EUROPEAN PATENT SPECIFICATION

ENHANCED SKIN PENETRATION SYSTEM FOR IMPROVED TOPICAL DELIVERY OF DRUGS

VERBESSERTE HAUTPENETRATIONSSYSTEME FUER ERHOEHTE TOPISCHE FREISETZUNG VON ARZNEIMITTELN

SYSTEME AMELIORE DE PENETRATION CUTANEE UTILISE DANS L'ADMINISTRATION LOCALE EFFICACE DE MEDICAMENTS

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL SE

Date of publication of application: 03.08.1994 Bulletin 1994/31

Proprietor:
RICHARDSON-VICKS, INC.
Shelton, Connecticut 06484 (US)

Inventors:
- DECKNER, George, Endel
 Cincinnati, OH 45249 (US)
- LOMBARDO, Brian, Scott
 Austin, TX 78731 (US)

Representative:
Brooks, Maxim Courtney et al
Procter & Gamble Technical Centres Limited,
Whitley Road,
Longbenton
Newcastle upon Tyne NE12 9TS (GB)

References cited:
EP-A- 0 312 208
US-A- 4 540 568

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to compositions for the topical administration of drugs, especially such compositions having enhanced penetration of the drug through the skin.

Because of the accessibility and large area of the skin, it has long been considered a promising route for the administration of drugs, whether dermal, regional, or systemic effects are desired.

The advantages of the topical route of drug administration include: avoidance of the risks and inconvenience of parenteral treatment; avoidance of the variable absorption and metabolism associated with oral treatment; continuity of drug administration, permitting use of pharmacologically active agents with short biological half-lives; potential reduction of gastrointestinal irritation in systemic administration; and treatment of cutaneous manifestations of diseases usually treated systemically.

However, the impermeability of skin is well-known, serving as a barrier to ingress of pathogens and toxic chemicals, and egress of physiologic fluids. This impermeability is the result of normal physiologic changes in developing skin. A typical cell in the epidermis is formed in the basal layer. It typically takes approximately thirty days for a cell to migrate from the basal layer of the epidermis to sloughing off and discarding at the outer layers of the stratum corneum. As the cell migrates outward from the basal layer, it progressively keratinizes until it is relatively impermeable. The result is the stratum corneum, an extremely thin surface layer (10 microns) with substantial barrier properties. The cell envelopes of the cells in the stratum corneum tend to be mainly polar lipids, such as ceramides, sterols, and fatty acids while the cytoplasm of stratum corneum cells remains polar and aqueous. Despite the close packing of the cells, some 15% of the stratum corneum is intercellular and, generally, lipid based. It is generally recognized that over the very short term, penetration occurs through the hair follicles and the sebaceous apparatus; long-term penetration occurs across cells (non-polar route). Poor penetration of many drugs across the epidermal lipid barrier has, until now, frustrated attempts to deliver clinically significant doses of many drugs by the topical route.

One route of internal delivery of drugs is by transdermal administration. Transdermal administration of drugs can be used in many instances to achieve therapeutic levels of the drugs in the systemic circulatory system, as well as for more localized internal dosing of drugs. Where such therapeutic levels of drugs can be achieved by transdermal administration, several potential advantages exist over other routes of administration. Sustained systemic delivery of drug controlled at therapeutic but below toxic levels over long periods of time with a single continuous application is often an advantage of transdermal drug administration. Potential contamination of internal tissues with undesired foreign substances or microbes, often associated with parenteral administration of drugs, is avoided with transdermal drug administration. Oral administration of many drugs is undesirable or unfeasible because the drug decomposes in the harsh environment of the gastrointestinal tract, lacks sufficient absorption from the gastrointestinal tract, or causes gastrointestinal upset or tissue damage in the gastrointestinal tract. First-pass metabolism of orally administered drugs can increase the dosage required to achieve therapeutic levels and thereby increase undesirable side effects either from the primary drug or the metabolites. Maintenance of uniform, optimal systemic levels of drugs for long periods of time is often difficult through oral administration. Such problems can often be reduced or avoided by transdermal drug administration.

It is an object of the present invention to provide novel compositions for enhancing the skin penetration of drugs.

It is a further object of the present invention to provide such compositions which provide sufficient skin penetration enhancement to achieve therapeutic levels of the drugs in target internal tissues.

It is a further object of the present invention to provide such compositions with low dermal irritation, especially in compositions requiring a low pH.

It is a still further object of the present invention to provide such compositions having good stability and good cosmetics.

The present invention relates to pharmaceutical compositions for topical application having enhanced penetration through the skin comprising:

(a) a safe and effective amount of a pharmaceutical active; and
(b) from about 0.05% to about 20% of a non-ionic crosslinked polyacrylamide having a molecular weight of from about 1,000,000 to about 30,000,000;

wherein the composition has a pH of below about 5.

All concentrations and ratios herein are by weight of total composition and all measurements are at 25°C, unless otherwise specified.

The present invention involves compositions comprising certain specific non-ionic polymers which may be applied topically to the skin and which result in improved transdermal penetration of the drugs through the skin. These compositions also have a high solvent tolerance, i.e., high level of solvents such as alcohol and other water-soluble components which may be necessary to solubilize the active can be included in the compositions.

Drug Active

The compositions of the present invention comprise a safe and effective amount of a drug active. The phrase "safe and effective amount", as used herein, means an amount of a drug high enough to significantly positively modify the condition to be treated, but low enough to avoid serious side effects (at a reasonable benefit/risk ratio), within the scope of sound medical judgement. A safe and effective amount of the drug will vary with the specific drug, the ability of the composition to penetrate the drug through the skin, the amount of composition to be applied, the particular condition being treated, the age and physical condition of the patient being treated, the severity of the condition, the duration of the treatment, the nature of concurrent therapy, and like factors.

The drug compounds present in the compositions of the present invention preferably comprise from about 0.1% to about 20% by weight of the compositions, more preferably from about 0.1% to about 10%, and most preferably from about 0.1% to about 5%. Mixtures of drug actives may also be used.

Useful drug actives in the compositions of the present invention include anti-acne drugs. Anti-acne drugs preferred for use in the present invention include the keratolytics such as salicylic acid, sulfur, lactic acid, glycolic, pyruvic acid, urea, resorcinol, and N-acetylcysteine; retinoids such as retinoic acid and its derivatives (e.g., cis and trans); antibiotics and antimicrobials such as benzoyl peroxide, octopirox, erythromycin, tetracyclin, triclosan, azelaic acid and its derivatives, phenoxy ethanol and phenoxy proponol, ethylacetate, clindamycic and mectlocycline; sebostats such as flavinoids; hydroxy acids; and bile salts such as sycmol sulfate and its derivatives, deoxycholate, and cholate.

Useful drug actives in the compositions of the present invention include non-steroidal anti-inflammatory drugs (NSAIDS). The NSAIDS can be selected from the following categories: propionic acid derivatives; acetic acid derivatives; fenamic acid derivatives; biphenylcarboxylic acid derivatives; and oxamcs. All of these NSAIDS are fully described in the US-A-4,980,459 to Sunshine et al., issued January 15, 1991. Most preferred are the propionic NSAIDS including but not limited to aspirin, acetaminophen, ibuprofen, naproxen, benoxaprofen, flurbiprofen, fenoprofen, fenbufen, ketoprofen, indoprofen, piroprofen, carprofen, oxaprozin, pranoprofen, miroprofen, toboxaprofen, suprofen, alminoprofen, tiaprofenic acid, fluprofen and bucloxic acid. Also useful are the steroidal anti-inflammatory drugs including hydrocortisone and the like.

Useful drug actives in the compositions of the present invention include antihistaminic drugs. Antihistaminic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of chlorpheniramine, tripolidine, diphenhydramine, doxylamine, pyrilamine, phenindamine, promethazine, cyproheptadine, azatadine, clemastine, carbinoxamine, tripelennamine, terfenadine, dexchlorpheniramine, brompheniramine, chlorcyclizine,
diphenylpyraline, pheniramine and phenyltoloxamine, and mixtures thereof.

Useful drug actives in the compositions of the present invention include antitussive drugs. Antitussive drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of dextromethorphan, codeine, caramiphen and carbetapentane.

Useful drug actives in the compositions of the present invention include antipruritic drugs. Antipruritic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of methdilazine and trimeprazine.

Useful drug actives in the compositions of the present invention include anticholinergic drugs. Anticholinergic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of scopolamine, atropine, homatropine, levodopa, dicyclomine, hyoscyamine, procyclidine, trihexyphenidyl and ethopropazine.

Useful drug actives in the compositions of the present invention include anti-emetic and anti-nauseant drugs. Anti-emetic and anti-nauseant drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of cyclizine, medazine, chlorpromazine, buclizine, metoclopramide, prochlorperazine and trimethobenzamide.

Useful drug actives in the compositions of the present invention include anorexic drugs. Anorexic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of benzphetamine, phentermine, chlorphentermine, fenfluramine, diethylpropion and phendimetrazine.

Useful drug actives in the compositions of the present invention include central stimulant drugs. Central stimulant drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of amphetamine, methamphetamine, dextroamphetamine and methylphenidate.

Useful drug actives in the compositions of the present invention include antiarrhythmic drugs. Antiarrhythmic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of propranolol, procainamide, disopyramide, quinidine, encainide, flecaïnide, mexiletine and tocainide. Other antiarrhythmic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of the quinidine derivatives disclosed in US-A-4,716,171 issued to Jarreau and Koenig on December 29, 1987. Highly preferred compounds included in this class include pharmaceutically-acceptable salts of 3S-hydroxy-10,11-dihydroquinidine, 3R-hydroxy-10,11-dihydroquinidine, 3R-hydroxy-O-acetyl-10,11-dihydroquinidine, and 3S-hydroxy-O-acetyl-10,11-dihydroquinidine, especially 3S-hydroxy-10,11-dihydroquinidine.

Useful drug actives in the compositions of the present invention include β-adrenergic blocker drugs. β-Adrenergic blocker drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of metoprolol, acebutolol, betaxolol, labetalol and timolol. β-Adrenergic blocker drugs more preferred for inclusion in compositions of the present invention include metoprolol tartrate, acebutolol hydrochloride, betaxolol hydrochloride, labetalol hydrochloride and timolol maleate.

Useful drug actives in the compositions of the present invention include cardiotonic drugs. Cardiotonic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of milrinone, amrinone and dobutamine. Other cardiotonic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of 14-amonio steroid derivatives, some of which are disclosed in US-A-4,325,879, US-A-4,552,886 and US-A-4,584,289, issued to Jarreau and Koenig on April 20, 1982, November 12, 1985 and April 22, 1986, respectively.

Useful drug actives in the compositions of the present invention include antihypertensive drugs. Antihypertensive drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of enalapril, clonidin, hydralazine, minoxidil (which is also a hair growth stimulator drug), guanadrel, guanethidine, guanfacine, mepramilamine, methyldopate, pargyline, phenoxybenzamine and prazosin.

Useful drug actives in the compositions of the present invention include diuretic drugs. Diuretic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of amiloride and hydrochlorothiazide. Diuretic drugs more preferred for inclusion in compositions of the present invention include amiloride hydrochloride.

Useful drug actives in the compositions of the present invention include vasodilator drugs. Vasodilator drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of diltiazem, amiodarone, isoxsuprime, nylidrin, tolazoline and verapamil.

Useful drug actives in the compositions of the present invention include vasoconstrictor drugs. Vasoconstrictor drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of dihydroergotamine, ergotamine and methysergide.

Useful drug actives in the compositions of the present invention include anti-ulcer drugs. Anti-ulcer drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of ranitidine and cimetidine.

Useful drug actives in the compositions of the present invention include anesthetic drugs. Anesthetic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of lidocaine,
bupivacaine, chlorprocaine, dibucaine, etidocaine, mepivacaine, tetracaine, dyclonine, hexylcaine, procaine, cocaine, ketamine, pramoxine and phenol.

Useful drug actives in the compositions of the present invention include antidepressant drugs. Antidepressant drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of imipramine, desipramine, amitriptyline, nortriptyline, protriptyline, doxepin, maprotiline, phenelzine, tranylcypromine, trazodone and trimipramine.

Useful drug actives in the compositions of the present invention include tranquilizer and sedative drugs. Tranquilizer and sedative drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of chlor diazepam, benactyzine, benzquinamide, flurazepam, hydroxyzine, loxapine and promazine.

Useful drug actives in the compositions of the present invention include antipsychotic drugs. Antipsychotic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of chlorprothixene, fluphenazine, haloperidol, molindone, thioridazine and trifluperazone.

Useful drug actives in the compositions of the present invention include antimicrobial drugs (antibacterial, antifungal, antiprotozoal and antiviral drugs). Antimicrobial drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of \(\beta \)-lactam drugs, quinolone drugs, ciprofloxacin, norfloxacine, tetracycline, erythromycin, amikacin, ticlosan, doxycycline, capreomycin, chlorhexidine, chlorotetracycline, oxytetracycline, clindamycin, ethambutol, metronidazole, pentamidine, gentamicin, kanamycin, lineomycin, methacycline, methenamine, minocycline, neomycin, netilmicin, paromomycin, streptomycin, tobramycin, miconazole and amafanide. Antimicrobial drugs preferred for inclusion in compositions of the present invention include tetracycline hydrochloride, erythromycin estolate, erythromycin stearate (salt), amikacin sulfate, doxycycline hydrochloride, capreomycin sulfate, chlorhexidine gluconate, chlorhexidine hydrochloride, chlorotetacycline hydrochloride, oxytetracycline hydrochloride, clindamycin hydrochloride, ethambutol hydrochloride, metronidazole hydrochloride, pentamidine hydrochloride, gentamicin sulfate, kanamycin sulfate, lineomycin hydrochloride, methacycline hydrochloride, methenamine hippurate, methenamine mandelate, minocycline hydrochloride, neomycin sulfate, netilmicin sulfate, paromomycin sulfate, streptomycin sulfate, tobramycin sulfate, miconazole hydrochloride, amafanide hydrochloride, amafanide sulfate, ticlosan, octopirox, parachlorometa xylol, nystatin, tolnaftate and clotrimazole.

Useful drug actives in the compositions of the present invention include antineoplastic drugs. Antineoplastic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of bleomycin, daunorubicin, doxorubicin, mecloethamine, procarbazine, quinacrine, tamoxifen, vinblastine and vincristine. Useful drug actives in the compositions of the present invention include antimalarial drugs. Antimalarial drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of chlorquine, hydroxychloroquine primaquine and quinine.

Useful drug actives in the compositions of the present invention include muscle relaxant drugs. Muscle relaxant drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of cinnamedrine, cyclobenzaprine, flaxoxate, orphenadrine, papaverine, mebeverine, idaverine, ritodrine, dephenoxylate, dantrolene and azumolene.

Useful drug actives in the compositions of the present invention include anti spasmodic drugs. Antispasmodic drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of the compounds disclosed in US-A-3,856,825 issued to Wright, Burch and Goldenburg on December 24, 1974.

Useful drug actives in the compositions of the present invention include antidiarrheal drugs. Antidiarrheal drugs preferred for inclusion in compositions of the present invention include pharmaceutically-acceptable salts of loperamide.

Also useful in the present invention are sunless tanning agents including dihydroxyacetone, indole derivatives, and the like. These sunless tanning agents may also be used in combination with conventional sunscreen agents such as

those disclosed in Segarin, et al., at Chapter VIII, pages 189 et seq., of Cosmetics Science and Technology, as well as wound healing agents such as peptide derivatives, yeast, panthenol, lanolin and kinetin.

Other useful skin actives include skin bleaching (or lightening) agents including but not limited to hydroquinone, ascorbic acid, kojic acid and sodium metabisulfite.

Nonionic Polycrylamide The non-ionic polymers useful in the present invention are polycrylamides and substituted polycrylamides, branched or unbranched. These polymers are non-ionic water-dispersible polymers which can be formed from a variety of monomers including acrylamide and methacrylamide which are unsubstituted or substituted with one or two alkyl groups (preferably C1-C3). Preferred acrylamide amides and methacrylamide amides in which the amide nitrogen is unsubstituted, or substituted with one or two C1-C8 alkyl groups (preferably: methyl, ethyl or propyl), for example, acrylamide, methacrylamide, N-methylacrylamide, N-methylmethacrylamide, N,N-dimethylmethacrylamide, N-isopropylacrylamide, N-iso-propylmethacrylamide and N,N-dimethylacrylamide. These monomers are generally disclosed in US-A-4,963,348 to Bolich, Jr. et al., issued October 16, 1990. These copolymers also contain conventional neutral crosslinking agents such as dialkylammonium compounds. The use of such crosslinking agents for cationic polymers is disclosed in US-A-4,682,078 to Glover et al. issued December 9, 1986 and US-A-4,593,379 to Flesher et al. issued July 8, 1986. These non-ionic co-polymers have a molecular weight greater than 1,000,000 preferably greater than 1,500,000 and range up to 30,000,000. Preferably, as a result of being synthesized by reverse phase emulsion polymerization, these non-ionic polycrylamides are predispersed in a water-immiscible solvent such as mineral oil and the like, containing a high HLB surfactant (HLB from about 7 to about 10) which helps to facilitate water dispersibility of the polycrylamide. Most preferred for use herein is the non-ionic polymer under the CTFA designation: polycrylamide and isoparaffin and laureth-7, available as Sepigel from Seppic Corporation.

These non-ionic polycrylamides are present at a level from 0.05% to 20%, preferably from 0.05% to 5% and most preferably from 0.1% to 10%.

Vehicle The compositions of the present invention are used along with pharmaceutically acceptable carrier (or vehicle) components. The term "pharmaceutically acceptable carrier components", as used herein, means compatible solid or liquid filler diluents which are suitable for administration to a human or lower animal. The term "compatible", as used herein, means that the components are capable of being commingled with the drug compounds, dyes and fatty acids of the compositions of the present invention, and with each other, in a manner such that there is no interaction which would substantially reduce the pharmaceutical efficacy of the compositions of the present invention under ordinary use situations. Pharmaceutically acceptable carrier components must, of course, be of sufficiently high purity and sufficiently low toxicity to render them suitable for administration to the human or lower animal being treated.

Some examples of substances which can serve as pharmaceutically acceptable carrier components in formulations of pharmaceutical actives. A variety of humectants/moisturizers can be employed and can be present at a level from about 1% to about 30%, more preferably from about 2% to about 8% and most preferably from about 3% to about 5%. These materials include polyhydroxy alcohols such as sorbitol, glycerin, hexanetriol, propylene glycol, polyethylene glycol and the like; polyethylene glycol; sugars and starches; sugar and starch derivatives (e.g. alkylated glucose); D-pantenol; hyaluronic acid; lactamide monoethanolamine; acetamide monoethanolamine; and mixtures thereof.

Preferred humectants/moisturizers for use in the compositions of the present invention are the C3-C6 diols and triols. Especially preferred is the triol, glycerin. The compositions of this invention may also contain pharmaceutically acceptable optional components that modify the physical and/or therapeutic effects of the compositions. Such optional components may include, for example, additional solvents, emulsifiers, gelling agents, fragrances, preservatives, and stabilizers. However, such optional materials must not unduly interfere with the transdermal delivery of the drug active.

Most preferred compositions herein are gel-type compositions.

Another optional material is a solvent or co-solvent material. Such solvent materials include, for example, short chain alcohols and ethers. Preferred optional solvent materials include polyethylene glycols, dipropylene glycol, ethylene glycol monoethyl ether, ethanol, isopropanol, and dimethyl isosorbide. Water may also be used as a solvent or co-solvent in the compositions of this invention. If water is used in a saturated system, a gel or emulsion is preferably formed.

The compositions herein have a pH of below about 5, preferably below about 4, and most preferably below about 3.

Test Method

Transdermal penetration of drugs is conveniently determined and compared from various vehicles using the appa-
ratus and procedure described below.

Full thickness excised human thigh skin is obtained from cadavers after all hair had been clipped and the skin washed. The skin samples are then bathed in 10% glycerin and stored frozen. The glycerin prevents the formation of ice crystals which could possibly damage the keratinized cells and/or the intercellular lipid matrix. After a rapid thawing, the skin is conditioned for 24 hours in Hank's Balanced Salt Solution with 1% antibacterial-antimycotic solution. Then the skin is washed with distilled water. A single skin donor is used for each experiment, and individual sections for use are selected based on integrity of the stratum corneum (visual determination). Selected areas are cut to 1 cm² using a scalpel.

Tests are conducted using glass diffusion cells placed in temperature-regulated stirring modules. Skin sections are mounted in the cells, and the receptor phase is added. The receptor phase is 50% Hank's Balance Salt Solution with 1% antibiotic-antimycotic solution. Each diffusion cell has an exposed area of 0.79 cm² and a receptor capacity of 5ml. Sufficient formulation is applied (750ul) to the surface of the skin to ensure infinite dose conditions, and the diffusion cell is covered with plastic wrap or parafilm to prevent product evaporation. At each sampling time the receptor phase is removed for analysis of drug content. The receptor phase is removed for analysis of drug content. The receptor phase is replenished at each sampling time in order to maintain sink conditions. Preferably 3 to 6 replicates are run with sampling intervals occurring at 1, 2, 4 & 6 hours.

Penetration rate (Flux) is determined as the quantity of drug penetrating a measured area of skin per hour during the 5 hour interval between 1 hour and 6 hours. Generally steady state is reached before 1 hour. Penetration rate is usually expressed as ug drug per cm² skin per hour.

Ingredients are identified by chemical or CTFA name.

EXAMPLES

Example I

An anti-acne composition is made by combining the following ingredients.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>(%W/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water, Purified</td>
<td>52.395</td>
</tr>
<tr>
<td>Alcohol SDA 40</td>
<td>40.000</td>
</tr>
<tr>
<td>Polyacrylamide and C₁₃-₁₄-Isoaraffin and Laureth-7</td>
<td>4.000</td>
</tr>
<tr>
<td>Salicylic Acid</td>
<td>2.000</td>
</tr>
<tr>
<td>Glycerin</td>
<td>1.000</td>
</tr>
<tr>
<td>Aloe Vera Gel</td>
<td>0.500</td>
</tr>
<tr>
<td>Menthol</td>
<td>0.100</td>
</tr>
<tr>
<td>Disodium EDTA</td>
<td>0.005</td>
</tr>
</tbody>
</table>

The alcohol is added to a suitable size container. Using a Lightnin' mixer with a 3 blade paddle prop, the salicylic acid is added to the alcohol and mixed at low speed (100 rpm) until the salicylic acid is dissolved. Menthol is added to the alcohol and mixed until dissolved. Separately, water is added to a suitable size container. Aloe vera gel and disodium EDTA are added to the water and mixed at low speed (100 rpm) until completely dissolved. The water phase is then added to the alcohol phase and mixed until clear. Glycerin is added and mixed until clear. While mixing at moderate speed (300 rpm), the polyacrylamide and C₁₃-₁₄-Isoaraffin and laureth-7 is added to form a gel. The resulting gel is mixed at moderate speed until uniform.

Example II

An anti-acne and/or analgesic composition is made by combining the following ingredients utilizing conventional mixing techniques as described above in Example I.
The compositions display skin penetration of the Ibuprofen active as well as improved skin feel and residue characteristics together with excellent moisturizing, emolliency, rub-in and absorption characteristics.

Example III

A keratolytic composition for dermatological disorders is made by combining the following ingredients utilizing conventional mixing techniques as described above in Example I.

The compositions display skin penetration of the Urea active as well as improved skin feel and residue characteristics together with excellent moisturizing, emolliency, rub-in and absorption characteristics.

Example IV

A composition for sunless tanning is made by combining the following ingredients utilizing conventional mixing techniques as described above in Example I.

The compositions display improved skin penetration of the dihydroxyacetone as well as improved skin feel and residue characteristics together with excellent moisturizing, emolliency, rub-in and absorption characteristics.

Claims

1. A topical pharmaceutical composition having enhanced penetration through the skin comprising:

 (a) a safe and effective amount of a pharmaceutical active; and
 (b) from 0.05% to 5% of a non-ionic crosslinked polyacrylamide having a molecular weight of from 1,000,000 to 30,000,000;
EP 0 608 320 B1

wherein the composition has a pH of below about 5.

2. The composition of Claim 1 wherein the polyacrylamide comprises monomers selected from acrylamide and methacrylamide which are unsubstituted or substituted with at least one alkyl group having from 1 to 5 carbon atoms, preferably wherein the polyacrylamide comprises monomers selected from acrylamide, methacrylamide, N-methylacrylamide, N-methylmethacrylamide, N,N-dimethylmethacrylamide, N-isopropylacrylamide, N-isopropylmethacrylamide and N,N-dimethylacrylamide, and more preferably wherein the polyacrylamide has a molecular weight greater than 1,500,000.

3. The composition of Claim 2 wherein said pharmaceutical active is selected from anti-acute drugs, non-steroidal anti-inflammatory drugs, steroidal anti-inflammatory drugs, sunless tanning agents, sunscreen agents, wound healing agents, skin bleaching or lightening agents, antithiamic drugs, antitussives drugs, antipruritic drugs, anticholiner-
gic drugs, anti-emetic and antinauseant drugs, anorexics drugs, central stimulant drugs, antiarrhythmic drugs, β-adrenergic blocker drugs, cardiotoxic drugs, antihypertensive drugs, diuretics drugs, vasodilator drugs, vasoco-
strictor drugs, anti-ulcer drugs, anesthetic drugs, antidepressant drugs, tranquilizer and sedative drugs, antipsychotic drugs, antimicrobial drugs, antineoplastic drugs, antimarial drugs, muscle relaxant drugs, antispasmodic drugs, antidiarrheal drugs and bone-active drugs and mixtures thereof.

4. The composition of Claim 5 herein said pharmaceutical active is an acne active selected from salicylic acid, sulfur, resorcinol, N-acetylcyesteine, octopirox, retinoic acid and its derivatives, benzoyl peroxide, erythromycin, tetracyclin, azelaic acid and its derivatives, phenoxy ethanol and phenoxy proponol, ethylacetate, clindamycin and meclocycline, flavonoids, lactic acid, glycolic acid, pyruvic acid, urea, scymnol sulfate and its derivatives, deoxycholate and cholate and mixtures thereof.

5. The composition of Claim 3 wherein said antihistaminic drug is selected from chlorpheniramine maleate, chlorphe-
niramine tannate, triprolidine hydrochloride, triprolidine oxalate, diphenhydramine hydrochloride, diphenhydramine ascorbate, diphenhydramine citrate, doxylamine succinate, pyrilamine maleate, pyrilamine hydrochloride, pyril-
amine tannate, phenindamine tartrate, promethazine hydrochloride, cyproheptadine hydrochloride, azatadine maleate, clemastine fumarate, carboinoxamine maleate, carboinoxamine hydrochloride, tripehennamine hydro-
chloride, tripehennamine citrate, dechlorpheniramine maleate, brompheniramine maleate and chlorcycazine hydro-
chloride and mixtures thereof; wherein said antitussive drug is selected from dextromethorphan hydrobromide, carbetapentane citrate, codeine phosphate and codeine N-oxide hydrochloride and mixtures thereof; wherein said anticholinergic drug is selected from scopolamine hydrobromide, scopolamine hydrochloride, atropine sulfate, atro-
pine mucate, homatropine hydrobromide and homatropine hydrochloride and mixtures thereof; wherein said anti-
emetic or antinauseant drug is selected from cyclizine hydrochloride, meclizine hydrochloride, chlorpromazine hydrochloride and chlorpromazine maleate and mixtures thereof; wherein said anorexic drug is selected from ben-
zphetamine hydrochloride, phentermine hydrochloride, chlorphentermine hydrochloride and fenfluramine hydro-
chloride and mixtures thereof; wherein said antimicrobial drug is selected from β-lactam drugs, quinolone drugs, ciprofloxacin, norfloxacin, tetracycline, erythromycin, amikacin, tetracycline, doxycycline, capreomycin, chlorhexidine, chlorotetacycline, oxytetracycline, clindamycin, ethambutol, metronidazole, gentamicin, kanamycin, lineomycin, methacycline, methenamine, minocycline, neomycin, netilmicin, paromomycin, streptomycin, tobramy-
cin, miconazole and amanadine, pharmacetically-acceptable salts thereof and mixtures thereof; wherein said antiarhythmic drug is selected from propranolol hydrochloride, procainamide hydrochloride, quindine sulfate and quindine gluconate and mixtures thereof; wherein said antihypertensive drug is selected from the group consisting of enalapril maleate, cionidine hydrochloride, hydralazine hydrochloride and hydralazine sulfate and mixtures thereof; wherein said anesthetic or antipruritic drug is selected from lidocaine hydrochloride, bupivacaine hydrochlo-
ride, chlorprocaine hydrochloride, dibucaine hydrochloride, etidocaine hydrochloride, meipvacaine hydrochlo-
ride, tetracaine hydrochloride, diyclone hydrochloride and hexylcaine hydrochloride and mixtures thereof; wherein said bone-active drug is selected from 6-amino-1-hydroxy-hexane-1,1-diphosphonic acid, 3-amino-1-hydroxy-pro-
pane-1,1-diphosphonic acid, octahydro-1-pyridine-6,6-diphosphonic acid, 2-(2'-piperidinyl)-ethane-1,1-diphosphonic acid, 2-(3'-piperidinyl)-ethane-1,1-diphosphonic acid, 2-(2'-piperidinyl)-1-hydroxy-ethane-1,1-diphosphonic acid, 2-(3'-aminopropylidene)-1-hydroxy-ethane-1,1-diphosphonic acid; N-(2-(3'-methyl)-piperidinylidene)-amino-methane diphosphonic acid; N-(2-(1',3'-diazinylidene))-aminomethane diphosphonic acid; and N-(2-(3-methylpiperidinyl-
diene))-aminomethanephosphonemethylphosphonic acid, or esters thereof and mixtures thereof; and wherein said non-steroidal anti-inflammatory drug is selected from propionic acid derivatives, acetic acid derivatives, fenamic acid derivatives, biphenylcarboxylic acid derivatives, and oxazoles and mixtures thereof; preferably wherein said non-steroidal anti-inflammatory drug is a propionic acid derivatives selected from aspirin, acetaminophen, ibupro-
fen, naproxen, benoxaprofen, flurbiprofen, fenoprofen, fenbufen, ketoprofen, indoprofen, piroprofen, carprofen, oxaz-
prozin, pranoprofen, miproprofen, tioxaprofen, suprofen, alminoprofen, tiaprenolic acid, fluprofen and bucolic acid and mixtures thereof.

6. The composition of Claim 3 wherein said drug active is a sunless tanning agent selected from dihydroxyacetone, indole derivatives and mixtures thereof.

7. The composition of Claim 6 which further comprises a sunscreen active.

Patentansprüche

1. Topische, pharmazeutische Zusammensetzung mit verstärkerer Penetration durch die Haut, umfassend

(a) eine sichere und wirksame Menge eines pharmazeutischen Wirkstoffes; und
(b) 0.05 bis 5% eines nichtionischen, vernetzten Polyacrylamids mit einem Molekulargewicht von 1.000.000 bis 30.000.000; wobei die Zusammensetzung einen pH von unterhalb etwa 5 aufweist.

2. Zusammensetzung nach Anspruch 1, wobei das Polyacrylamid Monomerum umfaßt, gewählt aus Acrylamid und Methacrylamid, welche unsubstituiert oder substituiert sind mit mindestens einer Alkygruppe mit 1 bis 5 Kohlenstoffatomen, wobei vorzugsweise das Polyacrylamid Monomerum umfaßt, gewählt aus Acrylamid, Methacrylamid, N-Methylacrylamid, N-Methylmethacrylamid, N,N-Dimethylmethacrylamid, N-Isopropylacrylamid, N-Isopropylmethylacrylamid and N,N-Dimethylacrylamid, und wobei weiter vorzugsweise das Polyacrylamid ein Molekulargewicht von mehr als 1.500.000 aufweist.

Revendications

1. Composition pharmaceutique topique présentant une pénétration améliorée à travers la peau, comprenant:

 (a) une quantité sans danger et efficace d'une substance active pharmaceutique; et
 (b) de 0,05% à 5% d'un polyacrylamide réticulé non ionique possédant une masse moléculaire de 1 000 000 à 30 000 000;

 ladite composition ayant un pH inférieur à environ 5.

2. Composition selon la revendication 1, dans laquelle le polyacrylamide comprend des monomères choisis parmi l'acrylamide et le méthacrylamide, qui sont non substitués ou substitués par au moins un groupe alkyle comportant de 1 à 5 atomes de carbone, de préférence dans laquelle le polyacrylamide comprend des monomères choisis parmi l'acrylamide, le méthacrylamide, le N-méthylacrylamide, le N-méthylméthacrylamide, le N,N-diméthylacrylamide, le N-isopropylacrylamide, le N-isopropylméthacrylamide et le N,N-diméthylacrylamide, et mieux encore dans laquelle le polyacrylamide possède une masse moléculaire supérieure à 1 500 000.

3. Composition selon la revendication 2, dans laquelle ladite substance active pharmaceutique est choisie parmi les médicaments antiacnéiques, les médicaments anti-inflammatoires non stéroïdiens, les médicaments anti-inflammatoires stéroïdiens, les agents bronchants sans solvant, les agents écrans solaires, les agents de cicatrisation des plaies, les agents de blanchiment ou d'éclaircissement de la peau, les médicaments antihistaminiques, les médicaments antitussifs, les médicaments antiprurigines, les médicaments anticholinergiques, les médicaments antiténérites et antinausées, les médicaments anorexiques, les médicaments stimulant le système nerveux central, les médicaments antiarythmiques, les médicaments β-bloquants, les médicaments cardioïdiques, les médicaments antihypertenseurs, les médicaments diurétiques, les médicaments vasodilatateurs, les médicaments vasocostricteurs, les médicaments antiulcéreux, les médicaments anesthésiques, les médicaments antidépresseurs, les médicaments tranquillisants et sédatifs, les médicaments antipsychotiques, les médicaments antimicrobiens, les médicaments antinéoplasiques, les médicaments antipaludéens, les médicaments myorelaxants, les médicaments antispasmodiques, les médicaments anti diarrhéiques et les médicaments à activité osseuse, et leurs mélanges.

4. Composition selon la revendication 5, dans laquelle ladite substance active pharmaceutique est une substance active contre l'acné choisie parmi l'acide salicylique, le soufre, le résorcinol, la N-acétylcystéine, l'octépyrox, l'acide rétinoïque et ses dérivés, le peroxyde de benzoyl, l'érythromycine, la tetracycline, l'acide azélatique et ses dérivés, le phénométhanol et le phenoxypropanol, l'acétate d'éthyle, la clindamycine et la mélocycline, les flunitroïdes, l'acide lactique, l'acide glycolique, l'acide pyruvique, l'urée, le sulfate de symmol et ses dérivés, le désoxycholate et le cholate, et leurs mélanges.
5. Composition selon la revendication 3, dans laquelle ledit médicament antihistaminique est choisi parmi le maléate de chlorphéniramine, le tannate de chlorphéniramine, le chlorhydrate de tripolidine, l’oxalate detripolidine, le chlorhydrate de diphényhydradrine, l’ascorbate de diphényhydradrine, le citrate de diphényhydradrine, le succinate de doxylamine, le maléate de pyrilamine, le chlorhydrate de pyrilamine, le tannate de pyrilamine, le tartrate de phénindamine, le chlorhydrate de prométhazine, le chlorhydrate de cyproheptadine, le maléate d’azatadine, le fumarate de clémastine, le maléate de carboxamine, le chlorhydrate de carboxamine, le chlorhydrate de tripérimamine, le citrate de triprélimamine, le maléate de dexchlorphéniramine, le maléate de bromphéniramine et le chlorhydrate de chlorcyclizine, et leurs mélanges; dans laquelle ledit médicamente antitussif est choisi parmi le bromhydrate de dextrométhorphan, le citrate de carbépantane, le phosphate de codéine et le chlorhydrate de N-oxide de codéine, et leurs mélanges; dans laquelle ledit médicamente anticholinergique est choisi parmi le bromhydrate de scopalamine, le chlorhydrate de scopalamine, le sulfate d’atropine, le mucate d’atropine, le bromhydrate d’homatropine et le chlorhydrate d’homatropine, et leurs mélanges; dans laquelle ledit médicamente antiémétique ou antinauséux est choisi parmi le chlorhydrate de cyclizine, le chlorhydrate de médicéine, le chlorhydrate de chlopromazine et le maléate de chlopromazine, et leurs mélanges; dans laquelle ledit médicamente anorexique est choisi parmi le chlorhydrate de benzphétabine, le chlorhydrate de phentermine, le chlorhydrate de chlorphentermine et le chlorhydrate de fenfluramine, et leurs mélanges; dans laquelle ledit médicamente antimirotrope est choisi parmi lesβ-lactames, les quinolones, la ciprofloxacine, la norfloxacine, la tétracycline, l’erythromycine, l’amikicine, le triclosan, la doxycycline, la capromycine, la chlorhexidine, la chlortétracycline, l’oxytétracycline, la clindamycine, l’éthambutol, le métronidazole, la pentamidine, la gentamicine, la kanamycine, la linéomycine, la méthacycline, la méthénamine, la minocycline, la néomycine, la néflicicine, la paromycine, la streptomycine, la tobramycine, le miconazole et l’amantadine, leurs sels pharmaceutiquement acceptables, et leurs mélanges; dans laquelle ledit médicamente antirhumatismique est choisi parmi le chlorhydrate de piroxicam, le chlorhydrate de procaïnamide, le sulfate de quinine et le gluconate de quinine, et leurs mélanges; dans laquelle ledit médicamente anti-hypertenseur est choisi dans le groupe constitué par le maléate d’énaïpril, le chlorhydrate de clonidine, le chlorhydrate d’hydralazine et le sulfate d’hydralazine, et leurs mélanges; dans laquelle ledit médicamente anesthésique ou antiprurigine est choisi parmi le chlorhydrate de lidocaïne, le chlorhydrate de bupivacaïne, le chlorhydrate de chlorprocaïne, le chlorhydrate de dibucaine, le chlorhydrate d’étoïcaine, le chlorhydrate de mépivacaïne, le chlorhydrate de tétraïcaine, le chlorhydrate de dyclonine et le chlorhydrate d’hexyloïcaine, et leurs mélanges; dans laquelle ledit médicamente à activité osseuse est choisi parmi l’acide 6-amino-1-hydroxyhexane-1,1-diphosphonique, l’acide 3-amino-1-hydroxypropane-1,1-diphosphonique, l’acide octahydro-1-pyridine-6,6-diphosphonique, l’acide 2-(2’-pipéridinyléthane)-1,1-diphosphonique, l’acide 2-(3’-pipéridinyléthane)-1,1-diphosphonique, l’acide 2-(2’-pipéridinyléthane)-1,1-diphosphonique, l’acide 2-(3’-pipéridinyléthane)-1,1-diphosphonique, l’acide N-(2’-méthylpipéridiniuide)aminométhanodiphosphonique, l’acide N-(2’-(1’,3’-diacylnylidène)aminométhanodiphosphonique et l’acide N-(2’-(3-méthylpipéridiniuide)aminométhanodiphosphonique, ou leurs esters, et leurs mélanges; et dans laquelle ledit médicamente anti-inflammatoire non stéroïdien est choisi parmi les dérivés de l’acide propionique, les dérivés de l’acide acétique, les dérivés de l’acide fénamic, les dérivés de l’acide biphénylacétylique et les oxïcamps, et leurs mélanges; de préférence dans laquelle ledit médicamente anti-inflammatoire non stéroïdien est un dérivé de l’acide propionique choisi parmi l’aspirine, l’acétylsalicylique, l’ibuprofène, le naproxène, le lévoibuprofène, le flurbiprofène, le fenbufène, le ketoprofène, l’indoprofène, le pirprofène, le carprofène, l’oxaprozine, le pranoprofène, le miroprofène, le tioxaprofène, le suprofène, l’alminoprofène, l’acide tiaprofénique, le fluprostène et l’acide bocloxylique, et leurs mélanges.

6. Composition selon la revendication 3, dans laquelle ledite substance active médicamenteuse est un agent de blanchiment sans soleil choisi parmi la dihydroxyacétone, les dérivés de l’indole, et leurs mélanges.

7. Composition selon la revendication 6, qui comprend en outre une substance active écran solaire.