EUROPÄISCHE PATENTSCHRIFT

Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung:

Anmeldenummer: 94100829.4

Anmeldetag: 21.01.1994

Fahrzeugsitz, insbesondere für Flugzeuge
Vehicle seat, particularly for an aircraft
Siège de véhicule, notamment pour un avion

Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

Priorität: 05.02.1993 AT 205/93

Veröffentlichungstag der Anmeldung:
10.08.1994 Patentblatt 1994/32

Patentinhaber: C.A. GREINER & SÖHNE
GESELLSCHAFT M.B.H.
A-4550 Kremsmünster (AT)

Erfinder:
- Weingartner, Rudolf, Ing.
 A-4501 Neuhofen a.d. Krems (AT)
- Möseneder, Johann
 A-4710 Grieskirchen (AT)

Vertreter: Secklehner, Günter, Dr.
Rechtsanwalt,
Pyrhstrasse 1
8940 Liezen (AT)

Entgegenhaltungen:
WO-A-91/10383
DD-A- 249 630
DE-A- 3 003 081
DE-A- 3 512 790
DE-A- 3 940 713

Beschreibung

Die Erfindung betrifft einen Fahrzeugsitz, insbesondere für Luftfahrzeuge, wie er im Oberbegriff des Patentanspruches 1 beschrieben ist.

Beim einem anderen bekannten Sitz für Flugzeuge ist, um die komplizierte räumliche Formgebung der Sitzpolster einfacher zu realisieren, der Stützkörper aus einem mit Flammschutzmitteln verklebten, in einer Form einstuckig geschäumten Teil gebildet, dessen Oberfläche mit einer Flammschutzschicht und danach mit einem flammfesten Beklebsstoff überzogen wird. Mit den bekannten Sitzern konnten jedoch die neuen verschärften Sicherheitsbestimmungen und Prüfvorschriften für Flugzeugsätze nicht erfült werden.

Der vorliegende Erfindung liegt die Aufgabe zugrunde, einen Sitz, insbesondere einen Sitz für ein Fahrzeug, wie z.B. ein Flugzeug, zu schaffen, der bei geringem Gesamtwiicht einen angenehmen Sitzkomfort und eine hohe mechanische Festigkeit sowie Abbrandfestigkeit aufweist.

Vorteilhaft ist auch eine weitere Ausführungsform nach Patentanspruch 2, da dadurch der Widerstand gegen Zerreifen erhöht und die bei Einwirkung der Kraft bewirkte Dehnung des Gesamtvverbands aus der Faserlager und der Trägerlager an unterschiedliche Dehnungseigenschaften angepaßt werden kann. Darüber hinaus wird durch eine Festlegung des Gewichtes der Trägerlager von 50 bis 90 g/m² ein guter Mittelwert zwischen dem Gewicht und der mechanischen Belastbarkeit der Trägerlager erreicht.

Durch die Ausbildung nach Patentanspruch 4 ist es möglich, bei Flammeinwirkung auf den Sitz die Brandbelastung auf den darunter angeordneten Stützkörper, bedingt durch die Netzstrukturen, zu verringern, wobei aufgrund der Dicke der Netzfäden bzw. Fäden eine entsprechende Abbrandwiderstand bzw. eine vorge-}

schiene Dauer der Flammeneinwirkung erzielt werden kann, ohne daß das Netz bzw. Gitter durchbrennt.

Nach einer anderen Ausführungsvariante gemäß Patentanspruch 5 wird durch die entsprechende Maschendichte sichergestellt, daß der Brand bei Flammeinwirkung auf das Vlies bzw. dessen Trägerlager so bemessen ist, daß der Kunststoffschwarm des Stützkörpers sich nicht entzünden kann bzw. die entstehenden Einbrände vom Volumen her gering gehalten werden. Dadurch wird erreicht, daß die Rauchbelastung beim Verschmoren der Kunststoffe geringer ist und die entsprechenden Vorschriften der Herstellung der Sitz, insbesondere für Flugzeuge, eingehalten werden können.

Vorteilhaft ist auch eine Weiterbildung nach Patentanspruch 6, da die Dehnungen der Trägerlager ausreichen, um ein angenehmes Sitzgefühl zu erzeugen, andererseits aber eine Überbelastung des darunter angeordneten Stützkörpers durch eng begrenzte Überbelastungen sicher vermieden.

Bei der Ausgestaltung nach Patentanspruch 7 ist von Vorteil, daß bei hohen Zugkräften, wie sie beispielsweise beim Knien auf Polstern bzw. beim Abstehen von schweren Koffern entstehen können, das Vlies insbesondere die Trägerlager nicht durchreißt.

Durch die Weiterbildung nach Patentanspruch 8 wird erreicht, daß mittels der Trägerlager der Polster auch am Tragegestell oder dgl. bei hohen Gehbelastungen befestigt werden kann, ohne daß zusätzliche Befestigungsmittel vorgesehen werden müssen, wodurch insbesondere Gewicht bei derartigen Sitzen eingespart werden kann.

Durch die Ausbildung der Faserlager nach Patentanspruch 9 kann eine einfache Anpassung an die klimatischen Bedingungen des daraus hergestellten Vlieses vorgenommen werden.

Vorteilhaft ist auch eine Ausbildung der Faserlager nach Patentanspruch 10, da durch das Vlies selbst eine Brandhemmung bzw. Flammhemmung in einfacher Weise erreicht werden kann.

Werden dagegen Kunststofffasern bzw. Fäden gemäß Patentanspruch 11 verwendet, so besteht die einfache Möglichkeit, das Vlies durch Druckbelastung unter gleichzeitiger Wärmezufuhr thermisch zu binden und zu verfestigen.

Dabei erweist sich eine Ausgestaltung nach Patentanspruch 12 vorteilhaft, da bei relativ niederen Temperaturen die Fasern bzw. Fäden ihr Grundgefüge noch nicht verändern und somit eine thermische Verdichtung bzw. im erhitzen Zustand ein Anhaften der Fäden erreicht werden kann, wobei bei Beliebhabung der unter Druck erzielten Formgebung bis zum Abkühlen der Fasern bzw. Fäden unter den Einfrierpunkt die unter Druck hergestellte Form auch im erkalten Zustand beibehalten werden kann.

Eine hohe Ausreißfestigkeit und Belastbarkeit des Vlieses bzw. der Faserlager wird durch die Ausgestaltung der Fasern bzw. Fäden nach den Patentansprü-
013 bis 15 erreicht.
Eine gute Symbiose zwischen dem Gewicht und den Festigkeits Eigenschaften der Faserrinde kann durch die Ausbildung nach Patentanspruch 16 und/oder 17 erreicht werden.

Die Ausgestaltung des Vlieses nach Patentanspruch 18 ermöglicht dessen Anwendung in Soft-

Vorteilhaft ist die Ausbildung des Vlieses nach Patentanspruch 19, da durch die thermische Verprä-
geung eine äußerst feste Verbindung zu benachbarten Lagen möglich wird.

Eine hohe Widerstandsfestigkeit des Vlieses und eine Verfestigung dessen Oberflächenzonen wird durch die Ausbildung nach Patentanspruch 20 erreicht.

Die Elastizitätseigenschaften der Faserlage können durch die Ausbildung nach Patentanspruch 21 vorteilhaft beeinflußt werden, da die Festigkeit in Richtung des Stützkörpers, beispielsweise von Faserlage zu Faserlage steigend gewählt werden kann, so daß beim Niedersetzen ein steigernder Widerstand sich aufbaut, der nicht als unangenehm empfunden wird.

Eine Verfestigung des Vlieses wird durch die Aus-
bildung nach Patentanspruch 22 begünstigt, da damit eine höhere Ausreißfestigkeit der Faserlage im Bereich der zur Verbindung mit anderen Bauteilen des Sitzes vorgesehenen Oberfläche erzielt wird.

Günstig ist hier weiters eine Ausführung nach Patentanspruch 23, da die thermische Verdichtung auch eine Versteifung der Fasern und Fäden und damit eine hohe Auszugsfe stigkeit bewirkt. Das Raumgewicht einer erfindungsgemäßen Mittelschicht kann durch die Weiterbildung nach Patentanspruch 24 gering gehalten werden, da eine zusätzliche Kleberschicht zum Ver-

binden der Zwischenschicht mit den Fasern bzw. Fäden der Faserlage des Vlieses eingespart werden kann.

Eine hohe Ausreißfestigkeit einer Verbindung der Zwischenschicht mit dem Vlies wird durch die Weiter-
bildung nach Patentanspruch 26 erreicht.

Vorteilhaft ist auch eine Ausgestaltung nach Patentanspruch 27, da hier bei Pumpbelastungen eine Last-

verteilung über die Zwischenschichte unter Ausnutzung der elastischen Eigenschaften des Vlieses über einen größeren Oberflächenbereich erzielt wird.

Die Elastizitätseigenschaften der Mittelschicht des Bezugstoffes und in Richtung des Stützkörpers können durch die Ausführung nach Patentanspruch 28 vorteilhaft beeinflußt werden.

Durch die Weiterbildung des Gitters bzw. Netzes der Zwischenschichte nach Patentanspruch 30 wird die Verteilung und Flammpfropfung und damit Schädigung der Flamme bewirkt.

Weitere Vorteile des erfindungsgemäßen Sitzes ergeben sich aus den Ausgestaltungen gemäß den Patentansprüchen 31 bis 45.

Die Erfindung wird im nachfolgenden anhand der in den Zeichnungen dargestellten Ausführungsbeispiele näher erläutert.

Es zeigen:

Fig. 1 Eine Doppelsitzbank mit zwei erfindungsgemäßen Sitzen für zwei Personen in schauf-
bildlicher Darstellung;

Fig. 2 einen Polster für eine Sitzfläche des Sitzes nach Fig. 1 in Seitenansicht, bei teilweise abgehobenem Bezugstoff;

Fig. 3 den Polster für die Sitzfläche nach Fig. 2 in Stirnsicht im Schnitt, gemäß den Linien III - III in Fig. 2;

Fig. 4 ein Vlies für die Anwendung bei dem erfindungsgemäßen Sitz in Stirnsicht geschnit-
ten und stark vereinfachter schematischer Darstellung;

Fig. 5 das Vlies für den erfindungsgemäßen Sitz nach Fig. 4 im Bereich der Oberflä-
chen der Faserlage angeordneten Trägerlagen;

Fig. 6 einen Teil eines erfindungsgemäßen Sitzes mit einem Vlies, bei welchem im Bereich der einander gegenüberliegenden Oberflächen der Faserlage jeweils eine Trägerlage ange-
ordnet ist;

Fig. 7 das Vlies nach Fig. 6 mit der an diesem über Fäden befestigten Schutzschichte in Stirn-
sicht, geschnitten;

Fig. 8 einen Polster für eine Rückenlehne des Sitzes nach Fig. 1 in Seitenansicht, bei dem unterschiedliche Lagen wie der Bezugstoff, die Trägerlage und Faserlage teilweise entfernt sind, in Seitenansicht.

In Fig. 1 ist eine Doppelsitzbank 1 mit zwei Fahr-
zeugsitzen 2,3 dargestellt. Jeder Fahrzeugsitz 2,3 besteht aus einem Polster 4 für eine Rückenlehne und einem Polster 5 für eine Sitzfläche. Die Polster 4 und 5 der beiden Fahrzeugsitze 2 und 3 sind identisch aufge-
baut, jedoch spiegelbildlich ausgebildet. Sie können aber auch für einen Einzelsitz oder eine Mehrfachsitz-
bank verwendet werden. Außerdem kann ein Fahrzeug-
sitz 2 oder 3 auch aus einem einzigen oder mehreren Polstern bestehen. Die Polster 4 und 5 werden in ein
generell mit 6 bezeichnetes Traggestell eingelegt. Das Traggestell 6 kann auch jede beliebige andere als die dargestellte Form aufweisen.

In den Fig. 2 und 3 ist der Polster 5 für eine Sitzfläche in größerem Maßstab und teilweise geschnitten dargestellt. Der Polster 5 umfaßt einen Stützkörper 7, der bevorzugt aus einem Formkalkschaum besteht und in einer der gewünschten äußeren Abmessungen des Stützkörpers 7 entsprechenden Form hergestellt wird. Er besteht üblicherweise aus einem elastischen, offen- zelligen Kunststoffschaum 8. Bevorzugt ist er einteilig ausgeführt. Der Kunststoffschaum 8 kann, wie schematisch durch kleine Striche im Bereich der Schraffur angedeutet, mit einem pulverförmigen Flammenschutzmittel 9, z.B. Melaminharz und/oder Aluminiumhydroxid, versetzt sein.

Die Fäden 20 können erfindungsgemäß auch aus einer Mehrzahl von Fasern 19, wie dies schematisch bei einem der Fäden 20 in Fig. 3 gezeigt ist, hergestellt sein. Bevorzugt können diese Fäden 20 aus Filamenten zusammengesetzt sein, wodurch sie hohe Widerstands- werte und eine entsprechend hohe Oberflächenrauhigkeit zum guten Verbinden bei einem Verwirken bzw. Vernadeln aufweisen, jedoch biegeschlaff bzw. biege- weich sind und daher nur geringe Rückfederungs- kräfte auftreten. Dadurch wird ein elastischer Gesamtkörper mit einem in etwa einheitlichen Verformungsverhalten erreicht, der eine hohe Anschniegbarkeit aufweist.

Ist vorgesehen, daß die Fasern bzw. Fäden 19, 20 der Faserlage beispielsweise durch thermische Craking bzw. thermische Bindung verfestigt werden sollen, so ist es von Vorteil, wenn diese Fasern bzw. Fäden 19, 20 aus Thermoplasten bestehen. Vor allem Thermoplaste weisen am ehesten einen Plastifizierungs- bzw. Erweichungspunkt zwischen 100 und 150 °C auf, bevorzugt zwischen 100 und 120°C auf, die eine thermische Verbindung der Fasern bzw. Fäden 19, 20 oder eine thermische Verfestigung des Vlieses 22 begünstigen.

Selbstverständlich ist es aber auch möglich, Fasern bzw. Fäden 19, 20 für die Faserlage 21 zu verwenden, die aus Polyamiden hergestellt sind. Für die Fasern bzw. Fäden 19, 20 der Faserlage 21 empfiehlt es sich weiteres, vor allem wenn diese aus Polypropylen oder Aramid oder Polyamid bestehen, daß sie einen Titer, also ein Gewicht/Längenverhältnis von 2 bis 8 dtex, bevorzugt 3,5 dtex aufweisen. Nachdem die Faserlage 21 dadurch hergestellt wird, daß die einzelnen Fasern bzw. Fäden 19, 20 nur durch Nadeln bzw. Verfüttern und in einigen bestimmten Fällen durch thermische Bindung, also durch gleichzeitige Einwirkung von Druck und Temperatur, aneinander haften bzw. in der das Vlies 22 bildenden, lockerer Matte halten, ist es um eine hohe Zug- und Reißfestigkeit, vor allem bei geringem Raugewicht eines derartigen Vlieses zu erreichen, auch wichtig, die richtige Länge der Fasern bzw. Fäden 19, 20 für die Herstellung der Faserlage 21 zu verwenden, dabei hat sich vor allem eine Länge von 40 bis 80 mm als vorteilhaft erwiesen.

Es ist dabei zu berücksichtigen, daß bei der Herstellung dieses Vlieses, die Fasern bzw. Fäden 19, 20

Bei einer derartig vorbeschriebenen Vorgangsweise ist es dann möglich, Raumgewichte der Faserlager des Vlieses zwischen 10 und 80 kg/m² zu verwenden, die eine ausreichende Widerstands festigkeit für den bei Sitzen auftretenden Beanspruchungs bereich aufweisen. Dadurch kann ein Quadratmetergewicht der Faserlage des Vlieses bei einer Dicke zwischen 3 und 30 mm, bevorzugt ca. 5 mm zwischen 60 und 390 g/m², bevorzugt 70 g/m², auf weisen.

Reichen die Festigkeiten eines derart hergestellten Vlieses nicht, ist es möglich, bei Verwendung von Fasern bzw. Fäden 19, 20 aus Kunststoff dieses Vlies durch nachfolgende thermische Verdichtung auf ein Flächengewicht zwischen 300 und 500 g/m² bei einer Dicke von z.B. 5 mm auszubilden.

Diese Faserlage 21 ist weiter durch Vernadelung bzw. auch durch thermische Verpressung als Vlies 22 ausgebildet und gleichzeitig mit einer Trägerlage 23 bewegungsverbunden, die ebenfalls beispielsweise aus einem Netz oder Gitter bzw. Gewirke oder dgl. aus Kunststoff, beispielsweise Polyamid oder Polyester, besteht. Hierzu weist sie Fäden 24 auf, die aus z.B. 10% Polyester gebildet sind und einen Durchmesser 25 von z.B. 0,5 mm aufweisen. Es ist aber auch möglich für die Trägerlager 23 Naturmaterialien zu verwenden.

Ein derartiges Netz, welches die Trägerlager 23 bilden kann, kann z.B. ein Gewicht zwischen 50 bis 90 g/m², bevorzugt 70 g/m², aufweisen.

Als bevorzugt hat sich erwiesen, wenn dieses Netz eine Maschinendicke von 12 Öffnungen/cm aufweist. Des weiteren soll die Trägerlage einer Zugkraft von ca. 200 bis 500 N widerstehen und die Reißfestigkeit der Trägerlage zwischen 240 und 500 N/cm bevorzugt 240 bis 280 N/cm betragen.

Für die bevorzugte Anwendung der Trägerlage im Bereich von Sitzen, insbesondere von Flugzeugen, empfiehlt sich eine Längs- und Querdehnung zwischen 30 und 50%, bevorzugt zwischen 34 und 44%.

In diesem Zusammenhang ist es auch vorteilhaft, wenn die Trägerlage 23, biegeweich bzw. biegeschlaff ist und einen möglichst geringen Rückfederspielwert aufweist. Dies verhindert, daß die Trägerlage 23, die das erfindungsgemäße Vlies 22 verstärkt, den Sitzkomfort beeinträchtigt bzw. im Knickbereich zwischen horizontalen und senkrechten Flächen des Polsters 5 des Fahrzeugsitzes 2, 3 einen Bezugsstoff 26 aufschneuert bzw. zerstört.

Auf dieser eine Oberfläche 27 des Vlieses 22 bildenden Trägerlager 23 liegt dann der die Sitzfläche 11 bildende Bezugsstoff 26 auf, der in vielen Fällen nur den aus Stützkörper 7, Zwischenschicht 15, Mittelschicht 18 und Trägerlager 23 bestehenden Verbund umhüllt und auf diesem, z.B. über Klettband 28 - Fig. 2-, befestigt ist.

Die Befestigung des Bezugsstoffes 26 auf dem Polster 5 für den Sitz ist aus den verschiedenen Anwendungsfällen bzw. einer Mehrzahl von vorveröffentlichten Druckschriften entnehmbar, weshalb auf diese Details hier nicht näher eingangen wird.

Auf der Unterseite 13 des Polsters 5 ist ebenfalls ein Bezugsstoff 26 angeordnet, der über eine Verbindungsschicht 29, z.B. einen Kleber oder eine Zwischenschicht unter Zwischenschaltung einer weiteren Zwischenschicht 30 mit einer Auflagfläche 31 des Kunststoffes 8 des Stützkörpers 7 verbunden ist. Vorteilhaft ist bei dieser Konstruktion, daß über einen derartigen Verbund auch höhere Stützkräfte des Polsters 5 auf ein Traggestell 6 für die Polster 5 übertragen werden können, ohne daß die Brandsicherheit und die Lebensdauer des Polsters 5 leidet.

Die Zwischenschicht 30 kann beispielsweise identisch zur Zwischenschicht 15 aufgebaut sein, es ist aber ebenso möglich, daß entsprechend den unterschiedlichen Vorschriften auch anders ausgebildete Zwischenschicht 15 bzw. 30 zum Einsatz kommen. In jedem Fall wird durch den Wegfall des Vlieses 22 die Belastbarkeit der Unterseite 13 des Polsters 5 erhöht, ohne daß der Sitzkomfort darunter leidet, da für den Durchtritt der für die Sitzfläche 11 des Polsters 5 der eindringenden Körperabwärme bzw. Körperfugkeit der gesamte Querschnitt des Polsters 5 zur Verfügung steht und dadurch der Abtransport der Körperwärme und der Körperfugkeit durch eine derart ausgebildete Zwischenschicht 13 nicht mehr behindert wird.

Bei der in Fig. 3 gezeigte Ausführungsvariante für den Aufbau des Polsters 5 weist das Vlies 22 neben der Trägerlage 23, die durch den Nadelungsvorgang mit der Faserlager 21 verbunden ist, eine weitere Trägerlage auf, die im vorliegenden Fall durch die Zwischenschicht 15 gebildet ist. Diese als Netz, Gitter, Gewirke oder Gewebe ausgebildete Zwischenschicht 15 kann
ebenso wie die Trägerlage 23 im Zuge des Vernadelsns und Verwirkens der einzelnen Fasern bzw. Fäden 19, 20 mit dem Vlies 22 verbunden werden, sodaß ein an
beiden Oberflächen durch die Zwischenschicht 15 und die Trägerlage 23 verfestigtes Vlies 22 entsteht.

Ein derartiges Vlies 22 kann beispielsweise ein Gesamtgewicht zwischen 220 und 400 g/m² aufweisen, wenn die Trägerlage 23 beispielsweise ein Gewicht von 70 g/m² die Faserlage 21 ca. 60 bis 250 g/m² und die Zwischenschicht 15 ca. 80 bis 185 g/m², bevorzugt 120 g/m² aufweist.

Ein derartig aufgebautes Vlies 22 mit den entsprechenden Flächengewichten kann auch eine entsprechend hohe Elastizität und bereits eine ausreichende Reißfestigkeit für den Einsatzbereich, insbesondere als Decklage unterhalb eines Bezugstoffs 26 bei einem Polster 5 für einen Flugzeugesitz Verwendung finden.

Ein weiterer Vorteil dieser aus Fasern bzw. Fäden gebildetem Vlies 22 mit den diesen zugeordneten Trägerlagen liegt darin, daß diese wesentlich einfacher durch entsprechende Waschvorgänge gereinigt werden können, als beispielsweise offenzellige Kunststoffschäume, da das durchgehende Benetzen, insbesondere mit Reinigungsmittel durch die Faserstruktur erheblich verbessert und damit auch die Verschmutzungen leichter ausgespült werden können.

In Fig. 4 ist eine Ausführungsvariante für die Ausbildung einer Mittelschicht 18 zwischen dem Bezugstoff 26 und dem Stützkörper 7 gezeigt, bei der eine Faserlauge 21 auf eine Trägerlage 23 aufgebracht ist.

In diese Faserlauge 21 kann nun, wie dargestellt, die Zwischenschicht 15, die entsprechend anhand der Fig. 2 und 3 im Detail beschriebenen Ausführungsvarianten ausgebildet sein kann, eingearbeitet und in dem Vlies 22 verankert sein. Selbstverständlich ist es auch möglich, daß zuerst eine Faserlauge 21 lediglich auf die Trägerlage 23 aufgebracht wird und daß danach unter Aufbringung einer weiteren Faserlauge 32 die Zwischenschicht 15 mit der Faserlauge 21 zu einer Mittelschicht 18 verbunden wird.

Die für die Herstellung der Faserlagen 21 und 32 zum Einsatz kommenden Fasern 19 und Fäden 20 können ebenso wie anhand der Fig. 2 und 3 sehr ausführlich dargelegt, entsprechend den Einsatzbedingungen unterschiedlich ausgewählt werden.

Eine weitere widerstandsfähige Mittelschicht für den Einsatz, insbesondere für den Einsatz zwischen dem Bezugstoff 26 und dem Stützkörper 7 bei Flugzeugesitz, ist in Fig. 5 gezeigt.

Diese Mittelschichts 18 kann beispielsweise wieder mehrlagig sein, indem bei der Herstellung der Faserlauge 21 entweder die Trägerlage 23 gleichzeitig mit der Zwischenschicht 15 über die Fasern bzw. Fäden 19, 20 verbunden wird. Eine weitere Faserlauge 32 kann dann beispielsweise auf die Zwischenschicht 15, gegebenenfalls gleichzeitig unter Einbindung einer weiteren Trägerlage 33 erfolgen.

Der Vorteil der Anordnung von Trägerlagen 23 bzw. 33 bzw. der Zwischenschicht 15 als Trägerlage liegt darin, daß eine Oberflächenverfestigung des Vlieses 22 erreicht wird und damit die Anschlußbedingungen bzw. die knarfschlägende Verbindung der Mittelschicht 18, insbesondere mit dem Stützkörper 7 verbessert wird. Dies bedeutet vor allem eine bessere Ausreißfestigkeit bzw. Positionierung am Stützkörper 7.

Vor allem sind die Verbindungsstellen, wenn diese wie bevorzugt zwischen der Mittelschicht 18 und dem Stützkörper 7 nicht vollflächig, sondern nur punktuell, um einen besseren Wärmeaustausch und Luftaustausch in senkrechtk zur Sitzfläche 11 verlauflender Rich-
tung zu ermöglichen, am Stützkörper 7 befestigt sind.

Eine andere Ausführungsvariante einer erfindungsgemäß ausgebildeten Mittelschicht 18 ist in Fig. 6 gezeigt.

Bei dieser ist eine Faserlauge 21 beidseits durch Trägerlagen 23 bzw. 33 eingefaßt. Die Trägerlagen 23 und 33 werden vorteilhaft bei der Verwirkung und Verfüllung, insbesondere bei der Nadelsel oder dem thermischen Prüfen oder Pressen der Mittelschicht 18 mit der Faserlauge 21 verbunden.

Eine weitere Ausführungsvariante für eine erfindungsgemäßes Vlies 22 zur Bildung der Mittelschicht 18 ist in Fig. 7 gezeigt. Bei dieser Ausführungsvariante besteht das Vlies wiederum aus einer Faserlauge 21, mit der durch den Nadelselvorgang oder durch thermisches Pressen oder Drängen die beiden Trägerlagen 23 und 33 befestigt sind. Um nunmehr eine einstückige Verbindung zwischen der Mittelschicht 18 und der Zwischenschicht 15 herzustellen, sodaß dieser als einstückiger Bauteil auf den Stützkörper 7 aufgebracht werden kann, ist die Zwischenschicht 15 auf der Trägerlage 33 durch schematisch angedeutete Fäden 34, 35 festgenäht.

Diese Fäden 34, 35 können aus Natur- oder Kunstmaterialien, insbesondere auch aus hochtemperaturfesten Fasern, zusammengesetztes Fäden gebildet sein.

Es ist aber ebenso möglich, daß die Verbindung über diese Fäden 34, 35 gleichzeitig mit der Herstellung der Faserlauge 21 des Vlieses 22 durch Verwirken und Verdichten erfolgt.

Bei all den zuvor beschriebenen Ausführungsvarianten ist es vorteilhaft, wenn der Stützkörper 7 aus einem Kunststoffschau mit einem einheitlichen Raum-
gewicht besteht. Als Raumgewicht für diesen Kunststoffschma sind 15 bis 80 kg/m³ vorteilhaft. Um die Belastung im Stützkörper gleichmäßig zu verteilen, ist es auch möglich, im Bereich der stärker beanspruchten Zonen eine Stützvorrichtung, z.B. den in Fig.3 gezeigten Federnkern 10, anzuordnen.

Vorteilhaft ist es dabei, wenn eine Deckfläche 36 des Federnkerns 10 von der Oberfläche 14 des Stützkörpers 7 distanziert, vorzugsweise in einem Abstand zwischen 5 bis 70 mm angeordnet ist, da dadurch eine gleichmäßige Verteilung der von der Sitzfläche 11 einwirkenden Belastung über den gesamten Polster 5 einerseits erzielt wird und andererseits eine Überbeanspruchung des Kunststoffes, insbesondere des Kunststoffschmaus 8 des Stützkörpers 7 im Bereich des Federnkerns 10 verhindert wird. Um einen progressiven Dämpfungsverlauf des Stützkörpers bei der Belastung zu ermöglichen, ist es auch vorteilhaft, wenn eine Höhe des in dem Stützkörper 7 eingeschäumten Federnkerns geringer ist, als eine Dicke des Federnkerns im unbelegten Zustand.

Zur besseren Durchlüftung des Stützkörpers 7 kann es sich weiterhin, wie ebenfalls in Fig.3 gezeigt, als vorteilhaft erweisen, Ausnehmungen 12 vorzusehen. Diese können sowohl senkrecht zur Sitzfläche 11 als auch parallel zur Sitzfläche 11 angeordnet sein.

Wie aus der Fig.2 besser zu ersehen ist, erstreckt sich die Mittelschicht 18 und die Zwischenschicht 15 nicht nur über die Sitzfläche 11, sondern auch über Seitenflächen 37 bzw. eine Rückfläche 38 des Polsters 5. Dadurch können die Zwischen- und/oder die Mittelschicht auch Eingangsoffnungen zu den Ausnehmungen 12 überdecken.

Insbesondere die durch ein Klettband 28 gebildete Verbindungsvorrichtung ist zwischen dem Vlies 22 bzw. der Trägerlage 23 bzw. 33 und dem Bezugstoff 26 angeordnet. Während ein Teil des Klettbandes, beispielsweise auf der Trägerlage 23 oder 33 bzw. dem Vlies 22, festgeklebt ist, ist der andere Klettbandteil, beispielsweise am Bezugstoff 26 festgenäht.

In Fig.8 ist weiterhin gezeigt, daß auch die Polster 4 für die Rückenlehne der Fahrzeugsitze 2 und 3 zumindest im Bereich einer einem Körper des Benutzers zugewandten Abstützfläche 39 als auch im Bereich von der Seitenfläche 40 mit einem erfindungsgemäßen Vlies 22 bzw. einer Mittelschicht 18 ausgestattet sein können.

Der Aufbau der Mittelschicht 18 bzw. des Vlieses 22 kann dabei nach einer beliebigen der in den Fig. 2 bis 7 dargestellten Ausführungsvarianten erfolgen und ist unabhängig davon, ob die Zwischenschicht 15 in einem Mittelbereich der Faserlage aus Fasern bzw. Fäden des Vlieses 22 oder in einem der Trägerlage 23 gegenüberliegenden Oberflächenbereich des Vlieses 22 als Trägerlage angeordnet ist.

Schlußendlich ist es auch möglich, daß die Mittelschicht 18 bzw. das Vlies 22 oder die Faserlage 21 in einem oder beiden einander gegenüberliegenden Oberflächenbereichen, von welchen zumindest einen eine Trägerlage 23 bzw. 33 zugeordnet ist, thermisch gebunden bzw. thermische Verdichtung bzw. verprüft ist. Auch ist es um die Reißfestigkeit bzw. die Ausreiβ- bzw. Ablösefestigkeit zu erhöhen vorteilhaft, die einer der beiden Oberflächen nächstliegende Faserzähnung 21, 32 stärker zu binden bzw. zu verwirken. Es kann in diesen Oberflächenbereichen auch vorteilhaft sein, die Faserzähnung 21 bzw. 32 auf ein höheres Raum- bzw. Flächen- gewicht thermisch zu verdichten. So kann es sich als vorteilhaft erweisen, eine Verdichtung auf ein Flächen gewicht zwischen 300 oder 500 g/m² vorzunehmen.

Der Ordnung halber sei abschließend darauf hingewiesen, daß zum besseren Verständnis des Aufbaus der Faserlagen 21, 32 bzw. des Vlieses 22 diese bzw. deren Bestandteile teilweise unmaßstäblich verzerrt und vergrößert dargestellt wurden.

Patentansprüche

1. Fahrzeugsitz, insbesondere für Flugzeuge, mit einem Polster aus Kunststoffschma mit einem Stützkörper (7) aus einem offenzelligen, elastischen Kunststoffschma mit einem ersten Raumgewicht und einer Mittelschicht (18) mit einem zweiten zum ersten unterschiedlichen Raumgewicht und einem Bezugstoff (26), die miteinander verbunden, insbesondere stellenweise verbretet sind und gegebenenfalls mit einer zwischen dem Stützkörper und dem Bezugstoff angeordneten flammfesten, aus gitter- bzw. netzförmig verlegten, hochtemperaturbeständigen Fasern bzw. Fäden gebildeten Zwischenschicht (15, 30), dadurch gekennzeichnet, daß die Mittelschicht (18) durch ein Vlies (22) aus zumindest einer Faserzähnung (21, 32) genadelter oder thermisch gebundener Fasern bzw. Fäden (19, 20) aus Kunststoff- und/oder Naturmaterialien gebildet ist, die vorzugsweise auf eine Trägerzähnung (23, 33) aufgenadelt sind.

2. Fahrzeugsitz nach Anspruch 1, dadurch gekennzeichnet, daß die Trägerzähnung (23, 33) durch ein Gitter oder Netz aus Fasern bzw. Fäden (24) aus Polyestergewebe gebildet ist und/oder ein Gewicht von 50 bis 90 g/m², bevorzugt 70 g/m² aufweist.

3. Fahrzeugsitz nach Anspruch 1, dadurch gekennzeichnet, daß eine Trägerzähnung (23, 33) aus einem Gewebe bzw. Gewinke aus Fasern bzw. Fäden (24) aus Kunststoff, insbesondere einem präoxidierten Polyacrylat und/oder Polyamid, Glasfilamenten
und/oder Naturmaterialien, gebildet ist.

4. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Trägerlager (23, 33) als Netz ausgebildet ist und die Netzfäden bzw. -fasern aus Polyester bestehen und eine Dicke von 0,5 mm aufweisen.

5. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das die Trägerlager (23, 33) bildende Netz oder Gitter eine Maschendichte von 12 Öffnungen/dm aufweist.

6. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Netz der Trägerlager (23, 33) eine Längs- und Querdehnung zwischen 30 und 50 %, bevorzugt zwischen 34 und 44%, aufweist.

7. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das die Trägerlager (23, 33) bildende Netz einer Höchstzugkraft längs und/oder quer zwischen 200 und 500 N widersteht.

8. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Reißfestigkeit des die Trägerlager (23, 33) bildenden Netzes quer und längs zwischen 240 und 280 N/cm beträgt.

10. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Faserlager (21, 32) vorwiegend aus Fasern bzw. Fäden (19, 20) aus Kunststoff, z.B. aus Polypropylen und/oder Polyäthylen und/oder Polycyacylat und/oder Polybenzimidazol, besteht und daß zumindest ein Anteil dieser Fasern bzw. Fäden (19, 20) eine Schmelztemperatur von über 1000 °C aufweist.

13. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Fasern bzw. Fäden (19, 20) der Faserlage (21, 32), insbesondere aus Polypropylen oder Aramid oder Polyamid, eine Länge von 40 - 80 mm aufweisen.

14. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Fasern bzw. Fäden (19, 20) der Faserlage (21, 32), insbesondere aus Polypropylen oder Aramid oder Polyamid, aus Filamenten hergestellt sind.

15. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Fasern bzw. Fäden (19, 20) der Faserlage (21, 32), insbesondere aus Polypropylen oder Aramid oder Polyamid, einen Titer zwischen 2 und 8 dtex, bevorzugt 3,5 dtex, aufweisen.

16. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß ein Gewicht der Faserlage (21, 32) des Viesses (22) zwischen 60 und 390 g/m², bevorzugt 70 g/m² beträgt.

17. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß ein Raumgewicht der Faserlage (21, 32) des Viesses (22) zwischen 10 und 80 kg/m³ beträgt.

18. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß eine Dicke des Viesses (22) zwischen 3 und 30 mm, bevorzugt 5 mm, beträgt.

19. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß zumindest eine der beiden Oberflächen der Faserlage (21, 32) bzw. des Viesses (22) thermisch verprägt ist.

20. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Fasern bzw. Fäden (19, 20) der Faserlage (21, 32) des Viesses (22) mit der Trägerlager (23, 33) ver- nadel sind.

21. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß mehrere Faserlagen (21, 32) übereinander, gegebenenfalls unter Zwischenschaltung von Trägerlagen (23, 33), angeordnet sind.
22. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß zumindest eine einer der beiden Oberflächen nächstliegende Faserlage (21, 32) stärker gebunden ist als eine oder alle dazwischenliegenden Faserlagen (21, 32).

23. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß das Vlies (22) auf ein Flächengewicht zwischen 300 und 500 g/m² thermisch verdichtet ist.

24. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß die Zwischenschicht (15, 30) mit den Fasern bzw. Fäden (19, 20) der Faserlage (21, 32) des Vlieses (22) durch einen Nadelvorgang miteinander verbunden sind und/oder die Zwischenschicht (15, 30) in einem der Trägerlage (23, 33) gegenüberliegenden Oberflächenbereich des Vlieses (22) angeordnet ist.

25. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Zwischenschicht (15, 30) in einem Mittelbereich der Lage aus Fasern bzw. Fäden (19, 20) des Vlieses (22) durch Nadeldung oder thermische Bindung angeordnet ist.

26. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 25, dadurch gekennzeichnet, daß die Zwischenschicht (15, 30) zwischen zwei Lagen aus genadelten oder thermisch gebundenen Fasern bzw. Fäden (19, 20) des Vlieses (22) angeordnet ist.

27. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 26, dadurch gekennzeichnet, daß die Zwischenschicht (15, 30) zwischen zwei das Vlies (22) in den beiden gegenüberliegenden Oberflächenbereichen begrenzenden Trägerlagen (23, 33) angeordnet ist.

28. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 27, dadurch gekennzeichnet, daß die Zwischenschicht (15, 30) zwischen zwei Trägerlagen (23, 33) angeordnet ist, die auf der von der Zwischenschicht (15, 30) abgewendeten Seite jeweils durch Nadeldung oder thermische Bindung mit einer Faserlage (21, 32) aus Fasern bzw. Fäden (19, 20) eines Vlieses (22) verbunden sind und daß vorzugsweise auf der von der Zwischenschicht (15, 30) abgewendeten Oberfläche eine weitere Trägerlage (23, 33) mit der Faserlage (21, 32) des Vlieses (22) verbunden ist.

29. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 28, dadurch gekennzeichnet, daß die Zwischenschicht (15, 30) aus einem Netz oder Gitter oder Gewebe oder Gewirke oder dgl. aus Fäden (16) und/oder Fasern aus Glas und/oder Metall und/oder Keramik und/oder Kohle bestehen.

30. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 29, dadurch gekennzeichnet, daß eine Maschenweite des Gitters bzw. Netzes des Gewirkes der Zwischenschicht (15, 30) ca. 0,5 bis 8 mm, bevorzugt 3 mm, beträgt.

31. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 30, dadurch gekennzeichnet, daß die Zwischenschicht (15, 30) ein Gewicht von ca. 80 - 185 g/m² bevorzugt 120 g/m² aufweist.

32. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 31, dadurch gekennzeichnet, daß die Zwischenschicht (15, 30) in über die Fläche verteilt und voneinander distanzierten Bereichen mit dem Stützkörper (7) und der Mittelschicht (18) verbunden ist.

33. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 32, dadurch gekennzeichnet, daß der Bezugstoff (26) auf die Mittelschicht (18) aufkastiert ist und vorzugsweise eine zwischen dem Bezugstoff (26) und der Mittelschicht (18) angeordnete Verbindungsschicht (29), z.B. eine Polyäther- oder Polyesterschaumschicht, mit diesem verklebt ist.

34. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 33, dadurch gekennzeichnet, daß der Stützkörper (7) aus einem Kunststoffschraum (8) mit einheitlichem Raumgewicht besteht.

35. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 34, dadurch gekennzeichnet, daß das Raumgewicht des Kunststoffschraumes (8) in etwa 15 - 80 kg/m³ beträgt.

36. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 35, dadurch gekennzeichnet, daß im Stützkörper (7) im Bereich der stärker beanspruchten Zone eine Stützvorrichtung, insbesondere ein Federkern (10), z.B. aus Metalldraht, eingeschäumt ist.

37. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 36, dadurch gekennzeichnet, daß eine Deckfläche (36) des Federkerns von einer Oberfläche (14, 27) des Stützkörpers (7) distanziert, insbesondere in einem Abstand von 5 bis 70 mm, angeordnet ist.

38. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 37, dadurch gekennzeichnet, daß eine Höhe des in den Stützkörper (7) eingeschäumten Federkerns (10) geringer ist als eine
Dicke des Federkerns (10) im unbelasteten Zustand.

40. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 39, dadurch gekennzeichnet, daß die Zwischen- und/oder die Mitteischichte (15, 30; 18) eine Eingangsoffnung der Ausnehmungen (12) im Bereich der Seiten- und/oder Rückfläche (38) des Stützkörpers (7) überdeckt.

41. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 40, dadurch gekennzeichnet, daß eine Verbindungsvorrichtung zwischen dem Vlies (22) bzw. der Trägerlage (23, 33) und dem Bezugsstoff (26) angeordnet ist.

42. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 41, dadurch gekennzeichnet, daß die Verbindungsvorrichtung in über die Fläche der selben verteilten und voneinander distanzierten Bereichen mit der Zwischenschicht (15, 30) verbunden ist.

43. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 42, dadurch gekennzeichnet, daß eine Verbindungsschicht (29) zwischen der Mittelschichte (18) und dem Stützkörper (7) durch eine insbesondere punktuell über die Fläche verteilte Kleberschichte bzw. eine Kaschierschichte gebildet ist.

44. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 43, dadurch gekennzeichnet, daß die Verbindungsvorrichtung zur Halterung des Bezugsstoffes (26) über Fäden (20; 34, 35) und bzw. oder Fasern (19) mit der Mittelschichte (18) und/oder Zwischenschichte (15, 30) verbunden ist, die die Flammenschutzschichte durchdringen.

45. Fahrzeugsitz nach einem oder mehreren der Ansprüche 1 bis 44, dadurch gekennzeichnet, daß die Verbindungsvorrichtung durch ein Klettband (28) oder ein Tragband für einen Reißverschluß gebildet ist.

Claims

1. Vehicle seat, particularly for an aircraft, with a cushion made of plastic foam with a supporting body (7) of an open-cell, resilient plastic foam with a first density and a middle layer (18) with a second density different from the first one and a covering material (26), which are bonded together, in particular adhered in places and, if necessary, with a flame-resistant intermediate layer (15, 30) arranged between the supporting body and the covering material, formed from high temperature-resistant fibres or threads laid as a lattice or mesh, characterised in that the middle layer (18) is formed by a fleece (22) of at least one fibre layer (21, 32) of needle- or thermally bonded fibres or threads (19, 20) of synthetic and/or natural materials which are preferably needled onto a carrier layer (23, 33).

2. Vehicle seat according to claim 1, characterised in that the carrier layer (23, 33) is formed by a lattice or mesh of fibres or threads (24) of polyester and/or has a weight of 50 to 90 g/m², preferably 70 g/m².

3. Vehicle seat according to claim 1, characterised in that a carrier layer (23, 33) is formed from a woven fabric or knitted fabric of fibres or threads (24) of synthetic material, in particular a preoxidised polyacrylate and/or polyamide, glass filaments and/or natural materials.

4. Vehicle seat according to one or more of claims 1 to 3, characterised in that the carrier layer (23, 33) is constructed as a mesh and the mesh threads or fibres are made of polyester and have a thickness of 0.5 mm.

5. Vehicle seat according to one or more of claims 1 to 4, characterised in that the mesh or lattice forming the carrier layer (23, 33) has a mesh density of 12 openings/dm.

6. Vehicle seat according to one or more of claims 1 to 5, characterised in that the mesh of the carrier layer (23, 33) has longitudinal and transverse elongation between 30 and 50 %, preferably between 34 and 44 %.

7. Vehicle seat according to one or more of claims 1 to 6, characterised in that the mesh forming the carrier layer (23, 33) withstands a maximum tensile force longitudinally and/or transversely between 200 and 500 N.

8. Vehicle seat according to one or more of claims 1 to 7, characterised in that the tear resistance of the mesh forming the carrier layer (23, 33) transversely and longitudinally is between 240 and 280 N/cm.

9. Vehicle seat according to one or more of claims 1 to 8, characterised in that the fibre layer (21, 32) consists mainly of fibres or threads (19, 20) made of natural material, e.g. wool or cotton, which is preferably mixed with a proportion between 5 and 20%, preferably 10%, with fibres or threads (19, 20) of polypropylene or polyethylene or polyacrylate.
10. Vehicle seat according to one or more of claims 1 to 9, characterised in that the fibre layer (21, 32) consists mainly of fibres or threads (19, 20) made of synthetic material, e.g. polypropylene and/or polyethylene and/or polyacrylate and/or polybenzimidazole, and in that at least a proportion of these fibres or threads (19, 20) have a melting point of over 1000°C.

11. Vehicle seat according to one or more of claims 1 to 10, characterised in that some of the fibres or threads (19, 20) of the fibre layer (21, 32) are formed from synthetic material and the latter consists of thermoplastic materials.

12. Vehicle seat according to one or more of claims 1 to 11, characterised in that the fibres or threads (19, 20) of the fibre layer (21, 32) comprise synthetic materials with a plasticisation or softening point between 100 and 150°C, preferably between 100 and 120°C.

13. Vehicle seat according to one or more of claims 1 to 12, characterised in that the fibres or threads (19, 20) of the fibre layer (21, 32), in particular made of polypropylene or aramide or polyamide, have a length of 40 - 80 mm.

14. Vehicle seat according to one or more of claims 1 to 13, characterised in that the fibres or threads (19, 20) of the fibre layer (21, 32), in particular made of polypropylene or aramide or polyamide, are made from filaments.

15. Vehicle seat according to one or more of claims 1 to 14, characterised in that the fibres or threads (19, 20) of the fibre layer (21, 32), in particular made of polypropylene or aramide or polyamide, have a titre between 2 and 8 dtex, preferably 3.5 dtex.

16. Vehicle seat according to one or more of claims 1 to 15, characterised in that a weight of the fibre layer (21, 32) of the fleece (22) is between 60 and 390 g/m², preferably 70 g/m².

17. Vehicle seat according to one or more of claims 1 to 16, characterised in that a density of the fibre layer (21, 32) of the fleece (22) is between 10 and 80 kg/m³.

18. Vehicle seat according to one or more of claims 1 to 17, characterised in that a thickness of the fleece (22) is between 3 and 30 mm, preferably 5 mm.

19. Vehicle seat according to one or more of claims 1 to 18, characterised in that at least one of the two surfaces of the fibre layer (21, 32) or fleece (22) is thermally stamped.

20. Vehicle seat according to one or more of claims 1 to 19, characterised in that the fibres or threads (19, 20) of the fibre layer (21, 32) of the fleece (22) are needled to the carrier layer (23, 33).

21. Vehicle seat according to one or more of claims 1 to 20, characterised in that several fibre layers (21, 32) are arranged one above the other, if necessary with the interposition of carrier layers (23, 33).

22. Vehicle seat according to one or more of claims 1 to 21, characterised in that at least one fibre layer (21, 32) closest to one of the two surfaces is bonded more strongly than one or all fibre layers (21, 32) lying in between.

23. Vehicle seat according to one or more of claims 1 to 22, characterised in that the fleece (22) is thermally compressed to a surface density between 300 and 500 g/m².

24. Vehicle seat according to one or more of claims 1 to 23, characterised in that the intermediate layer (15, 30) is bonded to the fibres or threads (19, 20) of the fibre layer (21, 32) of the fleece (22) by a needling operation and/or the intermediate layer (15, 30) is arranged in a surface region of the fleece (22) opposite the carrier layer (23, 33).

25. Vehicle seat according to one or more of claims 1 to 24, characterised in that the intermediate layer (15, 30) is arranged in a middle region of the layer of fibres or threads (19, 20) of the fleece (22) by needling or thermal bonding.

26. Vehicle seat according to one or more of claims 1 to 25, characterised in that the intermediate layer (15, 30) is arranged between two layers of needled or thermally bonded fibres or threads (19, 20) of the fleece (22).

27. Vehicle seat according to one or more of claims 1 to 26, characterised in that the intermediate layer (15, 30) is arranged between two carrier layers (23, 33) delimiting the fleece (22) in the two opposed surface regions.

28. Vehicle seat according to one or more of claims 1 to 27, characterised in that the intermediate layer (15, 30) is arranged between two carrier layers (23, 33) which are bonded to a fibre layer (21, 32) of fibres or threads (19, 20) of a fleece (22) on the side facing away from the intermediate layer (15, 30) in each case by needling or thermal bonding, and in that preferably on the surface facing away from the intermediate layer (15, 30) an additional carrier layer (23, 33) is bonded to the fibre layer (21, 32) of the fleece (22).
29. Vehicle seat according to one or more of claims 1 to 28, characterised in that the intermediate layer (15, 30) consists of a mesh or lattice or woven fabric or knitted fabric or the like of threads (16) and/or fibres made of glass and/or metal and/or ceramics and/or carbon.

30. Vehicle seat according to one or more of claims 1 to 29, characterised in that a mesh size of the lattice or mesh or knitted fabric of the intermediate layer (15, 30) is about 0.5 to 8 mm, preferably 3 mm.

31. Vehicle seat according to one or more of claims 1 to 30, characterised in that the intermediate layer (15, 30) has a weight of about 80 - 185 g/m², preferably 120 g/m².

32. Vehicle seat according to one or more of claims 1 to 31, characterised in that the intermediate layer (15, 30) is bonded to the supporting body (7) and the middle layer (18) in regions distributed over the surface and spaced apart from each other.

33. Vehicle seat according to one or more of claims 1 to 32, characterised in that the covering material (26) is laminated onto the middle layer (18), and preferably a bonding layer (29) e.g. a polyether or polyester foam layer arranged between the covering material (26) and the middle layer (18) is adhered thereto.

34. Vehicle seat according to one or more of claims 1 to 33, characterised in that the supporting body (7) is made of a plastic foam (8) with a standard density.

35. Vehicle seat according to one or more of claims 1 to 34, characterised in that the density of the plastic foam (8) is approximately 15 - 80 kg/m³.

36. Vehicle seat according to one or more of claims 1 to 35, characterised in that a supporting device, in particular a spring core (10) e.g. made of metal wire, is foamed into the supporting body (7) in the region of the zone subject to more stress.

37. Vehicle seat according to one or more of claims 1 to 36, characterised in that a top surface (36) of the spring core is spaced apart from a surface (14, 27) of the supporting body (7), in particular at a distance of 5 to 70 mm.

38. Vehicle seat according to one or more of claims 1 to 37, characterised in that a height of the spring core (10) foamed into the supporting body (7) is less than a thickness of the spring core (10) in the unloaded state.

39. Vehicle seat according to one or more of claims 1 to 38, characterised in that in the region of the supporting body (7) are arranged recesses (12) extending perpendicularly to a side and/or upper surface of the seat cushion and/or back cushion.

40. Vehicle seat according to one or more of claims 1 to 39, characterised in that the intermediate and/or middle layer (15, 30, 18) overlaps an inlet opening of the recesses (12) in the region of the side and/or rear surface (38) of the supporting body (7).

41. Vehicle seat according to one or more of claims 1 to 40, characterised in that a bonding device is arranged between the fleece (22) or carrier layer (23, 33) and the covering material (26).

42. Vehicle seat according to one or more of claims 1 to 41, characterised in that the bonding device is joined to the intermediate layer (15, 30) in regions distributed over the surface thereof and spaced apart from each other.

43. Vehicle seat according to one or more of claims 1 to 42, characterised in that a bonding layer (29) between the middle layer (18) and the supporting body (7) is formed by an adhesive layer or a laminating layer distributed in particular at points over the surface.

44. Vehicle seat according to one or more of claims 1 to 43, characterised in that the bonding device for supporting the covering material (26) is joined to the middle layer (18) and/or intermediate layer (15, 30) by threads (20; 34, 35) and/or fibres (19) which penetrate the flame-resistant layer.

45. Vehicle seat according to one or more of claims 1 to 44, characterised in that the bonding device is formed by a hook and pile fastening band (28) or a supporting band for a zip fastener.

Reivendications

1. Siège de véhicule, notamment pour des avions, avec un rembourrage en mousse de matière synthétique avec un corps de support (7) en une mousse de matière synthétique élastique à alvéoles ouverts d'un premier poids spécifique, et avec une couche centrale (18) d'un deuxième poids spécifique différent du premier, et avec un tissu de recouvrement (26) qui sont reliés les uns avec les autres, qui sont notamment reliés par collage par endroit, et le cas échéant avec une couche intermédiaire (15, 30) disposée entre le corps de support et le tissu de revêtement, résistant aux flammes, réalisée à partir de fibres ou fils posés suivant une grille ou un filet, résistant à des températures élevées, caractérisé en ce que la couche centrale (18) est formée par une nappe (22) en au moins une couche de fibres (21, 32) en fibres et, respective-
ment fils (19, 20) aiguilletés ou liés thermiquement en matières synthétiques et/ou naturelles qui sont de préférence aiguilletés sur une couche de support (23, 33).

2. Siège de véhicule selon la revendication 1, caractérisé en ce que la couche de support (23, 33) est formée par une grille ou un filtre en fibres et, respectivement, fils (24) en polyester, et/ou a un poids de 50 à 90 g/m², de préférence de 70 g/m².

3. Siège de véhicule selon la revendication 1, caractérisé en ce qu'une couche de support (23, 33) est formée par un tissu et, respectivement tricot en fibres et, respectivement fils (24) en matière synthétique, notamment en un polyacrylate oxydé préalablement et/ou un polyamide, des filaments de verre et/ou des matières naturelles.

4. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 3, caractérisé en ce que la couche de support (23, 33) est réalisée sous forme de filet, et que les fils et, respectivement fibres du filet sont en polyester et ont une épaisseur de 0,5 mm.

5. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 4, caractérisé en ce que le fil ou la grille forment la couche de support (23, 33) à une densité des mailles de 12 ouvertures/dm.

6. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 5, caractérisé en ce que le fil de la couche de support (23, 33) a une extension longitudinale et transversale comprise entre 30 et 50 %, de préférence entre 34 et 44 %.

7. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 6, caractérisé en ce que le fil constituant la couche de support (23, 33) résiste à une force de traction maximale longitudinale et/ou transversale comprise entre 200 et 500 N.

8. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 7, caractérisé en ce que la solidité à la déchirure du filet constituant la couche de support (23, 33), dans le sens transversal et longitudinal, est comprise entre 240 et 280 N/cm.

9. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 8, caractérisé en ce que la couche de fibres (21, 32) est constituée majoritairement de fibres et, respectivement fils (19, 20) en matière naturelle, par exemple en laine ou en coton qui est mélangée de préférence avec une part comprise entre 5 et 20 %, de préférence 10 %, de fibres, et respectivement fils (19, 20) en polypropylène et, respectivement polyéthylène ou polyacrylate.

10. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 9, caractérisé en ce que la couche de fibres (21, 32) est constituée majoritairement de fibres et, respectivement fils (19, 20) en matière synthétique, par exemple en polypropylène et/ou polyéthylène et/ou polya crylate et/ou polybenzimidazole, et en ce qu'au moins une part de ces fibres et, respectivement fils (19, 20) a une température de fusion supérieure à 1000°C.

11. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 10, caractérisé en ce qu'une partie des fibres et, respectivement fils (19, 20) de la couche de fibres (21, 32) est réalisée en matière synthétique, et que celle-ci est constituée de matières ther moplastiques.

12. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 11, caractérisé en ce que les fibres et, respectivement fils (19, 20) de la couche de fibres (21, 32) comportent des matières synthétiques avec un point de plastification et, respectivement ramollissement compris entre 100 et 150°C, de préférence entre 100 et 120°C.

13. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 12, caractérisé en ce que les fibres et, respectivement fils (19, 20) de la couche de fibres (21, 32), notamment en polypropylène ou aramide ou polyamide, ont une longueur de 40 - 80 mm.

14. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 13, caractérisé en ce que les fibres et, respectivement fils (19, 20) de la couche de fibres (21, 32), notamment en polypropylène ou aramide ou polyamide, sont fabriqués à partir de filaments.

15. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 14, caractérisé en ce que les fibres et, respectivement fils (19, 20) de la couche de fibres (21, 32), notamment en polypropylène ou aramide ou polyamide, ont un titre compris entre 2 et 8 dtex, de préférence 3,5 dtex.

16. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 15, caractérisé en ce qu'un poids de la couche de fibres (21, 32) de la nappe (22) est compris entre 60 et 390 g/m², et il est de préférence de 70 g/m².

17. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 16, caractérisé en ce qu'un poids spécifique de la couche de fibres (21, 32) de la nappe (22) est compris entre 10 et 80 kg/m³.

18. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 17, caractérisé en ce qu'une
épaisseur de la nappe (22) est comprise entre 3 et 30 mm, et qu'elle est de préférence de 5 mm.

19. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 18, caractérisé en ce qu'au moins l'une des deux surfaces de la couche de fibres (21, 32) et, respectivement de la nappe (22) est gaufrée thermiquement.

20. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 19, caractérisé en ce que les fibres et, respectivement fils (19, 20) de la couche de fibres (21, 32) de la nappe (22) sont assemblées par aiguilletage avec la couche de support (23, 33).

21. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 20, caractérisé en ce que plusieurs couches de fibres (21, 32) sont disposées les unes sur les autres, le cas échéant en intercalant des couches de support (23, 33).

22. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 21, caractérisé en ce qu'au moins une couche de fibres (21, 32) avoisinant l'une des deux surfaces est liée plus fortement qu'une ou toutes les couches de fibres (21, 32) situées entre celles-ci.

23. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 22, caractérisé en ce que la nappe (22) est comprimée thermiquement à un grammage compris entre 300 et 500 g/m².

24. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 23, caractérisé en ce que la couche intermédiaire (15, 30) est reliée aux fibres et/ou fils (19, 20) de la couche de fibres (21, 32) de la nappe (22) par une opération d'aiguilletage et/ou que la couche intermédiaire (15, 30) est disposée dans une zone de surface de la nappe (22) opposée à la couche de support (23, 33).

25. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 24, caractérisé en ce que la couche intermédiaire (15, 30) est disposée dans une zone centrale de la couche en fibres et, respectivement fils (19, 20) de la nappe (22) par aiguilletage ou par liaison thermique.

26. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 25, caractérisé en ce que la couche intermédiaire (15, 30) est disposée entre deux couches en fibres et, respectivement fils (19, 20) aiguilletés ou liés thermiquement de la nappe (22).

27. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 26, caractérisé en ce que la couche intermédiaire (15, 30) est disposée entre deux couches de support (23, 33) délimitant la nappe (22) dans les deux zones de surface opposées.

28. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 27, caractérisé en ce que la couche intermédiaire (15, 30) est disposée entre deux couches de support (23, 33) qui sont reliées au côté éloigné de la couche intermédiaire (15, 30) respectivement par aiguilletage ou par liaison thermique avec une couche de fibres (21, 32) en fibres et, respectivement fils (19, 20) d'une nappe (22), et en ce que de préférence sur la surface éloignée de la couche intermédiaire (15, 30), une couche de support supplémentaire (23, 33) est reliée à la couche de fibres (21, 32) de la nappe (22).

29. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 28, caractérisé en ce que la couche intermédiaire (15, 30) est constituée d'un filet ou grille ou tissu ou tricot ou analogique en fils (16) et/ou fibres en verre et/ou métal et/ou céramique et/ou carbone.

30. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 29, caractérisé en ce qu'une largeur de mailles de la grille et, respectivement du filet ou du tricot de la couche intermédiaire (15, 30) est comprise environ 0,5 à 8 mm, et qu'elle est de préférence de 3 mm.

31. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 30, caractérisé en ce que la couche intermédiaire (15, 30) a un poids compris entre environ 80 - 185 g/m², et que celui est de préférence de 120 g/m².

32. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 31, caractérisé en ce que la couche intermédiaire (15, 30) est reliée dans des zones réparties sur la surface et espaçées les unes des autres au corps de support (7) et à la couche centrale (18).

33. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 32, caractérisé en ce que le tissu de revêtement (26) est contre-collé sur la couche centrale (18) et que de préférence une couche de liaison (29), par exemple une couche en mousse de polyéthylène ou de polyester, disposée entre le tissu de revêtement (26) et la couche centrale (18), est assemblée par collage avec celui-ci.

34. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 33, caractérisé en ce que le corps de support (7) est constitué d'une mousse de matière synthétique (8) d'un poids spécifique uniforme.

35. Siège de véhicule selon l'une ou plusieurs des revendications 1 à 34, caractérisé en ce que le
36. Siège de véhicule selon l’une ou plusieurs des revendications 1 à 35, caractérisé en ce qu’il est introduit par moussage dans le corps de support (7) au voisinage de la zone plus fortement sollicitée un dispositif d’appui, notamment un noyau hélicoïdal (10) par exemple en fil métallique.

37. Siège de véhicule selon l’une ou plusieurs des revendications 1 à 36, caractérisé en ce qu’une surface de recouvrement (36) du noyau hélicoïdal est disposée à une certaine distance d’une surface (14, 27) du corps de support (7), notamment à une distance comprise entre 5 et 70 mm.

38. Siège de véhicule selon l’une ou plusieurs des revendications 1 à 37, caractérisé en ce qu’une hauteur du noyau hélicoïdal (10) introduit par moussage dans le corps de support (7) est plus petite qu’une épaisseur du noyau hélicoïdal (10) à l’état non chargé.

39. Siège de véhicule selon l’une ou plusieurs des revendications 1 à 38, caractérisé en ce que des évidements (12) sont ménagés au voisinage du corps de support (7) et s’étendant perpendiculairement à une face latérale et/ou surface du rembourrage de siège et/ou du rembourrage dorsal.

40. Siège de véhicule selon l’une ou plusieurs des revendications 1 à 39, caractérisé en ce que la couche intermédiaire et/ou centrale (15, 30; 18) recouvre une ouverture d’entrée des évidements (12) au voisinage de la face latérale et/ou arrière (38) du corps de support (7).

41. Siège de véhicule selon l’une ou plusieurs des revendications 1 à 40, caractérisé en ce qu’un dispositif de liaison est disposé entre la nappe (22) et, respectivement la couche de support (23, 33) et le tissu de revêtement (26).

42. Siège de véhicule selon l’une ou plusieurs des revendications 1 à 41, caractérisé en ce que le dispositif de liaison est relié dans des zones réparties sur sa surface et espacées les unes des autres à la couche intermédiaire (15, 30).

43. Siège de véhicule selon l’une ou plusieurs des revendications 1 à 42, caractérisé en ce qu’une couche de liaison (29) est formée entre la couche centrale (18) et le corps de support (7) par une couche de coller et, respectivement une couche de contre-collage répartie notamment ponctuellement sur la surface.

44. Siège de véhicule selon l’une ou plusieurs des revendications 1 à 43, caractérisé en ce que le dispositif de liaison destiné à retenir le tissu de revêtement (26) et relié par des fils (20; 34, 35) et/ou fibres (19) à la couche centrale (18) et/ou la couche intermédiaire (15, 30), qui traversent la couche de protection contre les flammes.

45. Siège de véhicule selon l’une ou plusieurs des revendications 1 à 44, caractérisé en ce que le dispositif de liaison est formé par une bande à charbons (28) ou une bande de support pour une fermeture éclair.