EUROPEAN PATENT SPECIFICATION

(51) Int. Cl. 6: B65B 51/26, B65B 9/20

(45) Date of publication and mention of the grant of the patent:

(21) Application number: 94301054.6

(22) Date of filing: 14.02.1994

(54) Longitudinal sealer for packaging machine
Siegeleinrichtung für Längsnähte in Verpackungsmaschinen
Dispositif de soudage pour jointures longitudinales sur des machines d’emballage

(84) Designated Contracting States:
DE FR GB IT

(30) Priority: 15.02.1993 JP 48660/93
25.11.1993 JP 319096/93

(43) Date of publication of application:
24.08.1994 Bulletin 1994/34

(73) Proprietor: ISHIDA CO., Ltd.
Kyoto-shi, Kyoto 606 (JP)

(72) Inventor: Fukuda, Masao,
c/o Shiga Integrated Facility
Kurita-gun, Shiga (JP)

(74) Representative: Skone James, Robert Edmund
GILL JENNINGS & EVERY
Broadgate House
7 Eldon Street
London EC2M 7LH (GB)

(56) References cited:
US-A- 3 296 770
US-A- 3 729 359
US-A- 5 279 098

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

This invention relates to a longitudinal sealer for a form-fill-seal combined bag maker and packaging machine (hereinafter simply referred to as a packaging machine), and more particularly to a device for adjusting the position of a heater in such a sealer. The invention further relates to a packaging machine incorporating such an improved sealer.

Consider, for example, a so-called vertical pillow type packaging machine which uses a former to bend an elongated web of thermoplastic sheet into a tubular form, while pulling it down over the peripheral surface of a loading cylinder through which articles to be packaged are dropped. The mutually overlapping side edges of the tubularly formed sheet are sealed together by a heater in a vertical (or longitudinal) sealer, and a horizontal (or transverse) sealer disposed below the loading cylinder seals the top edge of a bag and the bottom edge of the next bag at the same time. The vertical sealer is usually provided with a vertically extended endless belt such that the filling and sealing of the bags can be carried out continuously.

Packaging machines of this type are required to be able to produce bags of different shapes and sizes, depending upon both the nature and the amount of the articles to be packaged. For this reason, many kinds of formers with different shapes and sizes are customarily provided and they are selectively used with a packaging machine. Japanese Patent Publication Tokkai 5-124606 discloses a packaging machine, of which the position of its sealing heater can be changed, depending on which of many available formers is installed. Since there are fluctuations in the shape and size of the formers due to production errors, the position of the sealer may require additional adjustments both in the radial and tangential directions. Moreover, the sealer may have to be tilted, even after it is correctly positioned, such that its tip will be accurately opposite to the surface of the former.

Thus, whenever a different former is installed for producing bags of a different kind, it becomes necessary not only to remove the endless belt and to adjust its position but also to carry out adjustments of the position of the sealing heater. In particular, since a prior art vertical sealer is usually so structured that its heater is axially supported by a shaft in its exterior, the tangential position of the tip of the heater with respect to the former is affected as the heater is rotated against this support shaft. The position adjustment of the heater is therefore made even more difficult to perform.

In accordance with the present invention, a longitudinal sealer for a packaging machine comprises a sealing unit including a heater; a mobile support member supporting said sealing unit; and Y-θ adjusting means provided with a first mechanism for selectively moving said support member translationally in a Y-direction, a second mechanism for rotating said support member around an axis extending through said sealing unit and a switching means for switching from one mechanism to the other mechanism.

The invention provides an improved longitudinal sealer for a packaging machine which can be adjusted easily and quickly according to the shape and the size of the bags to be formed.

The invention also provides a compact device for adjusting the position and orientation of a sealer in such a longitudinal sealer.

In a preferred example, the sealing unit is supported on a mobile member such that it can be moved by means of a unitized adjustment device not only in two mutually perpendicular directions but also selectively around an axis passing through the heater.

The accompanying drawings, which are incorporated in and form a part of this specification, illustrate an embodiment of the invention and, together with the description, serve to explain the principles of the invention. In the drawings:

Fig. 1 is a diagonal view of a longitudinal sealer embodying the present invention as incorporated in a packaging machine;

Fig. 2 is a diagonal view of a portion of the adjustment device in the longitudinal sealer of Fig. 1;

Fig. 3 is a partially sectional plan view of a portion of the adjustment device of Figs. 1 and 2;

Fig. 4 is a partially sectional side view of a portion of the adjustment device of Figs. 1-3;

Fig. 5 is a diagonal view of the display mechanism of the adjustment device of Figs. 1-4; and

Fig. 6 is a schematic diagonal view of a portion of a vertical pillow type form-fill-seal bag maker-packaging machine incorporating a longitudinal sealer embodying the present invention; and

Figs. 7(a) and 7(b) are plan views for showing operations of the adjustment device of Figs. 1-5.

In Fig. 1, numeral 1 generally indicates a longitudinal sealer according to an example of this invention, as a part of a vertical pillow-type form-fill-seal packaging machine of an ordinary kind having a former 90, a loading cylinder 91 and a hopper 92 arranged in a well known relationship with respect to one another. In order that the former 90 can be easily removed and replaced by a different one, an elongated member (herein referred to as the arm 2) is rotatably supported by a frame 93 around a support pin 3 and the longitudinal sealer 1 is supported near the free end of the arm 2 such that it can be retracted out of the way of the former when it is exchanged. The arm 2 is provided with a guide groove 4 extending longitudinally therealong. A generally Z-shaped support block 5 is supported by the arm 2 and engages with this groove 4 so as to be able...
to slide longitudinally on and along the arm 2. One end
of the support block 5 distal from the arm 2 is formed as
a gripper 11 equipped with bolts 12 for supporting a
sealer unit 20 by gripping an adjustment device 30 therefor.
The arm 2 also supports a position-controlling motor 6 with a helically threaded shaft 7 for controlling the position of the support block 5 (in the Y-direction as indicated in Fig. 1) according to the size of the former 90 to be installed. The threaded shaft 7 of this motor 6 engages with a support table 8 supporting a cylinder 9 with a piston rod inside (of which the function will be described below).

The sealer unit 20 includes a base plate 21 extending parallel to the loading cylinder 91, a belt-driving motor 23 attached to the base plate 21, a driver pulley 25 mounted to the drive shaft of this motor 23, a follower pulley 26 axially supported by the base plate 21, an endless belt (or a seal belt) 27 stretched between the pulleys 25 and 26 so as to be rotated by the belt-driving motor 23, and a heater 28 disposed between the pulleys 25 and 26. Longitudinal sealing is effected by transmitting heat from the heater 28 through the belt 27 to mutually overlapping side edges of a bag-making sheet material (not shown) travelling downward along the outer peripheral surface of the loading cylinder 91.

As shown more clearly in Figs. 2, 3 and 4, the adjustment device 30 comprises of a first adjustment unit 35 for adjusting the position of the heater 28 in the X-direction (as indicated in Figs. 2, 3 and 4) and a second adjustment unit 45 for adjusting both the position of the heater 28 in the Y-direction and its orientation. Numerals 37 indicate a pair of frame structures for the adjustment device 30 affixed to the base plate 21 of the sealer unit 20.

The first adjustment unit 35 includes a spline shaft 14, a worm wheel 36 and a worm gear 40. As shown most clearly in Fig. 3, the circumferential surface of the spline shaft 14 engages slidably with a mobile frame 38 which is affixed to the frame structures 37 of the device 30. A screw 31 is affixed to the front end of the spline shaft 14, and the worm wheel 36 is attached to the spline shaft 14 by engaging with the screw 31. The worm gear 40 is affixed to a shaft 42 which extends in the Y-direction and is supported rotatably by the frame structures 37 such that the worm gear 40 and the worm wheel 36 engage each other. Small flanking plates 39 are attached to inner surfaces of the frame structures 37 such that the worm wheel 36 is sandwiched between the front end of the mobile frame 38 and the flanking plates 39. A knob 41 with a calibration 43 is fastened to the shaft 42. As this knob 41 is rotated, the rotary motion of the worm gear 40 is communicated through the worm wheel 36, the spline shaft 14 and the mobile frame 38 and moves the frame structures 37, and hence also the second adjustment unit 45, in the X-direction, that is, in the tangential direction of the former 90. In order to show the actual displacement of the device 30 in the X-direction, a calibrated plate 44a is attached to the mobile frame 38 and an indicator 44b is affixed to a portion of the support block 5 such that the pointer of the indicator 44b will move along the calibrated plate 44a.

The second adjustment unit 45 is comprised basically of a pair of equally sized gear wheels and a pair of differently sized gear wheels and, which can be selectively engaged together for adjusting the position of the heater 28 in the Y-direction as well as its orientation. For this purpose, the frame structures 37 rotateably support a first shaft 46 and a second shaft 50 parallel to each other, extending in the Y-direction, with the first shaft 46 disposed closer to the heater 28. Both the first and second shafts 46 and 50 are helically threaded in mutually opposite directions. A portion of the first shaft 46 extends outside the frame structures 37, and a first gear wheel 47 and a second gear wheel 48 are affixed to this extended portion of the first shaft 46 with a spacer 49 disposed therebetween. Similarly, a portion of the second shaft 50 extends outside the frame structures 37, having a sleeve shaft 54 attached thereto so as to be slideable thereon and rotate therewith. A third gear wheel 51, a fourth gear when 52 and a knob 53 are attached to the sleeve shaft 54.

The first gear wheel 47 on the first shaft 46 and the third gear wheel 51 on the second shaft 50 are of the same size and engageable with each other. When these two gear wheels 47 and 51 are engaged to each other and rotate together, a mobile member 56, which is engaged to both the first and second shafts 46 and 50 respectively through engaging pieces 59 and 60, moves in the Y-direction. The second gear wheel 48 on the first shaft 46 and the fourth gear wheel 52 on the second shaft 50 are of different sizes so as to be also engageable with each other. Let L1 and L2 denote the distances respectively of the first and second shafts 46 and 50 from the heater 28 in the X-direction, as schematically shown in Fig. 3. The ratio between the diameters of the second and fourth gear wheels 48 and 52 is set equal to L2/L1 such that, when the gear wheels 48 and 51 are engaged to each other and rotate together, the mobile member 56 rotates around a vertical center axis 29 of the heater 28.

The mobile member 56 is cross-sectionally U-shaped, as seen sideways, with upper and lower horizontal plates 57 facing each other, as most clearly shown in Figs. 4 and 5. The engaging pieces 59 and 60, engaging respectively to the first and second shafts 46 and 50, are sandwiched between these plates 57 and rotatably supported thereby around pins 61 and 62, respectively. The front end surface 58 of the mobile member 56 is provided with a support pin 63, by which the base plate 21 is axially supported. A U-shaped spring holder 64 is attached on top of the upper plate 57 as shown in Fig. 5. Numerals 22 in Fig. 5 indicates a protrusion from the base plate 21 (which itself is not shown in Fig. 5), sandwiched between a pair of springs 65 both attached to the spring holder 64 such that the angle of the sealer unit 20 in the Y-direction can be adjusted.

Fig. 5 also shows a mechanism for displaying the
adjustment made in the Y-direction as well as the orientation of the heater 28 by the second adjustment unit 45.
A pointer 67 with its front end 67-1 pointing generally in the backward direction is attached to the top surface of the upper plate 57 of the mobile member 56, and a calibrated plate 68 for indicating the adjustment in the Y-direction is attached to and extended from one of the frame structures 37 such that a short indicator 67-2 attached to the pointer 67 and this calibrated plate 68 are proximal to each other. Another generally T-shaped calibrated plate 69 for indicating the angular adjustment is attached to a back surface of the engaging piece 60 (closer to the first adjustment unit 35) and its calibrated surface is positioned proximal to the front end 67-1 of the pointer 67.

Fig. 6 shows a portion of a packaging machine 100, such as described in U.S. patent 5,279,098 issued January 18, 1994 (which is incorporated herein by reference), comprised not only of a longitudinal sealer described above (of which only the seal belt 27 and its pulleys 25 and 26 are shown for simplicity), but also of a holder 97 for supporting a film supply roll, a plurality of guide rolls 95 for directing to the former 90 a web of flexible thermoplastic film material W pulled out of the film supply roll, a pair of pull-down belts 98 for pulling the film material W and a transverse sealer 99 disposed below the longitudinal sealer 1. With a packaging machine thus formed, the user first selects a roll of bag-making material (or film) and a loading cylinder of a proper size in view of the kind of bags to be made. After such a roll and loading cylinder are installed, the user specifies required conditions for the operation of the packaging machine 100 through an input device (not shown) such as a control panel. When the position-controlling motor 6 receives a signal indicative of such inputted data, it rotates accordingly so as to place the support block 5 properly (in the Y-direction) by way of the threaded shaft 7 with respect to the loading cylinder 91. The cylinder 9 is connected to a high-pressure gas container and a control device (schematically shown in Fig. 1 at 9-1), by means of which the piston rod 10 is pushed out or retracted into the cylinder 9 so as to maintain the sealer unit 20 at a wait position separated from the film by a specified distance. If it is desired to make bags with an off-center longitudinal sealing line, for example, the knob 41 attached to the worm wheel 40 is turned to move the mobile frame 38 and hence also the heater 28 in the X-direction, that is, tangentially with respect to the former 90.

If the heater 28 and the former 90 are mismatched in the Y-direction, the other knob 53 on the second adjustment unit 45 is pushed in such that the pair of two equally sized gear wheels 47 and 51 is engaged together, as shown in Fig. 3, and then turned around in a correct direction. As a result, the shafts 46 and 50 cause the engaging pieces 59 and 60 to move in the same direction (Y-direction) at the same rate, as shown in Fig. 7(a), and the heater 28 is thereby translationally shifted in the Y-direction. In the meantime, the pointer 67 does not change its orientation and the calibrated plate 68 affixed to the frame structure 37 does not move in the Y-direction. The resulting relative displacement between the short indicator 67-2 attached to the pointer 67 and the calibrated plate 68 is indicated by y in Fig. 7(a).

If the tip of the heater 28 is not correctly facing the surface of the former 90, as shown in Fig. 7(b), the knob 53 is pulled out such that the pair of differently sized gear wheels 48 and 52 comes to be engaged with each other and then turned around in a correct direction. Because the numbers of teeth on the wheels 48 and 52 are inversely proportional to the ratio between the distances L1 and L2 of their axes from the heater 28, the mobile member 56 rotates around the center axis 29 of the heater 28, as shown in Fig. 7(b), thereby changing the orientation of the heater 28 attached to its front surface 58 until the tip of the heater 28 exactly matches the surface of the former 90. As the heater 28 is thus rotated around its axis 29 by a small angle ø, its tip will be displaced by a small distance Ax in the X-direction, as shown in Fig. 7(b), but this distance Ax is negligibly small for all practical purposes.

In the meantime, the pointer 67 rotates with the mobile member 56 on which it is affixed. The T-shaped angle-indicating plate 69, on the other hand, is affixed to the engaging piece 60 on the shaft 50, and hence its orientation remains the same as the engaging piece 60 moves in the Y-direction. Thus, there is a relative motion between the front end 67-1 of the pointer 67 and the calibrated plate 68, and it is displayed as the angular adjustment.

In summary, the mobile frame, which supports the longitudinal sealer unit, itself is adjustably movable both in the Y-direction and around an axis of the seal unit. As a result, the displacement in the X-direction becomes practically negligible, although adjustments in the X-direction can be carried out independently, and the operation for adjustment becomes much simplified according to the present invention.

Claims

1. A longitudinal sealer for a packaging machine, comprising a sealing unit (20) including a heater (28); a mobile support member (56) supporting said sealing unit; and Y-ø adjusting means (45) provided with a first mechanism for selectably moving said support member (56) translationally in a Y-direction, a second mechanism for rotating said support member (56) around an axis (29) extending through said sealing unit and a switching means (53) for switching from one mechanism to the other mechanism.

2. The longitudinal sealer of claim 1, wherein said Y-ø adjusting means (45) is unitized with said mobile support member (56) and comprises a mutually parallel pair of shafts (46, 50) each extending in said Y-direction; and switching means for selectively
causing said shafts to rotate at the same rate or at different rates proportional to the distance from said sealing unit (20); wherein said mobile support member (56) supports said sealing unit (20) at one end thereof in an X-direction perpendicular to said Y-direction and is connected with said pair of shafts (46,50) through engaging means (59,60) engaging with said shafts.

3. The longitudinal sealer of claim 2 wherein said Y-θ adjusting means further comprises a frame structure (37) which rotatably supports said pair of shafts (46,50); a first calibrated member (66) affixed to said frame structure (37); a second calibrated member (69) affixed to an engaging member (60) engaged with one of said shafts; and an indicator (67) affixed to said mobile support member, said indicator having a first pointer adapted to swing along said first calibrated member and a second pointer adapted to swing along said second calibrated member.

4. The longitudinal sealer of any of the preceding claims, further comprising X adjusting means (35) engaging with a part of said Y-θ adjusting means (45) for causing said Y-θ adjusting means to move in an X-direction which is perpendicular to said Y-direction.

5. The longitudinal sealer of claim 4 wherein said X adjusting means (35) is unitized, said X adjusting means comprising a helically threaded member (36) extending in said X-direction, a rotary member (40) engaging with and being adapted to rotate on said helically threaded member (36) and a knob (41) for rotating said rotary member (40).

6. The longitudinal sealer of claim 5, wherein said knob (41) is calibrated so as to display a displacement of said Y-θ adjusting means in said X-direction.

7. The longitudinal sealer of at least claim 4, further comprising an elongated member (2) rotatably supported by said packaging machine, said elongated member supporting said Y-θ adjusting means (45) and said X-adjusting means (35).

8. The longitudinal sealer of claim 7 for a packaging machine having a loading cylinder (91) installed thereon, further comprising a control means (9-1) for selectively pressing said sealing unit against a bag-making material on said loading cylinder or moving said sealing unit away from said bag-making material and wherein the first mechanism of the Y-θ adjusting means (45) is able to adjustingly move said sealing unit (20) radially towards or away from said loading cylinder (91) the X-adjusting means (35) is able to adjustingly move said sealing unit tangentially with respect to said loading cylinder (91); the second mechanism of the Y-θ adjusting means (45) is able to adjust the angular orientation of said sealing unit with respect to the axial direction of said loading cylinder; and the elongate member (2) supports said Y-θ adjusting means, said X-adjusting means and said control means through a supporting block (5).

9. The longitudinal sealer of claim 8 further comprising a motor (6) for causing said supporting block (5) to slide longitudinally on said elongate member (2).

10. A packaging machine comprising a loading cylinder (91) for causing articles to pass therethrough to be packaged in bags; a film supporting means (97) for supporting a roll of bag-making material; pulling means (98) for pulling said bag-making material from said roll; a former (90) for forming said bag-making material into a tubular shape around said loading cylinder; film guiding means (95) for guiding said bag-making material to said former (90); a longitudinal sealer for sealing side edges of said tubularly formed bag-making material together; and a transverse sealer (99) for sealing said tubularly formed bag-making material transversely to the direction of motion thereof, characterized in that the longitudinal sealer is constructed according to any of the preceding claims.

11. A packaging machine according to claim 10, wherein said Y-θ adjusting means (45) is arranged so as to move said sealing unit (20) in use radially towards or away from the loading cylinder (91) for allowing articles to pass therethrough to be packaged in bags.

Patentansprüche

1. Längsschließer für eine Verpackungsmaschine mit einer eine Heizeinrichtung (28) umfassende Schließeinheit (20); einem die Schließeinheit stützenden beweglichen Stützelement (56); und einer Y-θ-Einstelleinrichtung (45), die mit einem ersten Mechanismus zum wahlweisen translatorischen Bewegen des Stützelementes (56) in eine Richtung Y, einem zweiten Mechanismus zum Drehen des Stützelementes (56) um eine sich durch die Schließeinheit erstreckende Achse (29) und einer Schalteinrichtung (53) zum Schalten von dem einen Mechanismus zu dem anderen Mechanismus versehen ist.

2. Längsschließer nach Anspruch 1, wobei die Y-θ-Einstelleinrichtung (45) mit dem beweglichen Stützelement (56) als eine Einheit zusammengesetzt ist.
und ein zueinander paralleles Paar sich jeweils in der Richtung Y erstreckender Wellen (46, 50) und eine Verschiebeeinrichtung aufweist, die wahlweise ein Drehen der Wellen um die gleiche Rate oder um verschiedene dem Abstand von der Schließeinheit (20) proportionale Raten bewirkt, wobei das bewegliche Stützelement (56) die Schließeinheit (20) an ihrem Ende in einer zu der Richtung Y senkrechten Richtung X stützt und mit dem Paar Wellen (46, 50) durch eine mit den Wellen im Eingriff stehende Eingriffsfeder (59, 60) verbunden ist.

3. Längsschließer nach Anspruch 2, wobei die Y-Ø-Einstelleinrichtung desweiteren folgendes aufweist:
 einen Rahmenaufbau (37), der das Paar Wellen (46, 50) drehbar stützt; ein erstes kalibriertes Element (68), das an dem Rahmenaufbau (37) befestigt ist; ein zweites kalibriertes Element (69), das an einem mit einer der Wellen im Eingriff stehenden Eingriffsteil (60) befestigt ist; eine Anzeigeinrichtung (67), die an dem beweglichen Stützelement befestigt ist; wobei die Anzeigeinrichtung einen ersten Zeiger, der zum Schwenken des ersten kalibrierten Elements angepaßt ist, und einen zweiten Zeiger, der zum Schwenken entlang des zweiten kalibrierten Elements angepaßt ist.

5. Längsschließer nach Anspruch 4, wobei die X-Einstelleinrichtung (35) als eine Einheit zusammengefaßt ist und die X-Einstelleinrichtung folgendes aufweist:
 ein schraubenförmiges Gewindeelement (36), das sich in der Richtung X erstreckt, ein Drehelment (40), das mit dem schraubenförmigen Gewindeelement (36) im Eingriff ist und zum Drehen auf ihm angepaßt ist, und einen Knopf (41) zum Drehen des Drehelments (40).

7. Längsschließer zumindest nach Anspruch 4, der desweiteren ein langgestrecktes Element (2) aufweist, das durch die Verpackungsmaschine drehbar gestützt ist, wobei das langgestreckte Element die Y-Ø-Einstelleinrichtung (45) und die X-Einstelleinrichtung (35) stützt.

8. Längsschließer nach Anspruch 7 für eine Verpackungsmaschine mit einem auf ihr eingebauten Ladezylinder (91), der desweiteren eine Steuereinrichtung (9-1) zum wahlweisen Drücken der Schließeinheit gegen ein Beutelherstellmaterial an dem Ladezylinder oder zum Bewegen der Schließeinheit von dem Beutelherstellmaterial weg aufweist, und wobei der erste Mechanismus der Y-Ø-Einstelleinrichtung (45) die Schließeinheit (20) radial zu dem Ladezylinder (91) oder von ihm weg einstellbar bewegen kann, die X-Einstelleinrichtung (35) die Schließeinheit in bezug auf den Ladezylinder (91) tangential einstellbar bewegen kann, der zweite Mechanismus der Y-Ø-Einstelleinrichtung (45) die Winkelausrichtung der Schließeinheit in bezug auf die axiale Richtung des Ladezyllinders einstellen kann, und das langgestreckte Element (2) die Y-Ø-Einstelleinrichtung, die X-Einstelleinrichtung und die Steuereinrichtung durch einen Stützblock (5) stützt.

10. Verpackungsmaschine mit einem Ladezylinder (91) zum Bewirken eines Hindurchtretens von in Beuteln zu verpackenden Gegenständen; einer Folienstüteinrichtung (97) zum Stützen einer Rolle eines Beutelherstellmaterials; einer Zugeinrichtung (98) zum Ziehen des Beutelherstellmaterials von der Rolle; einem Formgeber (90) zum Formen des Beutelherstellmaterials zu einer röhrenartigen Form um den Ladezylinder; einer Filmführeinrichtung (95) zum Führen des Beutelherstellmaterials zu dem Formgeber (90); einem Längsschließer zum Zusammenschließen von Seitenrändern des röhrenartig geformten Beutelherstellmaterials; und einem Querschließer (99) zum Schließen des röhrenartig geformten Beutelherstellmaterials quer zu dessen Bewegungsrichtung, dadurch gekennzeichnet, daß der Längsschließer nach einem der vorherigen Ansprüche aufgebaut ist.
11. Verpackungsmaschine nach Anspruch 10, wobei die Y-Θ-Einstelleinrichtung (45) so angeordnet ist, daß sie die Schließeinheit (20) beim Gebrauch radial zu dem Ladezylinder (91) oder von ihm weg bewegt, um ein Hindurchtreten von in Beuteln zu verpackenden Gegenständen zu ermöglichen.

Revendications

1. Dispositif de soudage longitudinal destiné à une machine d’emballage, comprenant : une unité de soudage (20) qui contient un dispositif chauffant (28); un organe mobile de support (56) soutenant ladite unité de soudage; et un moyen (45) de réglage suivant Y-Θ, doté d’un premier mécanisme servant à déplacer sélectivement ledit organe de support (56) en translation dans une direction Y, un deuxième mécanisme servant à faire tourner ledit organe de support (56) autour d’un axe (29) traversant ladite unité de soudage, et un moyen de commutation (53) servant à provoquer une commutation d’un mécanisme à l’autre.

2. Dispositif de soudage longitudinal selon la revendication 1, dans lequel le ledit moyen (45) de réglage suivant Y-Θ est solidarisé dudit organe mobile de support (56) et comprend une paire d’arbres (46, 50) mutuellement parallèles qui s’étendent tous deux dans ladite direction Y et un moyen de commutation servant à sélectivement faire tourner lesdits arbres à la même vitesse ou à des vitesses différentes, proportionnellement à l’éloignement de ladite unité de soudage (20), dans lequel ledit organe mobile de support (56) soutient ladite unité de soudage (20) en une de ses extrémités dans une direction X perpendiculaire à ladite direction Y et est couplé à ladite paire d’arbres (46, 50) par des moyens de mise en prise (59, 60) qui se mettent en prise avec lesdits arbres.

3. Dispositif de soudage longitudinal selon la revendication 2, dans lequel le ledit moyen de réglage suivant Y-Θ comprend en outre : une structure de bâti (37) qui supporte en rotation ladite paire d’arbres (46, 50); un premier élément étalonné (68) fixé à ladite structure de bâti (37); un deuxième élément étalonné (69) fixé à un moyen de mise en prise (60) en prise avec l’un desdits arbres; et un indicateur (67) fixé audit organe mobile de support, ledit indicateur comportant un premier pointeur apte à se déplacer le long dudit premier élément étalonné et un deuxième pointeur apte à se déplacer le long dudit deuxième élément étalonné.

4. Dispositif de soudage longitudinal selon l’une quelconque des précédentes revendications, comprenant en outre un moyen (35) de réglage suivant X qui se met en prise avec une partie dudit moyen (45) de réglage suivant Y-Θ pour amener ledit moyen de réglage suivant Y-Θ à se déplacer dans une direction X qui est perpendiculaire à ladite direction Y.

5. Dispositif de soudage longitudinal selon la revendication 4, dans lequel le ledit moyen (35) de réglage suivant X est monobloc, ledit moyen de réglage suivant X compréhensif d’un organe (36) à filetage hélicoïdal qui s’étend dans ladite direction X, un organe rotatif (40) en prise avec ledit organe (36) à filetage hélicoïdal sur lequel il peut tourner, et un bouton (41) servant à faire tourner ledit organe rotatif (40).

6. Dispositif de soudage longitudinal selon la revendication 5, dans lequel le ledit bouton (41) est étalonné afin d’afficher un déplacement dudit moyen de réglage suivant Y-Θ dans ladite direction X.

7. Dispositif de soudage longitudinal selon la revendication 4 au moins, comprenant en outre un élément allongé (2) supporté en rotation par ladite machine d’emballage, ledit élément allongé supportant ledit moyen (45) de réglage suivant Y-Θ et ledit moyen (35) de réglage suivant X.

8. Dispositif de soudage longitudinal selon la revendication 7, destiné à une machine d’emballage sur laquelle est installé un cylindre de remplissage (91), comprenant en outre un moyen de commande (9-1) servant sélectivement à appuyer ladite unité de soudage contre un matériau de formation de sachet placé sur ledit cylindre de remplissage ou à éloigner ladite unité de soudage dudit matériau de formation de sachet, et dans lequel le premier mécanisme du moyen (45) de réglage suivant Y-Θ est capable de déplacer radialement de manière réglable ladite unité de soudage (20) pour l’éloigner ou la rapprocher dudit cylindre de remplissage (91), le moyen (35) de réglage suivant X est capable de déplacer tangentiellement de manière réglable ladite unité de soudage par rapport audit cylindre de remplissage (91), le deuxième mécanisme du moyen (45) de réglage suivant Y-Θ est capable d’ajuster l’orientation angulaire de ladite unité de soudage par rapport à la direction axiale dudit cylindre de remplissage, et l’élément allongé (2) supporté ledit moyen de réglage suivant Y-Θ, ledit moyen de réglage suivant X et ledit moyen de commande à l’aide d’un bloc de support (5).

9. Dispositif de soudage longitudinal selon la revendication 8, comprenant en outre un moteur (6) servant à faire coulisser longitudinallement ledit bloc de support (5) sur ledit élément allongé (2).

10. Machine d’emballage comprenant un cylindre de remplissage (91) servant à faire passer des objets devant être emballés dans des sachets, un moyen (97) de support de film servant à soutenir une
bobine de matériau de formation de sachet, un
moyen d'extraction (98) servant à extraire ledit
matériau de formation de sachet de ladite bobine,
un moyen de mise en forme (90) servant à donner
audit matériau de formation de sachet une forme
tubulaire autour dudit cylindre de remplissage, un
moyen (95) de guidage de film servant à guider
ledit matériau de formation de sachet vers ledit
moyen de mise en forme (90), un dispositif de sou-
dage longitudinal servant à sceller l'un à l'autre les
bords latéraux dudit matériau de formation de
sachet mis sous forme tubulaire, et un dispositif
(99) de soudage transversal servant à sceller ledit
dudit matériau de formation de sachet mis sous
forme tubulaire transversalement à la direction de
déplacement de ce dernier, caractérisée en ce que
le dispositif de soudage longitudinal est construit
selon l'une quelconque des précédentes revendica-
tions.

11. Machine d'emballage selon la revendication 10,
daussi laquelle ledit moyen (45) de réglage suivant Y-
θ est disposé de manière à, en service, déplacer
radialement ladite unité de soudage (20) pour l'éloi-
gner ou la rapprocher dudit cylindre de remplissage
(91) afin de permettre aux objets de traverser ce
dernier pour être emballés dans des sachets.
Fig. 1.