of recombined slurry substantially the same as a height of said riser.

Patentansprüche

1. Verfahren zur Erzeugung von Gaspartikeln in einer Flüssigkeit, das folgende Schritte aufweist:

Erzeugung eines im wesentlichen kontinuierlichen Gasfilms auf einer Oberfläche, die eine in der Flüssigkeit eingetauchte Auslaufkante aufweist,

Erzeugung eines ersten Flüssigkeitsflusses über die Oberfläche, der benachbart zum und mit dem Gasfilm mitströmend ausgebildet und in Richtung der Auslaufkante gerichtet ist, und

Erzeugung eines zweiten Flüssigkeitsflusses, der mit dem ersten Flüssigkeitsfluß an der Auslaufkante auf der entgegengesetzten Seite des Gasfilms zusammenläuft,

wobei der Gasfilm durch Scherkräfte in Gaspartikel zerrissen wird, wenn er von der Auslaufkante wegströmt.

2. Verfahren zur Erzeugung von Gaspartikeln nach Anspruch 1, wobei der erste und zweite Flüssigkeitsfluß unterschiedliche Geschwindigkeiten aufweisen.

3. Verfahren zur Erzeugung von Gaspartikeln nach Anspruch 1, wobei der erste und zweite Flüssigkeitsfluß zusammen mit dem Gasfilm in Richtung der Auslaufkante beschleunigt werden.

4. Verfahren zur Erzeugung von Gaspartikeln nach
Anspruch 3, wobei die Geschwindigkeit des ersten Flüssigkeitsflusses im Bereich von 1,5 bis 12 m/s liegt und die Geschwindigkeit des Gasfilms bis zum 340 m/s beträgt.

5. Vorrichtung zur Erzeugung von Gaspartikeln, wobei die Vorrichtung aufweist:

einen Aufbau mit einer Oberfläche (10, 30, 58, 88), die für die Erzeugung eines Gasfilms auf der Oberfläche ausgebildet ist, wobei die Oberfläche eine Auslaufkante (20, 28, 57, 86) aufweist, die in einer Flüssigkeit eingetaucht ist,

10 eine Gasfilmverzweigungsrichtung (14, 48, 56, 106) für die Erzeugung eines wesentlichen kontinuierlichen Gasfilms (18) auf der Oberfläche,

eine Vorrichtung zur Erzeugung eines ersten Flüssigkeitsflusses (16, 42, 62, 110) über die Oberfläche, wobei der Flüssigkeitsfluß benachbart zum und mitstromend mit dem Gasfilm ausgebildet und in Richtung der Auslaufkante gerichtet ist, und

15 eine Vorrichtung zur Erzeugung eines zweiten Flüssigkeitsflusses (22, 44, 64, 112), der an der Auslaufkante mit dem ersten Flüssigkeitsfluß auf der entgegengesetzten Seite des Gasfilms zusammenläuft,

20 wobei während des Betriebes der Gasfilm durch Scherkräfte in Gaspartikel zerrissen wird, wenn er von der Auslaufkante wegströmt.

6. Vorrichtung zur Erzeugung von Gaspartikeln nach Anspruch 5, wobei die Auslaufkante in Form einer Lippe ausgebildet ist, und wobei im Betrieb der erste Flüssigkeitsfluß mit dem zweiten Flüssigkeitsfluß an der Lippe zusammensefließen.

7. Vorrichtung zur Erzeugung von Gaspartikeln nach Anspruch 6, wobei der Aufbau einen filmzerzeugenden Körper mit kreisförmigen Aufbau aufweist, der eine umfangsreiche und nach außen trichterformig ausgebildete Kante aufweist, die an einem Ende eine ringförmige Lippe definiert, wobei die äußere Oberfläche des Körpers so ausgebildet ist, daß der Gasfilm darauf gebildet wird.

8. Vorrichtung zur Erzeugung von Gaspartikeln nach Anspruch 7, wobei der filmzerzeugende Körper in einer Kammer angeordnet ist, die einen Flüssigkeitsinlaß und einen Auslaß in Form einer kreisförmigen Öffnung aufweist, die einen äußeren Austrittsdruckmesser aufweist, der geringfügig größer als der äußere Durchmesser der ringförmigen Lippe ist, wobei der Körper mit der ringförmigen Lippe benachbart zur ringförmigen Öffnung angeordnet ist, um einen ringförmigen Spalt zu bilden.

9. Vorrichtung zur Erzeugung von Gaspartikeln nach Anspruch 8, wobei der filmzerzeugende Körper mit das Gas verteilenden Öffnungen versehen ist, um das Gas auf der äußeren Oberfläche zu verteilen, auf der während des Betriebes der Gasfilm ausgebildet wird, wobei die das Gas verteilenden Öffnungen mit einem selbstabwischenden elastischen Material bedeckt sind.

10. Vorrichtung zur Erzeugung von Gaspartikeln nach Anspruch 9, wobei die Position der ringförmigen Lippe relativ zur kreisförmigen Öffnung verändert werden kann, um die Größe des ringförmigen Spaltes zu variieren, wobei die Größe der erzeugten Gaspartikel während des Betriebes verändert werden kann.

11. Flotationsvorrichtung mit einer Belüftungseinheit für die Belüftung eines mitstromenden Flusses einer Aufschlammung innerhalb der Flotationsvorrichtung, wobei die Belüftungseinheit in Form einer Vorrichtung zur Erzeugung von Gaspartikeln nach einem der Ansprüche 6 bis 10 ausgebildet ist, und wobei ein genügender Druckunterschied an der Belüftungseinheit erzeugt wird, um sowohl eine Gaspartikeldispersion als auch eine Rückführung der Aufschlammung durch die Flotationsvorrichtung zu erzeugen.

12. Flotationsvorrichtung nach Anspruch 11, mit einer langen Steigrohrleitung, an deren unterem Ende die Belüftungseinheit angeordnet ist, wobei während des Betriebes eine im wesentlichen turbulenzfreie Strömung, in der eine große Gasdruckerhöhung auftritt, in der Steigrohrleitung erzeugt werden kann.

13. Flotationsvorrichtung nach Anspruch 12, weiterhin mit einem Reaktionsbehälter, der zwischen der Belüftungseinheit und der Steigrohrleitung angeordnet ist, wobei der Reaktionsbehälter eine größere Querschnittsfäche als die Steigrohrleitung aufweist, wobei der Reaktionsbehälter so ausgebildet ist, daß er eine gleichförmige Gasdispersion während des Betriebes erleichtert, jedoch die Rekombination der Gaspartikel innerhalb der darin gebildeten Mischung aus Gas und Aufschlammung minimiert.

14. Flotationsvorrichtung nach Anspruch 13, wobei die Steigrohrleitung am oberen Ende einen trichterförmigen Endabschnitt aufweist, der so ausgebildet ist, daß er weiter den in der Steigrohrleitung aufsteigenden Strom der Mischung aus Gas und Aufschlammung abbremsst, wobei während des Betriebes die Mischung ausreichend abgebremst
wird, so daß sich die in Form von Schaum vorliegenden Gaspartikel von der flüssigen Aufschlammung an der Austrittsstelle der Steigrohrleitung trennen.

15. Flotationsvorrichtung nach Anspruch 14, wobei die Steigrohrleitung in eine Trenneinheit der Vorrichtung mündet, und wobei die abgetrennte Aufschlammungsflüssigkeit, die von der Trenneinheit zurückgewonnen worden ist, wieder durch die Belüftungseinheit zurückgeführt werden kann, um die Wahrscheinlichkeit einer Berührung mit den Gaspartikeln zu erhöhen.

Revendications

1. Procédé de formation de particules gazeuses dans un milieu liquide, comprenant les étapes de :

- formation d’une pellicule sensiblement continue de gaz sur une surface ayant un bord de décharge immergé dans ledit milieu liquide,
- production d’un premier écoulement de liquide sur ladite surface, adjacent à ladite pellicule de gaz et co-courant avec celle-ci, dirigé vers ledit bord de décharge,
- production d’un deuxième écoulement de liquide qui converge avec ledit premier écoulement à partir du côté opposé de ladite pellicule de gaz audit bord de décharge, par lequel la pellicule de gaz est rompue en particules gazeuses par des forces de cisaillement lorsqu’elle s’échappe dudit bord de décharge.

2. Procédé de formation de particules gazeuses selon la revendication 1, dans lequel le premier et le deuxième écoulements de liquide ont des vitesses dissemblables.

3. Procédé de formation de particules gazeuses selon la revendication 1, dans lequel le premier et le deuxième écoulements de liquide sont tous les deux accélérés vers le bord de décharge conjointement avec la pellicule de gaz.

4. Procédé de formation de particules gazeuses selon la revendication 3, dans lequel la vitesse du premier écoulement de liquide est dans une gamme de 1,5 à 12 m/s et la vitesse de la pellicule de gaz peut aller jusqu’à 340 m/s.

5. Appareil de formation de particules gazeuses, l’appareil comprenant :

- un dispositif ayant une surface (10, 30, 58, 88) adaptée pour former une pellicule de gaz (18) sur elle, ladite surface ayant un bord de décharge (20, 28, 57, 86) immergé dans un milieu liquide,
- des moyens de préformation de pellicule de gaz (14, 48, 56, 106) pour former sur ladite surface une pellicule de gaz sensiblement continue (18),
- des moyens de production d’un premier écoulement (16, 42, 62, 110) de liquide sur ladite surface, adjacent à ladite pellicule de gaz, co-courant avec celle-ci et dirigé vers ledit bord de décharge, et des moyens de production d’un deuxième écoulement (22, 44, 64, 112) de liquide qui converge avec ledit premier écoulement sur le côté opposé de ladite pellicule de gaz audit bord de décharge, de sorte que lors de l’utilisation, la pellicule de gaz soit rompue en particules gazeuses par des forces de cisaillement lorsqu’elle s’échappe dudit bord de décharge.

6. Appareil de formation de particules gazeuses selon la revendication 5, dans lequel ledit bord de décharge est sous la forme d’une lèvre afin que lors de l’utilisation, ledit premier écoulement de liquide converge avec ledit deuxième écoulement de liquide à ladite lèvre.

7. Appareil de formation de particules gazeuses selon la revendication 6, dans lequel ledit dispositif comprend un corps de préformation de pellicule de forme circulaire ayant un bord circonférentiel s’évasant vers l’extérieur formant une lèvre à une extrémité, une surface extérieure dudit corps étant adaptée pour former ladite pellicule de gaz sur elle.

8. Appareil de formation de particules gazeuses selon la revendication 7, dans lequel ledit corps de préformation de pellicule est logé dans une chambre ayant une entrée de liquide et ayant une sortie sous la forme d’une ouverture circulaire de diamètre d’échappement extérieur légèrement supérieur à un diamètre extérieur de ladite lèvre annulaire, ledit corps étant placé avec ladite lèvre annulaire proche de l’ouverture circulaire pour former un interstice annulaire.
9. Appareil de formation de particules gazeuses selon la revendication 8, dans lequel ledit corps de préformation de pellicule est pourvu de sorties de distribution de gaz pour l’apport de gaz sur ladite surface extérieure sur laquelle, lors de l’utilisation, ladite pellicule de gaz est formée, lesdites sorties de distribution étant couvertes d’une matière élastique auto-obturante.

10. Appareil de formation de particules gazeuses selon la revendication 9, dans lequel on peut faire varier la position de la lèvre annulaire par rapport à l’ouverture circulaire pour faire varier la dimension de l’interstice annulaire, ce qui permet, lors de l’utilisation, de faire varier la dimension des particules gazeuses produites.

11. Appareil de flottation comportant un dispositif d’aération d’un écoulement co-courant de bouillie dans l’appareil de flottation, ce dispositif d’aération étant sous la forme d’un appareil de formation de particules gazeuses selon l’une des revendications 6 à 10, et dans lequel une chute de pression suffisante est produite dans ledit dispositif d’aération pour générer à la fois une dispersion des particules gazeuses et une recirculation de la bouillie dans l’appareil de flottation.

12. Appareil de flottation selon la revendication 11, comprenant une colonne de montée allongée à l’extrémité inférieure de laquelle est prévu ledit dispositif d’aération afin que lors de l’utilisation puisse être produit un écoulement pratiquement sans turbulence dans lequel une haute poussée de gaz ait lieu dans la colonne de montée.

13. Appareil de flottation selon la revendication 12, comprenant en outre un réacteur prévu entre le dispositif d’aération et la colonne de montée, ledit réacteur étant de plus grande section que ladite colonne de montée, le réacteur étant adapté pour faciliter une dispersion uniforme de gaz lors de l’utilisation, mais pour réduire au minimum la recombinaison de particules gazeuses dans un mélange gaz/bouillie formé dedans.

14. Appareil de flottation selon la revendication 13, dans lequel la colonne de montée a à son extrémité supérieure une partie d’extrémité évasée faite pour encore ralentir l’écoulement du mélange gaz/bouillie qui monte dans la colonne de montée, afin que lors de l’utilisation, le mélange ralentisse suffisamment pour que des particules gazeuses sous forme de mousse se séparent du liquide de la bouillie à un orifice de décharge de la colonne de montée.

15. Appareil de flottation selon la revendication 14, dans lequel ladite colonne de montée débouche dans un dispositif de séparation de l’appareil, et dans lequel le liquide de la bouillie séparé récupéré du dispositif de séparation peut être recyclé dans le dispositif d’aération pour l’augmentation de la probabilité de fixation de matières de valeur aux particules gazeuses.

16. Appareil de flottation selon la revendication 15, dans lequel la poussée d’air produite dans la colonne de montée exerce une pression suffisamment basse sur la sortie du dispositif d’aération de façon que la dimension des bulles, la dispersion du gaz et la recirculation de la bouillie requises soient obtenues grâce à la différence de pression obtenue entre l’entrée de liquide du dispositif d’aération mis sous pression par une hauteur de bouillie recombinée sensiblement égale à la hauteur de ladite colonne de montée.