Improved melt extrusion process
Verbessertes Schmelzextrusionsverfahren
Procédé amélioré d’extrusion en fusion

Designated Contracting States:
DE ES FR GB IT NL

Priority: 29.03.1993 US 38400

Date of publication of application:
05.10.1994 Bulletin 1994/40

Proprietor: GENERAL ELECTRIC COMPANY
Schenectady, NY 12345 (US)

Inventor: Enlow, William Palmer
Belpre, Ohio 45714 (US)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
EP 0 618 315 B1

Description

The present invention relates to melt extrusion processes, and more particularly relates to melt extrusion processes for making polypropylene fibers or films.

BACKGROUND OF THE INVENTION

Polyolefin processors are attempting to process polymer at increasing temperatures and with increased shear and work on the polymer. They are also processing polymer which may contain polymerization catalyst residues. The total residual metal content has been decreasing in recent years but the catalyst residue may still be active.

This combination of more abusive processing conditions and the possibility of catalyst residue still being active may lead to difficulties when trying to process the polymers.

Catalyst "neutralizers" are well known in the art and are generally used in most formulations to inhibit corrosion of processing equipment resulting from catalyst residues. Typical examples would be: Ca, Zn, or Mg stearates, Ca, Zn, or Mg oxides and synthetic hydrotalcite compositions such as a product manufactured and sold by Kyowa as DHT4A.

In many of the high temperature melt processes such as fiber spinning and film manufacture, screen packs are utilized to remove small particles which may be in the polymer prior to the polymer passing through the small orifices used in fiber and film processes. With the higher processing temperature/high shear applications there is a tendency for some combinations of polymers and additive formulations to be prone to screen pack plugging.

Specifically, it has been discovered, however, that stabilized polyolefin compositions containing residual catalysts, can generate solid byproducts during melt extrusion processes. These solids must be filtered out from the melt stream.

For example, melt stream-fiber forming processes and film forming processes or the fiber and/or film forming dies will become clogged or the final articles (films/fibers) will exhibit defects and blemishes. Too much solid generation will lead to frequent filter clogging, referred to as screen pack plugging, which leads to increased processing pressures and reduced process throughput.

Consequently, there is a need for improved polyolefin compositions and improved melt extrusion processes that will exhibit reduced solid byproduct formation and a resulting reduced filter clogging and a reduced increase in processing pressure and improve throughputs.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic drawing of the process of the present invention for making fibers, and Figure 2 is a schematic drawing of the process of the present invention for making films.

SUMMARY OF THE PRESENT INVENTION

The present invention involves an improved polyolefin melt extrusion process that exhibits reduced filter clogging.

The process involves (a) forming a polyolefin composition comprising a polyolefin resin, a phosphite stabilizer, and optionally a primary antioxidant, (b) melt extruding the composition through a filter to produce a filtered melt stream, and (c) passing the melt stream through a die to make the plastic article. The utilization of the epoxidized ester of an unsaturated fatty acid results in reduced filter clogging.

DETAILED DESCRIPTION OF THE INVENTION

The olefin polymers contemplated herein include homopolymers and copolymers of monooolefins, preferably those monooolefins containing 1-4 carbon atoms. Illustrative examples include polyethylene (including low density, high density, ultra high molecular weight and linear low density polyethylene), polypropylene, EPDM polymers, ethylene-propylene copolymers and polyisobutylene. The stabilization of mixtures of any of these olefin polymers and copolymers likewise is contemplated.

Any polypropylene resin melt extrusion process involving polymer filtration can be improved by the process of the present invention, including propylene homopolymers and random or block copolymers of propylene and an α-olefin
which contain ethylene or other a-olefin in an amount from 1 to 30 wt. % as well as blends of polypropylene with other olefin polymers and copolymers, such as low and high density polyethylene, ethylene/vinyl acetate copolymer, ethylene/propylene copolymer rubbers and styrene/butadiene block-copolymer rubbers.

Phosphites may be replaced in whole or in part with a phosphonite. The compositions preferably employ a phosphorous containing component selected from the group consisting of tetraakis(2,4-di-t-butyl-phenyl)4,4'-biphenyllylene diphenylphosphite, tris(2,4-di-t-butylphenyl)-phosphite, tris(2,4-di-t-butylphenyl)-phosphite, bis(2,4-di-t-butylphenyl) pentaerythritol diphenosphate, bis(diethyl)pentaerythritol diphenosphate, and bis(diethyl) pentaerythritol diphenosphate with one percent (1%) triethanolamine.

Phosphites may also be referred to as organic phosphate esters.

The organic phosphate ester is preferably a pentaerythritol diphenosphate which in most instances is characterized by a spiro structure, i.e.,

![Spiro Structure Diagram]

where R is an organic radical. Particularly preferred radicals (for R) are alkyl and alkylyphenyl. When R is alkyl it should contain 10 to 20 carbon atoms, inclusive, and an especially desirable phosphate is distearyl pentaerythritol diphenosphate, when R is alkylyphenyl the alkyl substituents should contain 3 to 10 carbon atoms and, preferably, should be tertiary alkyl groups. Tertiarybutyl groups are especially preferred. The alkylyphenyl groups may contain up to three alkyl substituents. The alkyl groups preferably are bulky, i.e., tertiary or secondary alkyl groups. Such alkyl groups include isopropyl, sec-butyl, tertiarybutyl, a-amyl, tertiarerymyl, n-hexyl, 2,2-dimethylbutyl, 2-methyl-2-ethylpropyl, phenyl ethyl and tertiarerycoyl. The two alkyl groups are in the 2,4-positions or 2,6-positions. A particularly preferred species is bis(2,4-diteriarybutylalkylyphenyl) pentaerythritol diphenosphate. Another preferred species is bis(2,6-diteriarybutylphenyl) pentaerythritol diphenosphate. Another especially desirable phosphate is di(2,4-diteriarybutylphenyl) pentaerythritol diphenosphate.

The phosphate esters may be made by a variety of methods. The dialkyl pentaerythritol diphenosphates may be prepared via methods described in the teachings of U.S. 4,305,866, 5,137,950, 4,064,100 or other means described in the literature.

Other phosphate antioxidants which can be employed include triethyl phosphate, trilaurylphosphate, tridecylphosphate, octyl diphenylphosphate, tris(2,4-di-t-butylphenyl) phosphite, tris(nonylphenyl) phosphite, hexa(tridecyl) 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane triphosphate, tetra(C12 alkyl) 4,4'-isopropyldienediphenol diphenosphate, tris(tetradecyl)4,4'-butyldienedebis(3-methyl-6-t-butyl phenol) diphenol phosphate, hydrogenated 4,4'-isopropyldienediphenol diphenol phosphate, distearyl pentaerythritol diphenolate, phenyl 4,4'-isopropylidenediphenol pentaerythritol diphenosphate, bis(2,4-di-t-butylphenyl) pentaerythritol diphenosphate, bis(2,6-di-t-butyl-4-methylphenyl) pentaerythritol phosphate, di(nonylphenyl) pentaerythritol diphenyl phosphate and 4,4'-isopropylidenedebis(2-t-butylphenol) di(nonylphenyl) phosphate.

Phenolic antioxidants which can be employed in the invention include, but are not limited to, 2,6-di-t-butyl-p-cresol, 2,6-di-phenyl-4-octadecyloxyphenol, stearyl(3,5-di-t-butyl-4-hydroxyphenyl)-propionate, distearyl-3,5-di-t-butyl-4-hydroxybenzylphosphonate, thio-diethylbenzis(3,5-di-t-butyl-4-hydroxyphenyl)propionate, hexamethylene-bis(3,5-di-t-butyl-4-hydroxyphenylpropionate), 4,4'-thiobis(6-t-butyl-m-cresol), 2-ctlythiio-4,6-bis(3,5-di-t-butyl-4-hydroxyphenoxy)-s-triazine, 2,2'-methylenebisis(4-methyl-6-t-butylphenol), 2,2'-methylenebisis(4-ethyl-6-t-butylphenol), bis(3,3-bis(4-hydroxy-3-t-butylphenyl) butylic acid) glycol ester, 4,4'-butyldienedebis(6-t-butyl-m-cresol), 2,2'-ethylenedebisis(4-sec-butyl-6-t-butylphenol), 3,6-dioxaocetylbenzis(3-methyl-5-t-butyl-4-hydroxypherylpropionate), 1,1,3-tris(2,4-dimethyl-4-hydroxy-5-t-butylphenyl)butane, bis(2-t-butyl-4-methyl-6-(2-hydroxy-3-t-butyl-5-methyl benzyl)phenyl) terephthalate, 1,3,5-tris(2,6-dimethyl-3-hydroxy-4-t-butylbenzyl) isocyanurate, 1,3,5-tris(3,5-di-t-butyl-4-hydroxylbenzyl) isocyanurate, 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,3,5-tris(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxoyethyl)isocyanurate, tetrakis(methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)-propionate)methane.

Suitable epoxidized esters of unsaturated fatty acid may be made by reacting alcohols with unsaturated fatty acids to produce esters of unsaturated fatty acids, followed by epoxidizing the esters of unsaturated fatty acids. The epoxidizing may be accomplished by treating the ester of an unsaturated fatty acid with a peroxy organic acid, such as...
peroxy acetic acid. Suitable alcohols include mono-ols, diols, triols such as glycerols, and higher polyols. Suitable unsaturated fatty acids include mono and poly(di,tri, and higher) unsaturated fatty acids such as oleic acid, linoelic acid, linolenic acid, and arachidonic acid. Naturally occurring esters of unsaturated fatty acids, more particularly glycerides of unsaturated fatty acids, include vegetable oils (chiefly from seeds or nuts), including soybean oil, linseed oil, and cottonseed oil. Generally unsaturated fatty acids have from 4 to 24 carbon atoms. The most preferred epoxidized ester of unsaturated fatty acid is epoxidized soybean oil. Soybean oil is predominantly triglycerides of oleic acid, triglycerides of linoelic acid and triglycerydes of linoelic acid.

The polyolefin resin compositions preferably comprise from 50 to 99.9 weight percent polyolefin resin, more preferably from 90 to 99.5 weight percent thereof, and most preferably from 95 to 99 weight percent thereof based on the total weight of the composition, from 0.01 to 5 weight percent phospate, more preferably from 0.05 to 3 weight percent thereof, and most preferably from 0.1 to 1 weight percent thereof based on the total weight of the composition; and preferably comprises from 0.1 to 5 weight percent epoxidized ester of an unsaturated fatty acid, more preferably from 0.05 to 3 weight percent thereof, and most preferably from 0.1 to 1 weight percent thereof based on the total weight of the composition.

The composition may also contain or be free of other additives such as waxes, antistatic agents, flame retardants, nucleating agents, plasticizers, hindered amine light stabilizers, and hindered phenolic antioxidants. Preferably the composition contains a hindered phenolic antioxidant at a level of from 0.001 to 5 weight percent, more preferably at a level of from 0.005 to 3 weight percent thereof, and most preferably at a level of from 0.025 to 0.3 weight percent thereof based on the total weight of the composition.

In a preferred embodiment of the invention the composition consists of polyolefin resin, phosphate resin and epoxidised ester of a fatty acid. The phosphate resin is preferably bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphate.

Polyolefin fibers are typically made by melt spinning processes. Melt spinning requires that the polyolefin polymers be stable at temperatures sufficiently above the melting point or softening point of the polyolefin to be extruded in the molten state without substantial degradation. The melt spinning process employs a spinneret, which is a plate containing orifices through which molten polymer is extruded under pressure. Typically the spinneret is made of stainless steel or a nickel alloy. The spinneret is a flat plate, flush with or recessed in its mounting. Spinnerets for molten polymers are usually from 3mm to 10mm thick, for melt process pressures of up to 20-7MPa (3000 psi). Fibers forming spinneret holes may have exit diameters of from 175 to 750 μm (microns). The number of holes in the spinneret may range from a few to several thousand. A typical process is shown schematically in Figure 1, wherein the polyolefin composition in particulate form is fed via a hopper 10 to a-screw type extruder 12 wherein the composition is melted at elevated temperatures to form a melt stream which is forced at elevated pressures to a metering pump 14 which controls the flow. Optionally, there may be a filtration unit (not shown) at the exit of the extruder 12. The melt stream is then forced through a filter 16, preferably a screen pack filter of filters in series (16θ, 16ρ, 16φ, 16ν, 16σ) with the upstream filters being of a mesh for collecting only large particles and subsequent downstream filters being increasingly fine for collecting smaller particles that pass through the upstream filters, which removes unmelted solids prior to the melt stream reaching the spinneret 18. The filtered stream is then forced to the spinneret 18 wherein fibers are formed by passing the melt stream through the die holes of the spinneret. The fibers are then air cooled and converged into the convergent guide 20, then directed to the finish application 22, reels 24, 26, and finally to the spin bobbin 28 wherein the fiber is wound for storage.

Before reaching the spinneret, the molten polymer is filtered through a series of sintered or fibrous metal gauzes or a bed of graded fine refractory material, such as sand or alumina, held in place by metal screens. Filtration removes large solid or gel particles that might otherwise block spinneret holes or, if passed through, occupy sufficient cross-sectional area in the filament to affect its processing or tensile properties. Smaller particles, such as delusterants, are not retained by the filter. Filtration also provides shearing, and thus can influence rheological behavior.

As shown in Figure 2, a film making process may involve feeding polyolefin particulates (pellets or powder) to a hopper 24 of a screw type extruder 26 wherein the particulates are melted and forced to a metering pump 28 (optional) and then forced through a filtering system (preferably a screen pack) 30 which preferably has a series of filters (30θ, 30ρ, 30φ, 30ν and 30σ) which have increasingly fine mesh as the polyolefin melt flows downstream. The filter screens out the unmelted solid by-products before the polyolefin melt stream reaches the die 32 so that the dies orifice 33 will not become clogged by the solid by-products. The melt stream flows from the filter system 30 to the die 32, through the elongated die orifice 33, forming a polyolefin film which then passed partially around and between calendar rolls 34, 36 to storage roll 38 whereupon the film is wound and stored.

Examples

Example 1 was a polypropylene composition containing 500 parts per million by weight (ppm) bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphate (sold under the trademark Ultranox 626 by GE Specialty Chemicals Inc.), 250 ppm of a hindered phenolic compound (sold under the trademark Organo 3114 by B.F. Goodrich), 250 ppm Epoxidized
Soybean Oil, and 250 ppm Calcium Stearate. The polypropylene base resin used in the compositions of the examples was Himont Profax 6301 resin.

Comparative Example 2 has a polypropylene composition containing 500 ppm of Calcium Stearate, 500 ppm of bis(2,4-di-tert-butylphenyl) pentaerythritol phosphate, 250 ppm of hindered phenolic compound (Irganox 3114).

Test method - Polypropylene is compounded with additives. Our laboratory compound method 232°C (450° F) stock temperature using a 24:1 L/D 2.54 cm (1") 2 stage screw with a Maddox mixer between stages. A screen pack composed of 20/100/500/100/20 mesh screens is utilized. Polypropylene is reextruded using a 1.9 cm (3/4") Brabender extruder with a single stage screw 2:1 compression having a Maddox mixer 15.24 cm (6") from the screw tip. The output of the extruder is throttled to a 0.64 cm (1/4") diameter focus on a screen pack. The screen pack is composed of 20/100/1400 x 125/100/20 screens. Back pressure is set to 1380-2070 KPa (200-300 psi).

The extrusion is performed at 316°C (600° F) stock temperature operating the extruder at 10 rpm for 60 min and 50 rpm for 10 minutes out of every hour. Back pressure is set at 1380 - 2070 KPa (200-300 psi). The extrusion is performed until significant pressure rise occurs or if none is observed for 13-16 hrs.

Table 1

<table>
<thead>
<tr>
<th>Examples</th>
<th>Ex 1</th>
<th>CEx2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back Pressure Increase (psi)</td>
<td>0(13hrs)</td>
<td>+</td>
</tr>
<tr>
<td>(KPa)</td>
<td></td>
<td>3450</td>
</tr>
</tbody>
</table>

Note that the examples of the present invention exhibited no back pressure increase after 13 hours of operation whereas the comparative example exhibited a + 3450 KPa (500 psi) increase in back pressure after only 8 hours.

Typical filter mesh sizes are from 20 mesh to 1000 mesh, for example, 20 mesh, 100 mesh and 500 mesh. The higher the mesh number the finer the filtration. The process of the present invention preferably employs a filter fineness of at least 20 mesh, more preferably at least 100 mesh, more preferably at least 500 mesh and most preferably in series of 20 mesh, 100 mesh and 500 mesh so that the upstream filters filter out the largest particles and the downstream filters filter out the fine particles.

Preferably the screen filter has a mesh size of between 20 and 500 mesh. A screen pack containing at least two filters may also be used, one of the filters having a mesh size of greater than 100 and the other a mesh size of less than 100.

Example 3 was the same composition as Example 1, except 100 ppm of DHTAA hydrotalcite was used in place of the 250 ppm of Calcium Stearate. The Example 3 composition exhibited no plugged screen pack pressure increase after 13 hours of operation.

Example 4 was the same as Example 1 except the composition of Example 4 contained in addition 100 ppm of DHT4A hydrotalcite. The Example 4 exhibited no plugged screen pack pressure increase after 13 hours of operation.

Claims

1. An extrusion process for making plastic articles, said process comprising:
 a) forming a polyolefin composition comprising a polyolefin resin, a phosphite stabilizer, and at least one epoxidized ester of a fatty acid,
 b) melt extruding said composition through a filtration system to produce a filtered polyolefin melt stream,
 c) passing said melt stream through a die to make the plastic article.

2. The process of Claim 1 wherein said phosphite is a pentaerythritol phosphate.

3. The process of Claim 2 wherein said phosphite is a bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite.

4. The process of Claim 1 wherein said polyolefin is polypropylene.

5. The process of Claim 3 wherein said polyolefin is polypropylene.

6. The process of Claim 1 wherein said polyolefin is polyethylene.
7. The process of Claim 1 wherein said screen filter has a mesh size of between 20 and 500 mesh.

8. The process of Claim 1 wherein said filtration system is a screen pack comprising at least two filters, wherein one of said filters has a mesh size of greater than 100 and another of said filters has a mesh size of less than 100.

9. The process of Claim 1 wherein said epoxidized ester of a fatty acid is expoxidized soybean oil.

10. The process of Claim 1 wherein said epoxidized ester of a fatty acid is an epoxidized unsaturated vegetable oil.

11. The process of Claim 1 wherein said articles are selected from the group consisting of fibers and films.

12. A melt extrusion process for making polypropylene fibers, said process comprising:

 a) forming a polypropylene composition comprising a polypropylene resin, bis(2,4-di-tert-butylphenyl) pentamethyldiphosphite, and an epoxidized ester of a fatty acid,
 b) melting said composition to form a melted composition,
 c) filtering said melted composition to remove unmelted solids,
 d) passing said filtered composition through a fiber forming die orifice to produce polypropylene fiber.

13. The process of Claim 12 wherein said filtering comprises forcing the melted composition through a screen pack comprising at least two screen filters, wherein at least one screen has a mesh size greater than 100 and at least one screen has a mesh size of less than 100.

14. The process of Claim 12 wherein said composition comprises from 90 to 99.5 weight percent of said polypropylene resin, from 0.05 to 3 weight percent of said phosphite, and from 0.05 to 3 weight percent of said epoxidized ester of a fatty acid based on the total weight of said composition.

15. The process of Claim 12 wherein said composition comprises from 95 to 99 weight percent of said polypropylene resin, from 0.01 to 1 weight percent of said phosphite, and from 0.01 to 1 weight percent of said epoxidized ester of a fatty acid based on the total weight of said composition.

16. The process of Claim 12 wherein said composition further comprises from 0.005 to 3 weight percent of a hindered phenolic antioxidant based on the total weight of the composition.

17. The process of Claim 12 wherein said epoxidized ester of fatty acid is epoxidized soybean oil.

18. The process of Claim 1 wherein said composition consists of said polyolefin resin, said phosphite stabilizer, and epoxidized ester of fatty acid.

19. The process of Claim 12 wherein said composition consists of said polypropylene resin, said bis(2,4-di-tert-butylphenyl)pentamethyldiphosphite resin, and said epoxidized ester of fatty acid.

20. A melt extrusion process for making polypropylene fibers, said process consisting of:

 a) forming a polypropylene composition comprising a polypropylene resin, bis(2,4-di-tert-butylphenyl)pentamethyldiphosphite, and an epoxidized ester of fatty acid,
 b) melting said composition to form a melted composition,
 c) filtering said melted composition to remove unmelted solids,
 d) passing said filtered composition through a fiber forming die orifice to produce polypropylene fiber.

Patentansprüche

1. Extrusionsverfahren zum Herstellen von Kunststoffgegenständen, wobei das Verfahren umfaßt:

 a) Bilden einer Polyolefin-Zusammensetzung, umfassend ein Polyolefinharz, einen Phosphit-Stabilisator und mindestens einen epoxidierten Ester einer Fettsäure,
 b) Schmelzextrudieren dieser Zusammensetzung durch ein Filtrations-System zur Herstellung eines gefilter-
ten Polyolefin-Schmelzstromes,
c) Hindurchführen dieses Schmelzstromes durch eine Düse, um den Kunststoffgegenstand herzustellen.

2. Verfahren nach Anspruch 1, worin das Phosphit ein Pentaerythritphosphit ist.

3. Verfahren nach Anspruch 2, worin das Phosphit ein Bis(2,4-di-tert-butylphenyl)pentaerythritdiphosphit ist.

4. Verfahren nach Anspruch 1, worin das Polyolefin Polypropylen ist.

5. Verfahren nach Anspruch 3, worin das Polyolefin Polypropylen ist.

6. Verfahren nach Anspruch 1, worin das Polyolefin Polyethylen ist.

7. Verfahren nach Anspruch 1, worin Tier Siebfilter eine Maschengröße zwischen 20 und 500 Maschen hat.

8. Verfahren nach Anspruch 1, worin das Filtrations-System eine Siebpackung ist, die mindestens zwei Filter umfaßt, worin einer der Filter eine Maschengröße von mehr als 100 und ein anderer der Filter eine Maschengröße von weniger als 200 hat.

9. Verfahren nach Anspruch 1, worin der epoxidierte Ester einer Fettsäure epoxidiertes Sojabohnenöl ist.

10. Verfahren nach Anspruch 1, worin der epoxidierte Ester einer Fettsäure ein epoxidiertes, ungesättigtes pflanzliches Öl ist.

11. Verfahren nach Anspruch 1, worin die Gegenstände ausgewählt sind aus der Gruppe bestehend aus Fasern und Filmen.

12. Schmelzextrusions-Verfahren zur Herstellung von Polypropylen-Fasern, wobei das Verfahren umfaßt:

 a) Bilden einer Polypropylen-Zusammensetzung, umfassend ein Polypropylenharz, Bis(2,4-di-tert-butylphenyl)pentaerythritdiphosphit und einen epoxidierten Ester einer Fettsäure,
 b) Schmelzen dieser Zusammensetzung zur Bildung einer geschmolzenen Zusammensetzung,
 c) Filtern dieser geschmolzenen Zusammensetzung zur Entfernung nicht geschmolzener Feststoffe,
 d) Hindurchführen dieser gefilterten Zusammensetzung durch eine eine Faser bildende Düsenöffnung zur Herstellung von Polypropylen-Fasern.

13. Verfahren nach Anspruch 12, worin das Filter die Hindurchdrücke der geschmolzenen Zusammensetzung durch eine Siebpackung umfaßt, die mindestens zwei Siebfilter umfaßt, worin mindestens ein Sieb eine Maschengröße von mehr als 100 und mindestens ein Sieb eine Maschengröße von weniger als 100 hat.

14. Verfahren nach Anspruch 12, worin die Zusammensetzung von 90 bis 99,5 Gew.-% des Polypropylenharzes, von 0,05 bis 3 Gew.-% des Phosphits und von 0,05 bis 3 Gew.-% des epoxidierten Esters einer Fettsäure, bezogen auf das Gesamtgewicht der Zusammensetzung, umfaßt.

15. Verfahren nach Anspruch 12, worin die Zusammensetzung von 95 bis 99 Gew.-% des Polypropylenharzes von 0,01 bis 1 Gew.-% des Phosphits und von 0,01 bis 1 Gew.-% des epoxidierten Esters einer Fettsäure, bezogen auf das Gesamtgewicht der Zusammensetzung, umfaßt.

16. Verfahren nach Anspruch 12, worin die Zusammensetzung weiter von 0,005 bis 3 Gew.-% eines gehinderten phenolischen Antioxidationsmittels, bezogen auf das Gesamtgewicht der Zusammensetzung, umfaßt.

17. Verfahren nach Anspruch 12, worin der epoxidierte Ester einer Fettsäure epoxidiertes Sojabohnenöl ist.

18. Verfahren nach Anspruch 1, worin die Zusammensetzung aus dem Polyolefinharz, dem Phosphit-Stabilisator und dem epoxidierten Ester einer Fettsäure besteht.

19. Verfahren nach Anspruch 12, worin die Zusammensetzung aus dem Polypropylenharz, dem Bis(2,4-di-tert-butylyphenyl)pentaerythritdiphosphit und dem epoxidierten Ester einer Fettsäure besteht.
20. Schmelzextrusions-Verfahren zur Herstellung von Polypropylen-Fasern, wobei das Verfahren besteht aus:

a) Bilden einer Polypropylen-Zusammensetzung, umfassend ein Polypropylenharz, Bis(2,4-di-tert-butylphe-
nyl)pentaoxytrythritolphosphit und einen epoxidierten Ester einer Fettsäure,

b) Schmelzen dieser Zusammensetzung zur Bildung einer geschmolzenen Zusammensetzung,

c) Filtern dieser geschmolzenen Zusammensetzung zur Entfernung ungeschmolzener Feststoffe,

d) Hindurchführen dieser gefilterten Zusammensetzung durch eine eine Faser bildende Düsenöffnung zur
Herstellung von Polypropylen-Faser.

2. Procédé conforme à la revendication 1, dans lequel ledit phosphite est un phosphite de pentaérythritol.

3. Procédé conforme à la revendication 2, dans lequel ledit phosphite est du diphosphite de bis(2,4-diteriobutylphé-
nyl)pentaoxytrythritol.

4. Procédé conforme à la revendication 1, dans lequel ladite polyoléfine est un polypropylène.

5. Procédé conforme à la revendication 3, dans lequel ladite polyoléfine est un polypropylène.

6. Procédé conforme à la revendication 1, dans lequel ladite polyoléfine est un polyéthylène.

7. Procédé conforme à la revendication 1, dans lequel ledit filtre est un tamis de numéro 20 à 500 mesh.

8. Procédé conforme à la revendication 1, dans lequel ledit système de filtration est un paquet de filtres comprenant
au moins deux filtres, l’un de ces filtres étant un tamis de numéro supérieur à 100 mesh et un autre de ces filtres
étant un tamis de numéro inférieur à 100 mesh.

9. Procédé conforme à la revendication 1, dans lequel l’ester d’acide gras époxydé est de l’huile de soja époxydée.

10. Procédé conforme à la revendication 1, dans lequel l’ester d’acide gras époxydé est une huile végétale insaturée
époxydée.

11. Procédé conforme à la revendication 1, dans lequel lesdits articles sont choisis dans l’ensemble constitué des
fibres et des films.

12. Procédé d’extrusion à l’état fondu, permettant de fabriquer des fibres de polypropylène, ledit procédé comportant :

a) le fait de préparer une composition de polypropylène comprenant une résine de polypropylène, du diphos-
phite de bis(2,4-diteriobutylphényl)pentaérythritol, et un ester d’acide gras époxydé ;

b) le fait de faire fondre cette composition, pour obtenir une composition fondue ;

c) le fait de filtrer cette composition fondue, pour en éliminer les matières solides qui n’ont pas fondu ; et

c) le fait de faire passer cette composition filtrée dans l’orifice d’une filière de production de fibres, pour fabriquer
de la fibre de polypropylène.

13. Procédé conforme à la revendication 12, dans lequel ladite opération de filtration comporte le fait de faire passer
de force la composition fondue dans un paquet de filtres comprenant au moins deux filtres, l’un de ces filtres étant
un tamis de numéro supérieur à 10(1) mesh et un autre de ces filtres étant un tamis de numéro inférieur à 100 mesh.
14. Procédé conforme à la revendication 12, dans lequel ladite composition comprend de 90 à 99,5 % en poids de résine de propylène, de 0,05 à 3 % en poids dudit phosphite et de 0,05 à 3 % en poids dudit ester d’acide gras époxydé, par rapport au poids total de ladite composition.

15. Procédé conforme à la revendication 12, dans lequel ladite composition comprend de 95 à 99 % en poids de résine de propylène, de 0,01 à 1 % en poids dudit phosphite et de 0,01 à 1 % en poids dudit ester d’acide gras époxydé, par rapport au poids total de ladite composition.

16. Procédé conforme à la revendication 12, dans lequel ladite composition comprend en outre de 0,005 à 3 % en poids d’un antioxydant de type phénol encombré, par rapport au poids total de la composition.

17. Procédé conforme à la revendication 12, dans lequel ledit ester d’acide gras époxydé est de l’huile de soja époxydée.

18. Procédé conforme à la revendication 1, dans lequel ladite composition est constituée de ladite résine de polycéline, dudit phosphite stabilisant et d’un ester d’acide gras époxydé.

19. Procédé conforme à la revendication 12, dans lequel ladite composition est constituée de ladite résine de polypropylène, dudit diphosphate de bis(2,4-diteriobutylyphényl)pentaérythritol, et dudit ester d’acide gras époxydé.

20. Procédé d’extrusion à l’état fondu, permettant de fabriquer des fibres de polypropylène, ledit procédé consistant à :

 a) préparer une composition de polypropylène comprenant une résine de polypropylène, du diphosphate de bis(2,4-diteriobutylyphényl)pentaérythritol, et un ester d’acide gras époxydé ;
 b) faire fondre cette composition, pour obtenir une composition fondu ;
 c) filtrer cette composition fondu, pour en éliminer les matières solides qui n’ont pas fondu ; et
 d) faire passer cette composition filtrée dans l’orifice d’une filière de production de fibres, pour fabriquer de la fibre de polypropylène.