EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 26.10.1998 Bulletin 1998/44

(21) Application number: 94100526.2

(22) Date of filing: 14.01.1994

(54) Photographic printing apparatus
Fotoprinter
Imprimante photographique

(84) Designated Contracting States:
CH DE FR GB IT LI

(30) Priority: 18.01.1993 JP 5726/93

(43) Date of publication of application: 27.07.1994 Bulletin 1994/30

(73) Proprietor: NORITSU KOKI CO., LTD.
Wakayama-shi, Wakayama (JP)

(72) Inventor: Kojima, Masayuki,
c/o Noritsu Koki Co., Ltd.
Wakayama (JP)

(74) Representative: Grüncker, Kinkeldey,
Stockmair & Schwanhäuser Anwaltssozietät
Maximilianstrasse 58
80538 München (DE)

(56) References cited:

 19 July 1989
- PATENT ABSTRACTS OF JAPAN vol. 16, no. 131 (P-1332) 3 April 1992 & JP-A-03 293 652 (FUJI)
 25 December 1991

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

This invention relates to a photographic printing apparatus and more particularly to a reflecting member mounted in its light source unit for printing and exposure. Figs. 4A and 4B show conventional photographic printing apparatus. A light source unit used in such photographic printing apparatus has to have two functions, i.e., the function as a light source for a scanner unit for adjusting the intensity of light from the light source unit and the function as a light source for printing. The light source unit shown in Fig. 4A has a single light source that performs both of the functions, while the one shown in Fig. 4B has two light sources, each of which carry out the respective function.

The apparatus shown in Fig. 4A comprises a light source 1, light-modulating filters 2, a mirror tunnel 3, diffusers 4 provided in front and rear of the mirror tunnel 3, a negative mask 5, a lens 6 and a shutter 7. The image on a negative film NF is printed on paper P. The light from the light source passes through a hole 8 formed in the negative mask 5 into a scanner unit 9.

The apparatus shown in Fig. 4B has a scanner device provided separately from the printing apparatus. Each of the printing apparatus and the scanner device has its own light source 1s, mirror tunnel 3s and diffusers 4s. A carrier member K for feeding a negative film is formed with a hole 8s to guide light to a scanner unit 9s. Letter T indicates a loop tank for adjusting the feed rate of negative films.

Of these two conventional photographic printing apparatus, the former one having a single light source has a problem in that printing work has to be interrupted while the light source is being used for scanning, though there is no need to correct the negative information obtained by the scanner.

The latter printing apparatus having two light sources has a problem in that it is necessary to correct the negative information obtained by the scanner when printing, because the ray of light from the light source for printing and the ray from the light source for scanning differ from each other in various properties such as aging change and variations in the color components.

A photographic printing apparatus comprising a light source, a mirror tunnel, a diffuser, a lens, a shutter, and a scanner unit is described in EP-A-393661. Light is passed through the mirror tunnel and the film to a beam splitter unit. The reflected part is directed towards a scanner unit and the part passing through the beam splitter unit is directed via a lens and a shutter to a printing section.

It is the object of this invention to provide a photographic printing apparatus reducing the costs of the printing apparatus and improving the efficiency of printing work, making use of a single light source for exposure and scanning.

This subject is achieved with a photographic printing apparatus having the features of claim 1. Preferred embodiments are the subject matter of the dependent claims.

By providing the reflecting member, the light from the light source can be divided into a light beam for exposure and a light beam for scanning. More specifically, most part of the light from the light source is reflected by the reflecting member and guided into an ordinary light-modulating unit comprising light-modulating filters, diffusers and a mirror tunnel.

The remaining part of the light passes through the light-passing portion formed in the reflecting member and is directed into the scanner device, where various properties of the light such as the intensity of light and the rate of color tones are determined. The properties of light thus obtained are used to control the light-modulating device when printing. Thus, a single light source can be used both for exposure and scanning.

The reflecting mirror according to this invention is provided between the light source and the light-modulating device. By providing such a reflecting mirror, a single light source can be used for two purposes. This greatly improves the efficiency of printing work.

Other features and objects of the present invention will become apparent from the following description made with reference to the accompanying drawings, in which:

Fig. 1 is a schematic view showing the entire structure of the photographic printing apparatus of the embodiment;
Figs. 2A - 2D are views of reflecting mirrors of different type;
Fig. 3 is a view of the scanner filter unit; and
Figs. 4A and 4B are schematic views of conventional photographic printing apparatus.

Referring to Fig. 1, the photographic printing apparatus of this embodiment has its light source 1 arranged so that its optical axis is perpendicular to an optical axis that extends through light-modulating filters 2, a lens 6 and a shutter 7. The light from the light source 1 is bent by an angle of 90° by a reflecting mirror 10 provided in a light source box 1a.

The reflecting mirror 10 has a central light-passing portion 11. Part of the light around its optical axis passes through the light-passing portion 11 and is received by a scanner device 15. In the embodiment, the reflecting mirror 10 is inclined by an angle of 45° with respect to the optical axis of the light from the light source 1 so as to bend the light by 90°. But the angle of inclination of the reflecting mirror 10 is not limited to 45° but may be determined at any other value provided the light directed to the scanner device is separable by the reflecting mirror 10.

Figs. 2A and 2D show light-passing portions 11 of different shapes formed in the reflecting mirror 10. The light-passing portion shown in Fig. 2A comprises a single rectangular hole (such a hole may be of circular or
any other shape). Fig. 2B shows a light-passing portion in the form of a slit dividing the reflecting mirror into two separate parts. The one shown in Fig. 2C comprises a plurality of small holes while the one shown in Fig. 2D comprises a plurality of slits formed in the reflecting mirror.

Such a light-passing portion 11 may be formed by removing or thinning a corresponding part of the reflecting film vapor-deposited on the reflecting mirror or by actually forming a single hole or a plurality of holes or cutouts in the reflecting mirror.

The reflecting mirror of the embodiment may be replaced with a plate having its surface mirror-finished and made of a heat-resistant material such as plastic, a metal such as iron, stainless steel or aluminum, or ceramics.

Behind the reflecting mirror 10 is provided a mirror tunnel 13 having diffusers 14 at both ends thereof. It serves to direct the light from the light source 1 into a straight line to the scanner device 15, which comprises a scanner filter 16 carrying B (blue), G (green) and R (red) filters, a lens 17 and a photometric sensor 18. They are arranged along the optical axis.

As shown in Fig. 3, the scanner filter 16 comprises a rotary disk driven by a motor 19 and B-, G- and R-filter sections 16B, 16G and 16R mounted on the disk. A filter sensor 20 is provided along the outer periphery of the scanner filter 16 to detect the timing of passage of each filter section. The disk has a cutout 16X for detecting the angular position of the filter 16. The lens 17 is provided to improve the detecting accuracy of the photometric sensor 18.

A loop tank T is provided to adjust the length of the negative film NF being fed but it is not an essential part.

Now we will describe the printing operation carried out by use of the photographic printing apparatus of this embodiment.

The light emitted from the light source 1 is reflected by the reflecting mirror 10 and has its color tone modulated by the light-modulating filters 2. The light then enters through one diffuser 4 into the mirror tunnel 3, where it is diffused and mixed. The diffused and mixed light leaves the mirror tunnel 3 through the other diffuser 4 and is applied to each frame of the negative film NF supported on a negative mask 5, thus irradiating each frame uniformly over the entire surface thereof. The images on the negative films are thus printed on the paper P under the printing conditions determined by the lens 6 and the shutter 7. The operations described above are ordinarily practiced ones.

The light from the light source 1 is divided into a light beam for exposure and a light beam for scanning. Namely, the latter light beam passes through the light-passing portion 11 formed in the reflecting mirror 10 and then through the scanner filter 16 and is received by the photometric sensor 18. Every time the light passes through each of the B, G and R filter sections 16B, 16G and 16R of the scanner filter 16 which is rotating, the timing of passage of light through the respective filter section is detected by the filter sensor 20 so as to measure each component of the light that passes through the respective filter section, with the photometric sensor 18.

By determining the light amount for the components of the light that pass through the respective filter section, it is possible to detect the components of the entire light that passes through the negative film. The printing and exposure conditions are determined and controlled according to the measuring results for the components of the entire light thus detected.

According to this invention, in order to divide the light from the light source 1 into the light for exposure and the light for scanning, the reflecting mirror has a non-reflective portion. The shape and size of the non-reflective portion will have no influence on the amount of light for printing. This is because the light reflected by the reflecting mirror 10 is diffused and mixed while it passes through the diffuser 4 and the mirror tunnel 3 and thus the light is applied to the negative film uniformly over the entire surface thereof.

Claims

1. Photographic printing apparatus for printing images from frames of a film strip (NF), comprising:

 a light source (1), at least one filter (2), first and second mirror tunnels (3, 13), first diffusers (4) at both ends of the first mirror tunnel (3), second diffusers (14) at both ends of the second mirror tunnel (13), at least one lens (6), at least one shutter (7) and a scanner unit (15), said apparatus further comprising:

 a light reflecting member (10, 11) for reflecting part of the light from the light source (1) to pass through said at least one filter (2), the first mirror tunnel (3), the first diffusers (4), each one of said frames of said film strip (NF) in a printing position, said at least one lens (6), and said at least one shutter (7) so as to provide for each frame a printed image of said frame, said light reflecting member (10, 11) having a light passing portion (11) for passing the remaining part of the light from said light source (1) via said second mirror tunnel (13), said second diffusers (14) and the film strip towards said scanner unit (15), and

 a film strip feeding path for feeding the film strip from the scanning unit to the printing position, so that the components of the light passing through each frame of the film strip (NF) are detected by the scanner unit (15) and the printing and exposure conditions are determined before each frame reaches, due to the film strip feeding, the printing position.

2. Photographic printing apparatus as claimed in claim
Patentansprüche

1. Fotoprintvorrichtung zum Drucken von Bildern von Rahmen eines Filmstreifens (NF), die folgendes umfaßt:

eine Lichtquelle (1), wenigstens einen Filter (2), einen ersten und einen zweiten Spiegeltunnel (3, 13), erste Diffusoren (4) an beiden Enden des ersten Spiegeltunnels (3), zweite Diffusoren (14) an beiden Enden des zweiten Spiegeltunnels (13), wenigstens eine Linse (6), wenigstens eine Blende (7) und eine Scannereinheit (15), wobei die Vorrichtung weiterhin folgendes umfaßt:

ein lichtreflektierendes Element (10, 11) zum Reflektieren eines Teiles des Lichtes von der Lichtquelle (1), so daß es durch den wenigstens einen Filter (2), den ersten Spiegeltunnel (3), die ersten Diffusoren (4), durch jeden der Rahmen des Filmstreifens (NF) in einer Druckposition, die wenigstens eine Linse (6) und die wenigstens eine Blende (7) hindurchgeht, um für jeden Rahmen ein gedrucktes Bild dieses Rahmens bereitzustellen, wobei das lichtreflektierende Element (10, 11) einen lichtdurchlässenden Bereich (11) hat, um den restlichen Teil des Lichtes von der Lichtquelle (1) durch den zweiten Spiegeltunnel (13), die zweiten Diffusoren (14) und den Filmstreifen zu der Scannereinheit (15) hindurchzulassen, und

2. Fotoprintvorrichtung nach Anspruch 1, worin der lichtdurchlassende Bereich (11) ein Loch ist, das in dem lichtreflektierenden Element (10, 11) geboildet ist.

Revidierungen

1. Imprimante photographique pour imprimer des images à partir de vues d'un film fixe (NF), comprenant:

une source lumineuse (1), au moins un filtre (2), des premier et deuxième tunnels à miroirs (3, 13), des premiers diffuseurs (4) aux deux extrémités du premier tunnel à miroirs (3), des deuxième diffuseurs (14) aux deux extrémités du deuxième tunnel à miroirs (13), au moins une lentille (6), au moins un obturateur (7) et une unité de scanner (15), ladite imprimante comprenant en outre:

un élément réflecteur de lumière (10, 11) destiné à réfléchir une partie de la lumière émise par la source lumineuse (1) pour qu'elle passe à travers ledit au moins un filtre (2), le premier tunnel à miroirs (3), les premiers diffuseurs (4), chacune desdites vues dudit film fixe (NF) en position d'impression, ladite au moins une lentille (6), et ledit au moins un obturateur (7) de façon à produire pour chaque vue une image imprimée de ladite vue, ledit élément réflecteur de lumière (10, 11) ayant une partie de passage de lumière (11) pour laisser passer le reste de la lumière émise par ladite source lumineuse (1) via ledit deuxième tunnel à miroirs (13), lesdits deuxième diffuseurs (14) et le film fixe jusqu'à ladite unité de scanner (15); et un chemin d'avancement de film fixe pour faire avancer le film fixe de l'unité de scanner jusqu'à la position d'impression, de façon que les composantes de la lumière passant à travers chaque vue du film fixe (NF) soient détectées par l'unité de scanner (15) et que les conditions d'impression et d'exposition soient déterminées avant que chaque vue atteigne, suite à l'avancement du film fixe, la position d'impression.

2. Imprimante photographique selon la revendication 1, dans laquelle ladite partie de passage de lumière (11) est un trou formé dans ledit élément réflecteur de lumière (10, 11).

3. Imprimante photographique selon la revendication
1. dans laquelle ladite partie de passage de lumière (11) dudit élément réflecteur de lumière (10, 11) est formée en enlevant partiellement ou en affinant un film réflecteur appliqué par dépôt en phase vapeur sur ledit élément réflecteur de lumière.