Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
EP 0 603 401 B1

Description

TECHNICAL FIELD

[0001] The present invention relates to a novel methanediphosphonic acid derivative which inhibits actions of interleukin-1 that mediates pyrexia-inducing reactions, inflammation-inducing reactions, activates various blood cells and has bone destructive action, while simultaneously having an action to inhibit active oxygen that cause cell damage and fat denaturation, as well as an action to inhibit bone destruction during osteoporosis and chronic articular rheumatism.

BACKGROUND ART

[0002] Many of the diphosphonic acid compounds that have been developed mainly as drugs for treatment of bone metabolic diseases thus far have an action to inhibit bone destruction, and have been expected to inhibit bone destruction during the occurrence of arthritis such as chronic articular rheumatism. Although compounds having a diphosphonic acid structure are disclosed in Japanese Unexamined Patent Publication (Kokai) No. 59-42395, Japanese Unexamined Patent Publication (Kokai) No. 2-22285, Japanese Unexamined Patent Publication (Kokai) No. 3-77894 and Japanese Unexamined Patent Publication (Kokai) No. 60-174792, these diphosphonic acid compounds are primarily focused on inhibition of bone resorption. Although these compounds are effective as therapeutic drugs for bone metabolic disorders, they are still not adequate for treatment of chronic articular rheumatism.

[0003] WO 86/00902 describes compounds of formula (For.) in which R₁ is a straight or branched, saturated or unsaturated aliphatic or alicyclic C₁-C₁₀ hydrocarbon radical, an aryl or an aryl-C₁-C₆-alkyl radical, R₂ if desired being unsubstituted or substituted with straight or branched C₁-C₄-alkyl, amino, C₁-C₄-alkylamino, di-(C₁-C₄-alkyl)-amino, carboxy, C₁-C₄-alkoxyarylcarboxylic acid, hydroxy, C₁-C₄-alkoxy, phenoxy, mercapto, C₁-C₄-alkylthio, phenylthio, halogen, trifluoromethyl; R₂ stands for hydrogen, C₁-C₈-alkyl, aryl-C₁-C₄-alkyl or halogen; X is O or S and n is an integer from 0 to 2; with the proviso that R₂ cannot be hydrogen or methyl if n=0 and R₁ is methyl. The compounds of WO 86/00902 are valuable in the human and veterinary practice.

[0004] In order for diphosphonic acid compounds to be used in the treatment of chronic articular rheumatism and so forth, a new drug is desired that, in addition to having an action to inhibit bone resorption, also has other, more effective actions, including inhibition of Interleukin-1 (abbreviated as IL-1), which is a mediator of inflammations, as well as inhibition of cell damage caused by activated neutrophils and macrophages.

[0005] IL-1 is known to be a mediator involved in pyrexia and inflammation, and its inhibitory agent is expected to be useful as antiinflammatory drugs. However, similar to many other cytokines, IL-1 is considered to mainly act locally. Although numerous substances have been reported to inhibit IL-1 in vitro, antiinflammatory drugs having action that allows adequate improvement of the disease state by actually inhibiting IL-1 in vivo have not yet been developed. In addition, invasion of activated neutrophils and macrophages at the site of inflammation have been observed during inflammations. Although the active oxygen produced by these blood cells has an action of heterogenous digestion, in cases where an inflammation has become chronic, these cells are known to damage normal tissue as well. Thus, compounds having both an IL-1 inhibiting action and antioxidative action are considered to be useful as not only antiinflammatory drugs, but also against autoimmune diseases such as chronic articular rheumatism, as well as organ disorders, such as those in the brain and liver, which occur during ischemia.

DISCLOSURE OF THE INVENTION

[0006] The present inventors conducted research on diphosphonic acid compounds that demonstrate excellent antiinflammatory action, by giving to a diphosphonic acid derivatives not only action as therapeutic drugs for treatment of...
bone metabolic diseases, but also IL-1 inhibitory action and antioxidative action. During the course of this research, it was found that, if a naphthalene skeleton is given to a phosphonic acid structure, IL-1 inhibitory action and antioxidative action are provided that are not found in existing drugs.

The object of the present invention is to provide a useful, novel compound having an action to inhibit Interleukin-1, antioxidative action, and an action to inhibit bone destruction.

Namely, in one aspect the present invention relates to the use, for the preparation of a medicament for effecting inhibition of Interleukin-1 production, of methane diphosphonic acid derivatives shown in general formula (I'):

![Chemical Structure](image)

(wherein, X' and Y' represent substituent groups on the naphthyl group, and represent a halogen atom, nitro group, nitrile group, alkyl group, alkoxy group, trifluoromethyl group, the group:

(wherein \(Z^1 \) and \(Z^2 \) represent independently hydrogen atom or alkyl group, or \(Z^1 \) and \(Z^2 \) together may form a ring composed of carbon atoms or a ring composed of carbon atoms and hetero atom), the group:

(wherein \(Z^1 \) and \(Z^2 \) are the same as above, and \(Z^3 \) represents oxygen or sulfur), thiol group, hydroxyl group, alkylthio group, arylthio group, acyloxy group, acylamino group, acylthio group, acyl group, alkenyl group, aryl group, cycloalkyl group, COOH group or COO-alkyl group; \(m \) represents an integer of 0 to 3, \(n \) represents an integer of 0 to 4, and each \(X' \) of the \((X')^n \) and each \(Y' \) of the \((Y')^n \) may be either identical or different; \(- \) represents a double bond or single bond; \(A' \) is \(-(CH_2)a-(D)b-(CH_2)c-\) (wherein \(D \) is sulfur, oxygen, NH, alkyl-substituted N, or \(CH_2 \), \(a \) and \(c \) are integers of 0 to 10 and \(b \) is 0 or 1), or \(-(CH=CH)d-CH=\) (wherein \(d \) is an integer of 0 to 2, and \(B' \) does not exist when \(A' \) represents \(-(CH=CH)d-CH=\)); \(B' \) represents a hydrogen atom, alkyl group, amino group, monoalkylamino group, dialkylamino group, acylamino group, hydroxyl group, alkoxy group, trialkylsiloxy group or acyloxy group; and \(R_1, R_2, R_3 \) and \(R_4 \) are hydrogen atom, straight or branched chain alkyl group having 1 to 7 carbon atoms, or pharmacologically acceptable cation, and may be identical or different). In further aspects the invention provides a methane diphosphonic acid derivative as defined in claim 2 hereof, a process for producing such derivatives and pharmaceutical compositions containing such derivatives as active ingredient. In other aspects the invention further provides uses of these compounds for the preparation of medicaments for treating inflammatory disorders, rheumatic diseases, bone metabolic diseases, inhibition of bone resorption and for providing an antioxidant action.

DETAILED DESCRIPTION

In the case of an unsubstituted naphthyl group, a 1-naphthyl group or 2-naphthyl group is represented. In the case of a naphthyl group having 1 or more substituent groups, a 1-naphthyl group having substituent group(s) at the 2 to 8 positions, or a 2-naphthyl group having substituent group(s) at the 1 position or 3 to 8 positions, is represented.
In the case the naphthyl group has substituent group(s), preferable location(s) of the substituent group(s) are the 2 and/or 4 positions when substituted with X and the 5 and/or 6 and/or 8 positions when substituted with Y, in the case of a 1-naphthyl group; and the 1 and/or 4 positions when substituted with X and the 5 and/or 6 and/or 8 positions when substituted with Y, in the case of the 2-naphthyl group. Those halogen atoms used as substituent groups X and Y are fluorine, chlorine, bromine and iodine. Alkyl group (alkyl group indicated hereinafter also has the same meaning) is straight or branched chain alkyl group having 1 to 7 carbon atoms, and for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, hexyl, cyclohexyl group etc. Alkoxy group is those having 1 to 7 carbon atoms, for example, methoxy, ethoxy, propoxy, isoproxy, butoxy group etc. Examples of the group:

(wherein the alkyl groups of Z₁ and Z₂ are the same as described above) include amino, methylamino, ethylamino, propylamino, butylamino, dimethylamino, diethylamino, pyrrolidino, piperidino, morpholino, thiomorpholino group etc. Examples of the group:

(wherein Z₁, Z₂, and Z₃ are the same as described above) include carbamoyl, thiocarbamoyl, N-methylaminocarbonyl, N,N-dimethylaminocarbonyl, piperidinocarbonyl, pyrrolidinocarbonyl, morpholinocarbonyl group etc. Examples of alkylthio group (wherein the alkyl moiety is the same as the alkyl group described above) include methylthio, ethylthio, propylthio, isopropylthio, cyclopentylthio, cyclohexylthio group etc. Arylthio group is preferably those having 6 to 15 carbon atoms, examples of which include phenylthio, substituted phenylthio groups etc. The acyl (group) of acyloxy, acylamino, acylthio and acyl groups is straight or branched chain group having 2 to 7 carbon atoms, examples of which include acetyl, propanoyl, butanoyl groups etc. Alkenyl group is straight or branched alkenyl group having 2 to 7 carbon atoms, examples of which include vinyl, allyl, 2-propenyl, isopropenyl, butenyl, pentenyl groups etc. Aryl group is preferably those having 6 to 15 carbon atoms, examples of which include phenyl, substituted phenyl, naphthyl groups etc. Cycloalkyl group is those having 3 to 8 carbon atoms, examples of which include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl groups etc. Examples of COO alkyl group (wherein the alkyl moiety is the same as the alkyl group previously described) include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl groups etc.

[0010] In the case where A is -(CH₂)ₐ-(D)ₐ-(CH₂)ₐ-, and _ represents a single bond, D is sulfur, oxygen, NH, alkyl-substituted N (wherein alkyl is a straight or branched chain alkyl group having 1 to 7 carbon atoms) or CH₂; a and c are integers of 0 to 10, and b is 0 or 1 (provided that a = c = 0 when b = 0). However, more preferably, a, b and c are independently 0 or 1.

[0011] Alternatively, in the case where A is -(CH=CH)d-CH═, _ is a double bond, d is an integer of 0 to 2 and B does not exist.

[0012] Moreover, in the case where B is other than hydrogen atom and an alkyl group, and D is CH₂ and b is an integer other than 1, those compounds wherein c = 0 are not preferable since they are chemically unstable. However, even in this case, those compounds wherein a = b = c = 0 are preferable because they are stable.

[0013] Particularly preferable specific examples include those in which A is S, O, NH, CHₐ, CH₂S, CH₂O, CH₂NH, CH₂CH₂S, SCH₂, SCH₂CH₂S, SCH₂CH₂CH₂S, OCH₂ and NHCH₂. In addition, those compounds wherein the naphthyl group is directly bonded to the carbon atom of the methane diphosphonic acid without through the A (namely, the case wherein a = b = c = 0) are also included.

[0014] Alkyl moiety in the cases wherein B is an alkyl group, monoalkylamino group, dialkylamino group, alkoxy group and trialkylsiloxo group is the same as the alkyl group described above, and the acyl moiety of acylamino and acyloxy groups is the same as the acyl groups described above.

[0015] Typical examples of the alkyl group of R¹, R², R³ and R⁴ include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, penty1 groups and the like.

[0016] In the case where R¹, R², R³ and R⁴ are hydrogen atoms, the phosphonic acid moiety of formula (I) can form a salt with inorganic or organic base. Pharmacologically allowed cations in this case refer to metal cations and ammo-
nium ions NR₄ (wherein R is the same as the alkyl group and hydrogen atom of R¹ to R⁴). Particularly preferable metal cations include cations of alkaline metals, such as lithium, sodium, potassium etc., as well as cations of alkaline earth metals, such as magnesium, calcium etc. However, the cation of other metals, such as aluminum, zinc, iron etc., are also included in the present invention. Examples of ammonium ions include ammonium ions of ammonia, primary amines, secondary amines and tertiary amines, as well as quaternary ammonium ions. Examples thereof include ammonium ions of ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, diisopropylamine, diisopropylnamine, butylamine, dibutylamine, isobutylamine, t-butylamine, monooethanolamine, diethanolamine, triethanolamine etc., as well as tetramethylammonium, tetraethylammonium ions etc. Cations of sodium, potassium, ammonia and alkylamines are particularly preferable. In addition, in R¹ to R⁴, the cations may be identical or different, and those containing a mixture of hydrogen atom and cation are also included in the present invention, examples of which include monocationic salts, dicationic salts and tricationic salts. The methane diphosphonic acid derivatives shown in the general formula (I) is preferably those wherein R¹ to R⁴ are all hydrogen atoms, those wherein three of R¹ to R⁴ are hydrogen atoms, while the other is sodium, those wherein three of R¹ to R⁴ are hydrogen atoms while the other is ammonium, those wherein two of R¹ to R⁴ are hydrogen atoms and the remaining two are sodium, or those wherein two of R¹ to R⁴ are hydrogen atoms while the remaining two are ammonium. [0017] The methane diphosphonic acid derivatives of the present invention can be produced by a process resembling a known process in said field. For example, one of the methane diphosphonic acid derivatives of formula (I) of the present invention (in the case where B is a hydrogen atom) can be produced by the process indicated by the following reaction formula:
(wherein X, Y, m and n are the same as previously described), and A is the same as previously defined) to form compound (VI). Examples of naphthyl-A group introducing agents that are used include halogen compounds such as naphthyl-$(CH_2)a-(D)b-(CH_2)c$-halogen, naphthyl-$(CH_2)a$-S-halogen, etc., or a disulfide of [naphthyl-$(CH_2)a$-S]$_2$ (wherein D, a, b and c are the same as described above).

[0019] The reaction temperature and reaction time vary according to the reagents used. For example, the reaction temperature is between -78°C and the boiling point of a solvent or solvent mixture, and the reaction time is from 10 minutes to several days.

[0020] An example of another synthetic process for a derivative of the methane diphosphonic acid of the general formula (I) is shown by the following reaction formula:

\begin{align*}
R’: & \text{ Lower alkyl} \\
\text{(II)} & \rightarrow \text{(VII)} \\
\text{(VIII)} & \rightarrow \\
\text{(IX)} & \rightarrow \\
\text{(X)} & \rightarrow \\
\text{(XI)} & \rightarrow \\
\text{(XII)} & \rightarrow \\
\text{(XIII)} & \rightarrow \\
\text{(XIV)} & \rightarrow \\
\text{(XV)} & \rightarrow \\
\text{(XVI)} & \rightarrow \\
\text{(XVII)} & \rightarrow \\
\text{(XVIII)} & \rightarrow \\
\text{(XIX)} & \rightarrow \\
\text{(XX)} & \rightarrow \\
\text{(XXI)} & \rightarrow \\
\text{(XXII)} & \rightarrow \\
\text{(XXIII)} & \rightarrow \\
\text{(XXIV)} & \rightarrow \\
\text{(XXV)} & \rightarrow \\
\text{(XXVI)} & \rightarrow \\
\text{(XXVII)} & \rightarrow \\
\text{(XXVIII)} & \rightarrow \\
\text{(XXIX)} & \rightarrow \\
\text{(XXX)} & \rightarrow \\
\text{(XXXI)} & \rightarrow \\
\text{(XXXII)} & \rightarrow \\
\text{(XXXIII)} & \rightarrow \\
\text{(XXXIV)} & \rightarrow \\
\text{(XXXV)} & \rightarrow \\
\text{(XXXVI)} & \rightarrow \\
\text{(XXXVII)} & \rightarrow \\
\text{(XXXVIII)} & \rightarrow \\
\text{(XXXIX)} & \rightarrow \\
\text{(XL)} & \rightarrow \\
\text{(XLI)} & \rightarrow \\
\text{(XLII)} & \rightarrow \\
\text{(XLIII)} & \rightarrow \\
\text{(XLIV)} & \rightarrow \\
\text{(XLV)} & \rightarrow \\
\text{(XLVI)} & \rightarrow \\
\text{(XLVII)} & \rightarrow \\
\text{(XLVIII)} & \rightarrow \\
\text{(XLIX)} & \rightarrow \\
\text{and the lower alkyl ester (II) of methane diphosphonic acid are reacted in as a condensation reaction in the presence of titanium tetrachloride and a tertiary amine such as N-methylmorpholine to obtain compound (VII). Moreover, the double bond that is formed is reduced to obtain compound (VIII). [0022] A methane diphosphonic acid derivative, wherein R^1 through R^4 are hydrogen atoms, can be obtained from a methane diphosphonic acid derivative wherein R^1 through R^4 are alkyl groups (phosphonic ester) by hydrolysis and so forth. For example, a phosphonic ester is hydrolyzed either by reacting with an acid such as hydrochloric acid, or}
treating with trimethylsilylbromide followed by water or alcohol. The methane diphosphonic acid thus obtained can be converted to one of salts thereof by a known process.

[0023] In addition, compounds wherein one to three of R1 through R4 are alkyl groups (partial esters of methane diphosphonic acid) obtained by partial hydrolysis of a methane diphosphonic ester or partial esterification of methane diphosphonic acid are also included in the present invention.

[0024] In addition, although the P=O bonds in the majority of the methane diphosphonic acid derivatives of the present invention exist in the keto form, there are cases wherein a portion of these bonds may exist in the enol form depending on the chemical properties of the compound itself, solvents and temperature. However, these compounds are also included in the compounds of the present invention.

[0025] In addition, in all the reactions, in the case where reactive substituent groups and reactive functional groups for reactions other than the desired reaction are contained, these substituent groups and functional groups must be protected in advance by reagents that allow them to be easily removed.

[0026] Those diseases at which compounds of the present invention are directed are inflammatory diseases, pain diseases, skin diseases, respiratory organ diseases, liver diseases, infections, autoimmune diseases, ischemic organ disorders and bone metabolic diseases. For example, the present invention provides a drug having excellent therapeutic and preventive activity against (chronic) articular rheumatism, rheumatoid polyarthritis, osteoarthritis, scapular periartthritis, neck-shoulder-arm syndrome, intervertebral disk disorders, lumbago, tendinitis and peritendinitis, arthrostitis, stiff and painful shoulder, fibrositis, muscle pain, neuralgia, gout, post-surgical and posttraumatic inflammation and swelling (antiinflammatory drugs, antiinflammatory drugs, antiarthritic drugs, analgesics and antipyretics), or psoriasis, asthma, pulmonary sarcoidosis, viral hepatitis, human immunodeficiency viral infections, protozoan infections, ischemic heart disease, ischemic encephalopathy, ischemic hepatitis, arteriosclerosis, osteoporosis, Paget's disease, Bechterew's disease, hypercalcemia and ectopic ossification (bone metabolic disease drugs).

[0027] In the case of using the novel methylene or methane diphosphonic acid derivatives of the present invention in the applications of the present invention listed above, said derivatives can be provided for use either as such is or in the form of pharmaceutical compositions mixed with known pharmacologically acceptable carriers, vehicles and so forth. Above-mentioned derivatives may either be given by oral administration in the form of tablets, capsules, powders, granules or pills, or by parenteral administration in the form of injections, syrups, ointments and suppositories. Although the dose varies according to the patient, administration route and symptoms, it is approximately 1 mg to 5 g, and preferably 1 mg to 2 g. This dose may given either orally or parenterally once or several times per 1 day, or once per 1 to 7 days.

Examples

[0028] A more concrete explanation of the present invention will now be provided with reference to the Examples.

Example 1: Tetraethyl 2-naphthylthiomethanediphosphonate(1)

[0029] Under an argon atmosphere, a solution of 10.09 g (35 mmol) of tetraethylmethanediphosphonate in dry tetrahydrofuran (100 ml) was cooled to -78°C, and then 22.01 ml (35 mmol) of a solution of n-butyl lithium in hexane [1.59 mol/l] was added thereto, and the mixture was stirred for 30 minutes. Next, a solution of 11.15 g (35 mmol) of 2,2'-dinaphthyl disulfide in dry tetrahydrofuran (75 ml) was added to the mixture, which was then warmed to room temperature, and then stirred for 16 hours. The resulting mixture was poured into ice water and neutralized with 6N hydrochloric acid, and then extracted with ethyl acetate (3 x 150 ml). The organic layer was washed with water and saturated saline and then dried over anhydrous magnesium sulfate. Next, the solvent was distilled off under reduced pressure, and the resulting residue was purified by column chromatography (developing solvent - ethanol:ethyl acetate = 5:95) to obtain 8.82 g of the title compound as a colorless oil. The yield was 57%.
Example 2: 2-naphthylthiomethane diphosphonic acid (2)

Under an argon atmosphere, to a solution of 8.04 g (18 mmol) of tetraethyl 2-naphthylthiomethane-diphosphonate obtained in Example 1 in dry methylene chloride (100 ml) was added dropwise 27.56 g (180 mmol) of trimethylsilyl bromide at room temperature and then the mixture was stirred at room temperature for 72 hours. After the solvent and the excess trimethylsilyl bromide were distilled off under reduced pressure, the resulting residue was dissolved in a mixed solvent of water:methanol = 5:95, and the solution was heated to reflux for 30 minutes, and the solvent was again distilled off under reduced pressure. The resulting residue was crystallized from acetone/methylene chloride and the obtained crystals were recrystallized from the same solvent to obtain the title compound as white crystals. The yield was 86%.

m.p.: 218.5 - 219.5°C (dec)

1H-NMR (CD3OD) [ppm]: 3.51 (t, J=21Hz, 1H), 7.42 - 7.51 (m, 2H), 7.65 - 7.70 (m, 1H), 7.74 - 7.87 (m, 3H), 8.10 - 8.12 (m, 1H)

IR (KBr) [cm⁻¹]: 2926, 1657, 1638, 1620, 1151, 973, 812

MASS (FAB) m/z: 335 (M+H)⁺

EA (as C11H12O6P2S)

Example 3: Tetraethyl 6-methoxy-2-naphthylthiomethanediphosphonate (3)

(a) 6,6'-Dimethoxy-2,2'-dinaphthyl disulfide
Under an argon atmosphere, a solution of 10.00 g (28.5 mmol) of 6,6'-dihydroxy-2,2'-dinaphthyl disulfide in dry dimethylformamide (250 ml) was cooled to -23°C, and then 3.42 g (85.5 mmol) of sodium hydride (60% dispersion in mineral oil) was slowly added thereto, and the mixture was stirred until the generation of hydrogen ceased. 12.14 g (85.5 mmol) of methyl iodide was added to the mixture, which was then allowed to stand at room temperature and stirred for 2 hours. The resulting mixture was poured into ice water, and extracted with ethyl acetate (3 x 150 ml). The organic layer was washed with water and saturated saline and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The obtained crystals were recrystallized from ethyl acetate/petroleum ether to obtain 9.92 g of 6,6'-dimethoxy-2,2'-dinaphthyl sulfide as orange crystals. The yield was 92%.

m.p.: 125 - 126°C

1H-NMR (CDCl₃) [ppm]: 3.89 (s, 6H), 7.00 - 7.25 (m, 4H), 7.45 - 7.75 (m, 6H), 7.85 - 7.95 (m, 2H)

(b) Tetraethyl 6-methoxy-2-naphthylthiomethanediphosphonate

Following the same method as described in Example 1, from 10.09 g (35 mmol) of tetraethyl methanediphosphonate and 13.25 g (35 mmol) of 6,6'-dimethoxy-2,2'-dinaphthyl disulfide was obtained 11.34 g of the title compound as a pale yellow oil. The yield was 68%.

1H-NMR (CDCl₃) [ppm]: 1.33 (t, J=7Hz, 6H), 1.35 (t, J=7Hz, 6H), 3.48 (t, J=22Hz, 1H), 3.91 (s, 3H), 4.00 - 4.45 (m, 8H), 7.00 - 7.30 (m, 2H), 7.50 - 7.80 (m, 3H), 8.00 - 8.10 (m, 1H)

IR (KBr) [cm⁻¹]: 2984, 2936, 2910, 1628, 1593, 1390, 1259, 1214, 1023, 975

MASS (FAB) m/z: 477 (M+H)⁺

EA (as C₂₀H₃₀O₇P₂S)

Calculated (%): C 50.42 H 6.36
Found (%): C 50.65 H 6.42

Example 4: 6-Methoxy-2-naphthylthiomethanediphosphonic acid (4)

[0034]

Following the same method described as in Example 2, 7.15 g (15 mmol) of tetraethyl 6-methoxy-2-naphthylthiomethanediphosphonate obtained in Example 3 in dry methylene chloride was treated with trimethylsilyl bromide, and then hydrolyzed to obtain 4.21 g of the title compound as white crystals. The yield was 77%.

m.p.: 234 - 235°C (dec)

1H-NMR (CD₃OD) [ppm]: 3.37 (t, J=21Hz, 1H), 3.90 (s, 3H), 7.12 - 7.23 (m, 2H), 7.65 - 7.75 (m, 3H), 8.05 - 8.09 (m, 1H)

IR (KBr) [cm⁻¹]: 2920, 1628, 1466, 1214, 1125, 994, 924, 911

MASS (FAB) m/z: 365 (M+H)⁺

EA (as C₁₂H₁₄O₇P₂S)

Calculated (%): C 39.57 H 3.88
Found (%): C 39.55 H 3.79
Example 5: Tetraethyl 6-hydroxy-2-naphthylthiomethanediphosphonate (5)

(a) 6,6'-Di(t-butyldimethylsiloxy)-2,2'-dinaphthyl disulfide

Under an argon atmosphere, a solution of 10.00 g (28.5 mmol) of 6,6'-di(hydroxy-2,2'dinaphthyl disulfide and 9.70 g (140 mmol) of imidazole in dimethylformamide (150 ml) was cooled to 0°C, and a solution of 12.89 g (85.5 mmol) of t-butyldimethylchlorosilane in dry dimethylformamide (50 ml) was added thereto, and the mixture was warmed to room temperature and then stirred for 3 hours. The resulting mixture was poured into ice water, and extracted with ethyl acetate (3 x 150 ml). The organic layer was washed with water and saturated saline and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The obtained residue was purified by column chromatography (developing solvent - ethyl acetate:n-hexane = 5:95) to obtain the title disulfide compound as a pale yellow oil. The yield was 99%.

1H-NMR (CDCl_3) [ppm]: 0.23 (s, 6H), 1.00 (s, 9H), 6.95 - 7.20 (m, 2H), 7.45 - 7.70 (m, 3H), 7.85 - 7.95 (m, 1H)

(b) Tetraethyl 6-hydroxy-2-naphthylthiomethanediphosphonate

Following the same method as described in Example 1, a reaction between 10.09 g (35 mmol) of tetraethyl methanediphosphonate and 13.25 g (35 mmol) of 6,6'-di(t-butyldimethylsiloxy)-2,2'-dinaphthyl disulfide was carried out. After evaporation of the solvent of the reaction mixture, the resulting residue was dissolved in a mixed solvent of 6N hydrochloric acid:methanol = 1:20, heated at 50°C for 30 minutes, and the solvent was again distilled off under reduced pressure. The obtained residue was purified by column chromatography (developing solvent - ethanol:ethyl acetate = 5:95) to obtain 10.02 g of the title compound as a pale yellow oil which slowly crystallized. The yield was 62%.

m.p.: 85.5 - 86.5°C
1H-NMR(CDCl_3) [ppm]: 1.35 (t, J=7Hz, 12H), 3.50 (t, J=22Hz, 1H), 4.05 - 4.65 (m, 8H), 6.95 - 7.20 (m, 2H), 7.25 - 7.70 (m, 3H), 7.90 - 8.05 (m, 1H), 8.95 (brs, 1H)
IR (KBr) [cm⁻¹]: 3148, 2984, 1626, 1392, 1232, 1212, 1027
MASS (FAB) m/z: 463 (M+H)⁺
EA (as C_{19}H_{28}O_{7}P_{2}S)

Example 6: 6-Hydroxy-2-naphthylthiomethanediphosphonic acid (6)

Following the same method as in Example 2, 7.15 g (15 mmol) of the tetraethyl 6-hydroxy-2-naphthylthiomethanedi-
anediphosphonate obtained in Example 5 was treated with trimethylsilyl bromide, and then hydrolyzed to obtain 4.21 g of the title compound as white crystals. The yield was 75%.

m.p.: 210-211°C

1H-NMR (D$_2$O) [ppm]: 3.51 (t, J=20Hz, 1H), 7.02 - 7.13 (m, 2H), 7.48 - 7.55 (m, 1H), 7.55 - 7.62 (m, 1H), 7.63 - 7.69 (m, 1H), 7.90 - 7.97 (m, 1H)

IR (KBr) [cm$^{-1}$]: 3570, 3164, 1636, 1506, 1135, 1046, 939, 919

MASS (FAB) m/z: 351 (M+H)$^+$

EA (as C$_{11}$H$_{12}$O$_7$P$_2$S)

Example 7: Tetraethyl 1-naphthylthiomethanediphosphonate (7)

(a) 1,1'-dinaphthyl disulfide

Under an argon atmosphere, to a solution of 22.67 g (100.0 mmol) of 1-naphthalenesulfonyl chloride in dry methylene chloride (250 ml) was slowly added 100.0 g (500.0 mmol) of iodotrimethylsilane, and the mixture was stirred for 6 hours. The resulting mixture was poured into an saturated aqueous solution of sodium bicarbonate, and extracted with methylene chloride (3 x 150 ml). The organic layer was washed with a saturated aqueous solution of sodium thiosulfate until the iodine coloring disappeared, and further washed with water and saturated saline, and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the obtained crystals were recrystallized from ethyl acetate/n-hexane to obtain 12.43 g of the title compound as pale yellow crystals. The yield was 78%.

m.p.: 85-86°C

1H-NMR (CDCl$_3$) [ppm]: 7.15 - 8.00 (m, 12H), 8.20 - 8.45 (m, 2H)

(b) Tetraethyl 1-naphthylthiomethanediphosphonate

Following the same method as described in Example 1, from 10.09 g (35 mmol) of tetraethyl methanediphosphonate and 11.15 g (35 mmol) of 1,1'-dinaphthyl disulfide was obtained 9.38 g of the title compound as a pale yellow oil. The yield was 60%.

H-NMR (CDCl$_3$) [ppm]: 1.30 (t, J=7Hz, 12H), 3.55 (t, J=21Hz, 1H), 3.95 - 4.45 (m, 8H), 7.30 - 7.75 (m, 3H), 7.75 - 8.10 (m, 3H), 8.55 - 8.75 (m, 1H)

IR (KBr) [cm$^{-1}$]: 3434, 2984, 2934, 2910, 1506, 1444, 1255, 1164, 1098, 1013, 971

MASS (FAB) m/z: 447 (M+H)$^+$

EA (as C$_{19}$H$_{28}$O$_6$P$_2$S)

Calculated (%)	Found (%)
C 37.73 | C 37.80
H 3.46 | H 3.55
Example 8: 1-Naphthylthiomethanediphosphonic acid (8)

[0040]

Following the same method as described in Example 2, 6.70 g (15 mmol) of tetraethyl 1-naphthylthiomethane-diphosphonate was treated with trimethylsilyl bromide, and then hydrolyzed to obtain 3.92 g of the title compound as white crystals. The yield was 78%.

m.p.: 241-242°C (dec)

1H-NMR (CD$_3$OD) [ppm]: 3.45 (t, $J=21$Hz, 1H), 7.30 - 7.70 (m, 3H), 7.75 - 8.10 (m, 3H), 8.60 - 8.80 (m, 1H)

IR (KBr) [cm$^{-1}$]: 2910, 2892, 1506, 1185, 1141, 1006, 932

MASS (FAB) m/z: 335 (M+H)$^+$

EA (as C$_{11}$H$_{12}$O$_6$P$_2$S)

Example 9: Tetraethyl 2-[3-methoxy-4-hydroxy-1-naphthyl]ethenylidene-1,1-diphosphonate

[0042]

[0043] Under an argon atmosphere, 55 ml of dry tetrahydrofuran was cooled to 0°C, and a solution of 20.49 g (108 mmol) of titanium tetrachloride in dry methylene chloride (15 ml) was slowly added dropwise thereto over a period of 15 minutes. To the resulting mixture were added a solution of 15.57 g (54 mmol) of tetraethyl methanediphosphonate in dry tetrahydrofuran (40 ml) and a solution of 10.92 g (54 mmol) of 3-methoxy-4-hydroxy-1-naphthaldehyde in dry tetrahydrofuran (40 ml), and the mixture was stirred for 10 minutes. After stirring, a solution of 21.85 g (216 mmol) of N-methylmorpholine in dry tetrahydrofuran (40 ml) was slowly added dropwise thereto over a period of 30 minutes so as to maintain the temperature below 5°C. The resulting mixture was stirred for 30 minutes and then warmed to room temperature and stirred for 5 hours. The reaction mixture was poured into ice water and extracted with ethyl acetate (3 x 150 ml). The organic layer was successively washed with a saturated aqueous solution of sodium bicarbonate, with water and with saturated saline, and then dried over anhydrous magnesium sulfate, after which the solvent was
distilled off under reduced pressure. The obtained residue was purified by column chromatography (developing solvent - ethanol:ethyl acetate = 5:95), and then recrystallized from mixed solvent of ethyl acetate/diethyl ether, to obtain 18.37 g of the title compound as yellow crystals. The yield was 72%.

\[\text{m.p.: 115.5 - 116.5}^\circ \text{C} \]

\[^1\text{H-NMR (CD}_3\text{Cl)} \text{[ppm]: 1.02 (t, J=7Hz, 6H), 1.42 (t, J=7Hz, 6H), 3.30 - 4.50 (m, 8H), 4.04 (s, 3H), 6.90 (brs, 1H), 7.30 - 7.65 (m, 2H), 7.70 - 7.95 (m, 1H), 8.10 - 8.35 (m, 1H), 8.20 (s, 1H), 8.35 (dd, J=24.46Hz, 1H) } \]

\[\text{IR (KBr) [cm}^{-1}]: 3190, 2990, 1553, 1363, 1247, 1226, 1036, 996 \]

\[\text{MASS (FAB) m/z: 473 (M+H)}^+ \]

\[\text{EA (as C}_{21}\text{H}_{30}\text{O}_{8}\text{P}_{2}) \]

Example 10: 2-(3-Methoxy-4-hydroxy-1-naphthyl)ethenylidene-1,1-diphosphonic acid

Following the same method as described in Example 2, 9.45 g (20 mmol) of the tetraethyl 2-[3-methoxy-4-hydroxy-1-naphthyl]ethenylidene-1,1-diphosphonate obtained in Example 9 was treated with trimethylsilyl bromide, and then hydrolysis was effected to obtain 4.97 g of the title compound as yellow crystals. The yield was 69%.

\[\text{m.p.: 123-124}^\circ \text{C (dec)} \]

\[^1\text{H-NMR (CD}_{3}\text{OD)} \text{[ppm]: 4.01 (s, 3H), 7.37 - 7.52 (m, 2H), 7.85 - 7.93 (m, 1H), 8.12 (s, 1H), 8.15 - 8.23 (m, 1H), 8.73 (dd, J=28.46Hz, 1H) } \]

\[\text{IR (KBr) [cm}^{-1}]: 3450, 1603, 1574, 1363, 1125, 1058, 1009 \]

\[\text{MASS (FAB) m/z: 361 (M+H)}^+ \]

\[\text{EA (as C}_{13}\text{H}_{14}\text{O}_{8}\text{P}_{2}) \]

Calculated (%)

| C 53.39 | H 6.41 |

Found (%)

| C 53.33 | H 6.50 |

Calculated (%)

| C 43.35 | H 3.93 |

Found (%)

| C 43.20 | H 3.82 |
Example 11: Tetraethyl 2-[3-methoxy-4-hydroxy-1-naphthyl]ethane-1,1-diphosphonate

[0046]

![Chemical Structure Image]

[0047] Under an argon atmosphere, to a solution of 8.50 g (18 mmol) of the tetraethyl 2-[3-methoxy-4-hydroxy-1-naphthyl]ethene-1,1-diphosphonate obtained in Example 9 in dry tetrahydrofuran (120 ml) was slowly added 2.72 g (72 mmol) of sodium borohydride. The resulting mixture was warmed to 50°C and stirred for 30 minutes. Next, the mixture was cooled to 0°C, a saturated aqueous solution of ammonium chloride was added thereto until hydrogen was no longer evolved, and the mixture was neutralized with IN hydrochloric acid, and then extracted with ethyl acetate (3 x 150 ml). The organic layer was successively washed with a saturated aqueous solution of sodium bicarbonate, with water and with saturated saline, and then dried over anhydrous magnesium sulfate, after which the solvent was distilled off under reduced pressure. The obtained residue was purified by column chromatography (developing solvent - ethanol:ethyl acetate = 5:95), to obtain 8.28 g of the title compound as a pale yellow oil. The yield was 98%.

1H-NMR (CD3Cl) [ppm]: 1.22 (t, J=7Hz, 6H), 1.24 (t, J=7Hz, 6H), 2.87 (tt, J=6.23Hz, 1H), 3.70 - 4.50 (m, 8H), 3.71 (dt, J=6.16Hz, 2H), 3.95 (s, 3H), 6.60 (s, 1H), 7.30 - 7.57 (m, 2H), 7.35 (s, 1H), 7.95 - 8.05 (m, 1H), 8.05 - 8.15 (m, 1H)

IR (KBr) [cm⁻¹]: 3248, 2986, 1630, 1603, 1586, 1479, 1367, 1247, 1025, 975

MASS (FAB) m/z: 475 (M+H) +

EA (as C21H32O8P2)

| Calculated (%) | C 53.17 | H 6.81 |
| Found (%) | C 53.23 | H 6.96 |

Example 12: 2-[3-Methoxy-4-hydroxy-1-naphthyl]ethane-1,1-diphosphonic acid

[0048]

![Chemical Structure Image]

[0049] Following the same method as described in Example 2, 7.12 g (15 mmol) of the tetraethyl 2-[3-methoxy-4-hydroxy-1-naphthyl]ethane-1,1-diphosphonate obtained in Example 11 was treated with trimethylsilyl bromide, and
then hydrolysis was effected to obtain 3.64 g of the title compound as pale yellow crystals. The yield was 67%.

m.p.: 231-232°C (dec)

1H-NMR (CD$_3$OD) [ppm]: 2.68 (tt, J=6.23Hz, 1H), 3.65 (dt, J=6.16Hz, 2H), 3.96 (s, 3H), 7.33 - 7.40 (m, 2H), 7.42 (s, 1H), 8.04 - 8.11 (m, 1H), 8.11 - 8.18 (m, 1H)

IR (KBr) [cm$^{-1}$]: 3324, 2906, 1638, 1475, 1402, 1278, 1176, 1033

MASS (FAB) m/z: 363 (M+H)$^+$

EA (as C$_{13}$H$_{16}$O$_8$P$_2$)

Example 13: Tetraethyl 2-[3-methylthio-4-hydroxy-1-naphthyl] ethenylidene-1,1-diphosphonate

[0050]

Following the same method as described in Example 9, from 14.42 g (50 mmol) of tetraethyl methanediphosphonate and 10.91 g (50 mmol) of 3-methylthio-4-hydroxy-1-naphthaldehyde was obtained 18.32 g of the title compound as yellow crystals. The yield was 75%.

m.p.: 106-107°C

1H-NMR (CD$_3$Cl) [ppm]: 1.03 (t, J=7Hz, 6H), 1.45 (t, J=7Hz, 6H), 2.43 (s, 3H), 3.70 - 4.50 (m, 8H), 7.50 (s, 1H), 7.50 - 7.70 (m, 2H), 7.70 - 7.90 (m, 1H), 8.14 (s, 1H), 8.20 - 8.45 (m, 1H), 8.80 (dd, J=28.46Hz, 1H)

IR (KBr) [cm$^{-1}$]: 2990, 1568, 1396, 1313, 1251, 1212, 1046, 982

MASS (FAB) m/z: 489 (M+H)$^+$

EA (as C$_{21}$H$_{30}$O$_7$P$_2$S)

Calculated (%) | C 51.64 H 6.20

Found (%) | C 51.55 H 6.33
Example 14: Tetraethyl 2-[3-methylthio-4-hydroxy-1-naphthyl]ethane-1,1-diphosphonate

[0052]

[0053] Following the same method as described in Example 11, 8.79 g (18 mmol) of tetraethyl 2-[3-methylthio-4-hydroxy-1-naphthyl]ethenylidene-1,1-diphosphonate was reduced using 2.72 g (72 mmol) of sodium borohydride to obtain 8.73 g of the title compound as a pale yellow oil. The yield was 99%.

1H-NMR (CD$_3$Cl) [ppm]: 1.22 (t, J=7Hz, 6H), 1.26 (t, J=7Hz, 6H), 2.37 (s, 3H), 2.82 (tt, J=6.23Hz, 1H), 3.65 (dt, J=6.16Hz, 2H), 3.80 - 4.35 (m, 8H), 7.23 (s, 1H), 7.35 - 7.70 (m, 2H), 7.55 (s, 1H), 7.93 - 8.18 (m, 1H), 8.18 - 8.42 (m, 1H)

IR (KBr) [cm$^{-1}$]: 3216, 2986, 2928, 1572, 1450, 1388, 1249, 1019, 975

MASS (FAB) m/z: 491 (M+H)$^+$

EA (as C$_{21}$H$_{32}$O$_7$P$_2$S)

Example 15: 2-[3-Methylthio-4-hydroxy-1-naphthyl]ethane-1,1-diphosphonic acid

[0054]

[0055] Following the same method as described in Example 2, 7.36 g (15 mmol) of tetraethyl 2-[3-methylthio-4-hydroxy-1-naphthyl]ethenylidene-1,1-diphosphonate was treated with trimethylsilyl bromide, and then hydrolysis was effected to obtain 4.03 g of the title compound as pale yellow crystals. The yield was 71%.

m.p.: 195-196°C (dec)

1H-NMR (CD$_3$OD) [ppm]: 2.39 (s, 3H), 2.68 (tt, J=6.23Hz, 1H), 3.63 (dt, J=6.16Hz, 2H), 7.35 - 7.70 (m, 2H), 7.57 (s, 1H), 8.00 - 8.40 (m, 2H)

IR (KBr) [cm$^{-1}$]: 3386, 1578, 1392, 1276, 1210, 1162, 1079, 1013

MASS (FAB) m/z: 379 (M+H)$^+$
Example 16: Adjuvant arthritis test

When a tubercle bacillus adjuvant is injected into rats, multiple arthritis, similar to human chronic articular-rheumatism, is induced. The anti-inflammatory, anti-rheumatic and bone metabolism-improving effects of the compounds of the present invention were investigated according to the following procedure using this adjuvant arthritis model.

0.1 mg of dry, dead tubercle bacilli (Mycobacterium butyricum) cells was suspended in 0.1 ml of liquid paraffin, and intracutaneously injected into the left hind paw of 7-week-old female Lewis rats. The compounds obtained in the Examples were dissolved in sterilized distilled water, and subcutaneously administered at a proportion of 20 mg per kilogram of weight for 2 consecutive weeks, from the 8th to the 21st day after injection of the adjuvant. During that time, the volumes of the left and right paws of the rats were measured plethysmographically, and edema density was calculated according to the following equation.

Edema density =

\[
\frac{[\text{Paw volume (ml) on day 16, 17 or 21} - \text{paw volume (ml) on day 7}]}{[\text{Paw volume (ml) on day 7}]} \times 100
\]

Furthermore, inhibition rate of edema was determined according to the following equation, and are shown in Table 1.

\[
\text{Inhibition rate of edema} = \frac{[\text{Edema density of control group} - \text{edema density of compound-administered group}]}{[\text{Edema density of control group}]} \times 100
\]

The rats were sacrificed on day 22, and soft X-ray radiographs were taken of the left and right hind legs. The degree of osteoclasia at 5 locations on the left and right hind legs was evaluated based on the soft X-ray radiographs and assigned points from a system of 5 grades, and the total thereof was used as the osteoclasia rating. Furthermore, the inhibition rate of osteoclasia were calculated according to the following equation, and are shown in Table 1.

\[
\text{Inhibition rate of osteoclasia} = \frac{[\text{Average osteoclasia rating of control group} - \text{average osteoclasia rating of compound-administered group}]}{[\text{Average osteoclasia rating of control group}]} \times 100
\]

The obtained results were indicated with

| Calculated (%) | C 41.28 | H 4.27 |
| Found (%) | C 41.33 | H 4.38 |
As is clear from Table 1, foot edema and osteoclasia due to primary and secondary inflammation of adjuvant arthritis were suppressed by administration of the compounds according to the present invention.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Number of cases</th>
<th>Inhibition rate of edema with respect to control group (%)</th>
<th>Inhibition rate of osteoclasia with respect to control group (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>16th or 17th day</td>
<td>21th day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Compound of Example 2</td>
<td>6</td>
<td>76.8***</td>
<td>35.2**</td>
</tr>
<tr>
<td>Compound of Example 4</td>
<td>6</td>
<td>80.0***</td>
<td>40.8**</td>
</tr>
<tr>
<td>Compound of Example 6</td>
<td>6</td>
<td>85.6***</td>
<td>31.8*</td>
</tr>
</tbody>
</table>

The measurement of foot edema was made on the 17th and 21st days for the compounds in Examples 2 and 4, and on the 16th and 21st days for the compound in Example 6.

Example 17: Effect against production of IL-1 by mouse macrophage cell line J774-1

Macrophages, one type of lymphocytes, ingest invading microorganisms, blood cell fragments, etc., present antigens to B cells, and release active oxygen to digest foreign bodies, as a foreign body-removal mechanism. At this time the macrophages release a number of cytokines, including IL-1 which causes fever, inflammation, chondroclasia, osteoclasia, activation of leukocytes, damage to vascular endothelial cells, etc., and is also known to exhibit various effects by inducing the production of other cytokines.

Mouse macrophage cell line J774-1 is selected from cells exhibiting high production of IL-1, and it is known to produce IL-1 when stimulated by LPS. With this cell line, the inhibitory effects to IL-1 production of the compounds according to the present invention were determined by the following procedure.

J774-1 cells were cultured in an RPMI-1640 culture medium containing 10% fetal calf serum and 50 μM of 2-mercaptoethanol, and prepared to a cell concentration of 2 x 10^6 cells/ml. The cell suspension was distributed into a 24-well plate to 1 ml per well, and cultured for 30 minutes. LPS was then added thereto to a final concentration of 1 μg/ml, and at the same time the compounds obtained in the Examples dissolved in sterilized distilled water were added to a concentration of 100 μM. After 24 hours' culturing at 37°C in a 5% CO₂ environment, the supernatant was recovered, centrifuged to remove the cell fragments, etc., and then passed through a 0.22 μm filter for sterilization.

The measurement of IL-1 activity was made by measuring the proliferation of thymocytes in male C3H/He J mice. In fact, 4 to 6-week-old male C3H/He J mouse was used, and the thymus was taken. The thymus was dissociated in an RPMI-1640 culture medium containing 10% fetal calf serum and 50 μM of 2-mercaptoethanol, and a cell suspension was prepared to a concentration of 2 x 10^7 cells/ml. Phytohemagglutinin was added to the cell suspension to a final concentration of 1%, and this was used as the T cell suspension.

A two-fold serial dilution was made of the above obtained sample in a 96-well multiplate to a volume of 50 μl per well, and 50 μl of the T cell suspension was added to each well. The T cells were cultured for 72 hours, and the IL-1 activity was determined by the rate of cell proliferation. The cell proliferation was calculated using as the value of the absorbance at 570 nm of the pigment produced upon reduction of 3-[4,5-dimethylthiazoIe-2-yI]-2,5-diphenyltetrazolium bromide by the mitochondria of the viable cells, added at 4 hours prior to completion of the culturing, with 100% proliferation defined as the maximum proliferation of T cells induced by recombinant human IL-1, 0% defined as proliferation with no addition of IL-1, and the units of the sample defined as the degree of dilution of the sample which caused 50% proliferation of the T cells.

At this time, the inhibition rates of the compounds according to the present invention against IL-1 production by J774-1 cells stimulated with 1 μg/ml of LPS was calculated using the following equation. The results are shown in Table 2.
Example 18

Rabbit cartilage cells are separated from knee joint and cultured. When they are stimulated with IL-1, proteoglycan, the main constituent glycoprotein of cartilage cells, is degraded. Using this consequence as an index, the IL-1-inhibiting effects of the compounds according to the present invention were determined in the following manner.

Three-week-old male New Zealand white rabbits weighing 250 g - 300 g were sacrificed under diethyl ether anesthesia, and their knee joints were separated. The cartilaginous sections were cut out from the knee joint with a scalpel, and then immersed in CMF solution containing 0.14 M sodium chloride, 4 mM potassium chloride, 0.4 mM sodium dihydrogen phosphate, 12 mM sodium bicarbonate, 0.2 mM potassium dihydrogen phosphate and 11 mM glucose. The cartilage was placed in 0.1% EDTA and incubated at 37°C for 20 minutes. The supernatant was removed off, 0.15% trypsin was added to the mixture, and then that was incubated at 37°C for 60 minutes. The mixture was washed 3 times with CMF solution, and then placed in 0.1% EDTA and incubated at 37°C for 105 minutes.

The cartilage cells were isolated from the cartilaginous tissue fragments by pipetting and pushed through 120 μm nylon mesh, and then subjected to centrifugation at 4°C, 500 g for 7 minutes to obtain the cartilage cells. The cells were washed 3 times, and then suspended in Dulbecco MEM culture medium containing 10% fetal calf serum, to concentration of 1.2 x 10^5 cells/ml. The cells were distributed into a 48-well plate to 250 μl per well and cultured for 5 days until confluence. Then, the culture solution was exchanged with Dulbecco MEM medium containing 0.3% fetal calf serum. After the further incubation for 24 hours, 35S-labelled inorganic sulfuric acid was added to concentration of 185 kilobecquerels, and the incubation was continued for further 24 hours. The cells were washed 3 times with Dulbecco MEM medium, the culture medium was exchanged with a BGjb medium containing 0.1% bovine serum albumin, and recombinant human IL-1β was added to a concentration of 30 units/ml. At the same time, the compounds according to the present invention were dissolved in sterilized distilled water, and added to a final concentration of 100 μM. At 24 hours after IL-1 stimulation, the culture supernatant and the cell layer were collected.

To the digested cell layer solution were successively added 0.05 ml of 0.1 mg/ml chondroitin sulfate, 0.5 ml of 2 mM magnesium sulfate, 0.5 ml of a buffer solution (pH 7.8) containing 5 mM calcium chloride and 0.2 M Tris-HCl and 0.5 ml of a solution of 1% cetyl pyridinium chloride and 20 mM sodium chloride, and the proteoglycan which precipitated upon treatment at 37°C for 2 hours was harvested into a glass filter, a liquid scintillator was added thereto, and the count was made using a liquid scintillation counter.

To the culture supernatant were successively added 0.05 ml of 0.1 mg/ml chondroitin sulfate, 0.5 ml of 2 mM magnesium sulfate, 0.5 ml of a buffer solution (pH 7.8) containing 5 mM calcium chloride and 0.2 M Tris-HCl and 0.5 ml of a solution of 1% cetyl pyridinium chloride and 20 mM sodium chloride, and the proteoglycan which precipitated upon treatment at 37°C for 2 hours was harvested into a glass filter, a liquid scintillator was added thereto, and the count was made using a liquid scintillation counter.

The level of significance was P<0.01 with respect to the non-stimulated control group and with "***" in cases where the level of significance was P<0.01 with respect to the IL-1-stimulated control group. As shown in Table 3, the compounds according to the present invention inhibited the degradation of proteoglycan from the IL-1-stimulated cell layer, and are thus effective as IL-1-inhibiting agents.
Example 19

[0073] Neutrophils are known to ingest foreign bodies for their removal and to produce active oxygen and digestive enzymes, as a biological defense mechanism. However, during chronic inflammation, etc., the active oxygen and digestive enzymes produced by neutrophils also damage normal tissue, and are thought to further reinforce inflammation. Here, the effects of the compounds according to the present invention against the release of active oxygen from neutrophils were determined in the following manner.

[0074] Using 3.8% sodium citrate as an anticoagulant, 50 ml of blood was taken from a human vein. The blood was mixed with the same volume of a solution of 2% dextran and physiological saline, and the mixture was shaken several times and then allowed to stand at 37°C for 30 minutes. The upper layer was separated off and overlaid onto the same volume of a Ficoll-Paque solution. The precipitate resulting from 30-minutes' centrifugation at 20°C, 1400 rpm was taken, the cells were resuspended in Hanks' balanced salt solution, centrifugation was performed at 20°C, 1000 rpm for 5 minutes, and the precipitated cells were washed. The contaminating erythrocytes were eliminated by subjection to osmotic shock, and finally the neutrophils were suspended in Hanks' balanced salt solution to a concentration of 1 x 10⁶ cells/ml. Of these neutrophils, 1 x 10⁵ cells were incubated at 37°C with 10⁻⁹ M of the stimulant, formyl-methionyl-leucyl-phenylalanine (fMLP), and at the same time the compounds according to the present invention were added thereto and the production of active oxygen was measured. For the measurement of the active oxygen, 2-methyl-6-phenyl-3,7-dihydroimidazo [1,2a]pyrazine-3-one (CLA) was reacted therewith resulting in excited carbonyl compounds, and utilizing the phenomenon whereby light is emitted at 380 nm during their transition to ground state, the maximum luminescence intensity was measured with a luminometer. The inhibition rate against active oxygen production was calculated according to the following equation. The results are shown in Table 4.

\[
\text{Active oxygen production inhibition rate} = \frac{\text{Maximum luminescence intensity of control group (RLU/sec) - maximum luminescence intensity of compound-treated group (RLU/sec)}}{\text{Maximum luminescence intensity of control group (RLU/sec)}} \times 100
\]

Example 20

[0075] In conditions of osteoporosis, it is thought that the balance between bone formation and bone resorption is lost, with bone resorption being accelerated. Bone resorption is thought to occur due to the activation and increase in the number of osteoclasts, and a model thereof is an experiment in which mouse osteocytes are planted on dentin slices, causing bone resorption due to the stimulation of active-type vitamin D₃. Using this model, the bone resorption-inhibiting effects of the compounds according to the present invention were determined.

[0076] The femurs and tibias were separated from 10 to 15-day-old ICR mice, and minced in an α-MEM culture medium containing 5% fetal calf serum, and an osteoclast suspension was prepared containing bone marrow cells and bone matrix. The large bone fragments were removed using a nylon mesh, and the viable cells were stained using...
trypan blue staining, while the osteoclasts were stained using tartaric acid-resistant acidic phosphatase staining, and a cell suspension was prepared which contained the osteoclasts at a proportion of about 0.05 - 0.1%. The dentin was cut to thicknesses of 150 μm using a low-speed rotating diamond cutter, and punched with a puncher to the size of wells of a 96-well plate. The dentin slices were placed in a 96-well plate, and the cell suspension prepared as described above was placed thereupon to a concentration of 500 osteoclasts per well. As a stimulant, 10 nM active-type vitamin D₃ was added thereto, and at the same time the preparations according to the present invention were added thereto to concentrations of 10 μM and 100 μM. The cells were cultured at 37°C in 10% CO₂ environment, and after 4 days' culture the resorption pits which formed on the dentin slices were stained with hematoxylin, and then observed under a microscope and counted. The rate of inhibition of resorption pit formation was calculated according to the following equation.

\[
\text{Inhibition rate} = \frac{\text{Number of resorption pits occurring in control group} - \text{Number of resorption pits occurring in compound group}}{\text{Number of resorption pits occurring in control group}} \times 100
\]

[0077] The results are shown in Table 5. The results were indicated with "*" in cases where, based on statistical calculation using the Student t-test, the level of significance was P<0.05 and with "**" in cases where the level of significance was P<0.01 with respect to the active-type vitamin D₃-stimulated control group.

<table>
<thead>
<tr>
<th></th>
<th>Inhibition rate with respect to control (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound of Example 2</td>
<td></td>
</tr>
<tr>
<td>10 μM</td>
<td>18.8±6.23</td>
</tr>
<tr>
<td>100 μM</td>
<td>92.1±0.43**</td>
</tr>
<tr>
<td>Compound of Example 4</td>
<td></td>
</tr>
<tr>
<td>10 μM</td>
<td>47.7±2.18*</td>
</tr>
<tr>
<td>100 μM</td>
<td>94.8±1.04**</td>
</tr>
<tr>
<td>Compound of Example 6</td>
<td></td>
</tr>
<tr>
<td>10 μM</td>
<td>30.6±12.5</td>
</tr>
<tr>
<td>100 μM</td>
<td>90.8±1.33**</td>
</tr>
</tbody>
</table>

[Industrial Applicability]

[0078] The compounds according to the present invention possess anti-IL-1, anti-oxidation and anti-bone resorption effects, etc. and are thus useful as anti-inflammatory agents, analgesics, antirheumatic agents, agents for bone metabolism disorders, agents for autoimmune diseases, agents for infections, agents for dermatologic diseases, antiallergic agents, antioxidants and therapies for ischemic organ damage.

Claims

1. Use, for the preparation of a medicament for effecting inhibition of Interleukin-1 production, of a compound comprising a methane diphosphonic acid derivative represented by the general formula (I'):
[wherein, X' and Y' are substituent groups on the naphthyl group, and are a halogen atom, nitro group, nitrile group, alkyl group, alkoxy group, trifluoromethyl group, the group:

\[
\begin{align*}
\left(Z_1 &\quad \text{and} \quad Z_2 \text{ are, independently of each other, a hydrogen atom or an alkyl group, or } Z_1 \text{ and } Z_2 \text{ may form} \\
&\quad \text{a ring comprising carbon atoms or a ring comprising carbon atoms and hetero atoms), the group:} \\
&\quad \text{the group:}
\end{align*}
\]

\[
\begin{align*}
&\quad \text{(in which } Z_1 \text{ and } Z_2 \text{ are as defined above, and } Z_3 \text{ is oxygen or sulfur), thiol group, hydroxyl group, alkylthio group,} \\
&\quad \text{aryloxy group, acylamino group, acylthio group, acyl group, alkenyl group, aryl group, cycloalkyl} \\
&\quad \text{group, COOH group or COO-alkyl group;}
\end{align*}
\]

\[
\begin{align*}
m \text{ represents zero or an integer of up to 3; } n \text{ represents zero or an integer of up to 4; and each } X \text{ of the } (X')_m \\
\text{and each } Y' \text{ of the } (Y')_n \text{ may be either identical to or different from one another; } ... \text{ represents a double bond or} \\
\text{single bond; } A' \text{ is } -\ (\text{CH}_2)_a - (D)_b - (\text{CH}_2)_c - (\text{wherein } D \text{ is sulfur, oxygen, NH, alkyl-substituted } N \text{ or } \text{CH}_2; 'a' \text{ and 'c'} \\
\text{are zero or integers of up to 10 and 'b' is 0 or } 1), \text{ or } - (\text{CH} = \text{C})_d - \text{CH} = (\text{wherein } d \text{ is zero or an integer of up to } 2, \\
\text{and } B' \text{ does not exist when } A' \text{ represents } - (\text{CH} = \text{C})_d - \text{CH} =), \\
&\quad B' \text{ is a hydrogen atom, alkyl group, amino group, monoalkylamino group, dialkylamino group, acylamino} \\
\text{group, alkoxycarbonyl group or acyloxycarbonyl group, and} \\
\text{each of } R_1, R_2, R_3 \text{ and } R_4 \text{ is hydrogen atom, straight or branched alkyl groups having } 1 \text{ to } 7 \text{ carbon atoms,} \\
\text{or a pharmacologically acceptable cation, and these may be identical to or different from one another}].
\]

2. A methanediphosphonic acid derivative represented by the general formula (I) :
[wherein X and Y are substituent groups on the naphthyl group;]

X represents a halogen atom, nitro group, nitrile group, alkyl group, alkoxy group, trifluoromethyl group, the group:

\[
\begin{align*}
\begin{array}{c}
\text{X} \\
\end{array}
\end{align*}
\]

(in which \(Z^1\) and \(Z^2\) are, independently of each other, a hydrogen atom or an alkyl group, or \(Z^1\) and \(Z^2\) may form a ring comprising carbon atoms or a ring comprising carbon atoms and hetero atoms), the group:

\[
\begin{align*}
\begin{array}{c}
\text{Z}^1 \\
\end{array}
\end{align*}
\]

(in which \(Z^1\) and \(Z^2\) are as defined above, and \(Z^3\) represents oxygen or sulfur), thiol group, alkylthio group, arythio group, acyloxy group, acylamino group, acylthio group, acyl group, alkenyl group, aryl group, cycloalkyl group, COOH group or COO-alkyl group;

Y is a halogen atom, nitro group, nitrile group, alkyl group, alkoxy group, trifluoromethyl group, the group:

\[
\begin{align*}
\begin{array}{c}
\text{Y} \\
\end{array}
\end{align*}
\]

(in which \(Z^1\) and \(Z^2\) are, independently of each other, a hydrogen atom or an alkyl group, or \(Z^1\) and \(Z^2\) may form a ring comprising carbon atoms or a ring comprising carbon atoms and hetero atoms), the group:

\[
\begin{align*}
\begin{array}{c}
\text{Z}^3 \\
\end{array}
\end{align*}
\]

(in which \(Z^1\) and \(Z^2\) are as defined above, and \(Z^3\) is oxygen or sulfur), thiol group, hydroxy group, alkylthio group, arythio group, acyloxy group, acylamino group, acylthio group, acyl group, alkenyl group, aryl group, cycloalkyl group, COOH group or COO-alkyl group;

\(m\) represents zero or an integer of up to 3; \(n\) represents zero or an integer of up to 4; and each \(X\) of the \((X)_m\) and each \(Y\) or the \((Y)_n\) may be either identical to or different from one another;
A is -(CH₂)ₐ-S-(CH₂)ₐ⁻ (wherein 'a' and 'b' are zero or integers up to 10;
B is a hydrogen atom, alkyl group, amino group, monoalkylamino group, dialkylamino group, acylamino
group, alkoxy group, trialkylsiloxy group or acyloxy group; and
each of R¹, R², R³ and R⁴ is a hydrogen atom, a straight or branched alkyl groups having L to 7 carbon
atoms, or a pharmacologically acceptable cation, and these may be identical to or different from one another).

3. Use, for the preparation of a medicament for treatment such as to provide an anti-oxidative action, of a compound
of the formula (I), given and defined in claim 2.

4. A process for producing a methane diphosphonic acid derivative according to claim 2, wherein a compound of the
formula (III):

$$\text{Hal} \rightarrow \text{A} \quad (\text{III})$$

(wherein Hal is a halogen, and X, Y, M, n and A are as defined in claim 2), or a compound of the formula (IV):

$$\begin{align*}
\text{(C₇H₇)}_a & - \text{S} - \text{S} - (\text{C₇H₇})_a \\
\text{(X)}_a & \quad \text{(Y)}_a \\
\text{(X)}_a & \quad \text{(Y)}_a
\end{align*} \\
(\text{IV})$$

(wherein X, Y, m, n and a are as defined in claim 2), is reacted with a diphosphonate compound of the general
formula (II):

$$\begin{align*}
\text{O} & \\
\text{H} & \quad \text{P} (\text{OR}^5)_2 \\
\text{H} & \quad \text{C} \quad \text{P} (\text{OR}^5)_2 \\
\text{O} & \quad \text{O}
\end{align*} \\
(\text{III})$$

(wherein each R⁵ is a straight or branched alkyl group having 1 to 7 carbon atoms, which is identical to or different
from each other R⁵), in the presence of a base to obtain a methane diphosphonic acid derivative of formula (I).

5. A pharmaceutical composition comprising, as an active ingredient thereof, a methane diphosphonic acid derivative
according to claim 2.

6. A compound according to claim 2 for use as an antiinflammatory agent.

7. A compound according to claim 2 for use as an antirheumatic agent.

8. A compound according to claim 2 for the treatment of bone metabolic disease.

9. A compound according to claim 2 for use as a bone resorption inhibitor.
10. Use, for the preparation of a medicament for treating inflammatory diseases, of a compound according to claim 2.

11. Use, for the preparation of a medicament for treating rheumatic diseases, of a compound according to claim 2.

12. Use, for the preparation of a medicament for treating bone metabolic diseases, of a compound according to claim 2.

13. Use, for the preparation of a medicament for effecting inhibition of bone resorption, of a compound according to claim 2.

Patentansprüche

1. Verwendung einer Verbindung zur Herstellung eines Medikaments zur Hemmung der Interleukin I Produktion, die ein Methandiphosphonsäurederivat mit der allgemeinen Formel (I'), umfaßt:

\[
\begin{align*}
\text{R}^1\text{O} & \quad \text{O} \\
\text{R}^2\text{O} & \quad \text{O} \\
\text{P} & \quad \text{C} \\
\text{P} & \quad \text{OR}^3 \\
\text{OR}^4 & \quad \text{A}' \\
(Y)'_n & \quad \text{-(X)'}_m
\end{align*}
\]

[worin \(\text{X}' \) und \(\text{Y}' \) Substituentengruppen an der Naphthylgruppe sind, und ein Halogenatom, eine Nitrogruppe, Nitrilgruppe, Alkygruppe, Alkoxygruppe, Trifluormethylgruppe, die Gruppe:

\[
\begin{align*}
-\text{N} & \quad \text{Z}^1 \\
\text{Z}^2 & \quad \text{-}
\end{align*}
\]

(in der \(\text{Z}^1 \) und \(\text{Z}^2 \), unabhängig voneinander, ein Wasserstoffatom oder eine Alkygruppe sind, oder \(\text{Z}^1 \) und \(\text{Z}^2 \) einen Ring, bestehend aus Kohlenstoffatomen, oder einen Ring, bestehend aus Kohlenstoffatomen und Heteroatomen, bilden können), die Gruppe:

\[
\begin{align*}
\text{Z}^3 & \quad \text{-} \\
\text{Z}^1 & \quad \text{C} \\
\text{Z}^2 & \quad \text{-N}
\end{align*}
\]

(in welcher \(\text{Z}^1 \) und \(\text{Z}^2 \) wie oben definiert sind und \(\text{Z}^3 \) Sauerstoff oder Schwefel ist), Thiolgruppe, Hydroxygruppe, Alkythiogruppe, Arylthiogruppe, Acyloxygruppe, Acylinogruppe, Acylaminogruppe, Alkyaminogruppe, Arylgruppe, Cycloalkylgruppe, COOH-Gruppe, oder COO-Alkygruppe sind

\[\text{m}\] steht für Null oder eine ganze Zahl von bis zu 3; \[\text{n}\] steht für Null oder eine ganze Zahl von bis zu 4; und jedes \(\text{X}' \) von \((\text{X}')^m \) und jedes \(\text{Y}' \) von \((\text{Y}')^n \) kann sowohl identisch als auch unterschiedlich voneinander sein. \(-\) steht für eine Doppelbindung oder eine Einfachbindung; \(A' \) ist \(-(\text{CH}_2)^a-(\text{D})^b-(\text{CH}_2)^c- \) (worin \(\text{D} \) Schwefel, Sauerstoff, NH, alkylsubstituiertes N oder CH2 ist, \(a' \) und \(c' \) sind Null oder Zahlen von bis zu 10 und \(b' \) ist 0 oder 1), oder \(-\text{(CH=CH)}^d-\text{CH=} \) (worin \(d \) für Null oder eine ganze Zahl von bis zu 2 steht und \(B' \) nicht existiert wenn \(A' \) für \(-\text{(CH=CH)}^d-\text{CH=} \) steht).

\(B' \) ist ein Wasserstoffatom, eine Alkygruppe, Aminogruppe, Monoalkylaminogruppe, Dialkylamino gruppe, Acylinogruppe, Alkoxygruppe, Trialkyilsiloxygruppe oder eine Acyloxygruppe, und jedes \(R^1 \), \(R^2 \), \(R^3 \) und \(R^4 \), die
Ein Methandiphosphonsäurederivat mit der allgemeinen Formel (I):

\[\text{(I)} \]

[Worin X und Y Substituentengruppen an der Naphthylgruppe sind; X steht für ein Halogenatom, Nitrogruppe, Nitrilgruppe, Alkylgruppe, Alkoxygruppe, Trifluormethylgruppe, die Gruppe:

\[\text{- N} \quad \text{Z}^1 \quad \text{Z}^2 \]

(in der Z1 und Z2, unabhängig voneinander, ein Wasserstoffatom oder eine Alkylgruppe sind, oder Z1 und Z2 einen Ring, bestehend aus Kohlenstoffatomen, oder einen Ring, bestehend aus Kohlenstoffatomen und Heteroatomen, bilden können) die Gruppe:

\[\text{- C} \quad \text{N} \quad \text{Z}^1 \quad \text{Z}^2 \]

(in welcher Z1 und Z2 wie oben definiert sind und Z3 für Sauerstoff oder Schwefel steht), Thiolgruppe, Alkylthio-gruppe, Arylthiogruppe, Acyloxygruppe, Acylaminogruppe, Acylthiogruppe, Acylgruppe, Alkenylgruppe, Arylgrup-
pe, Cycloalkylgruppe, COOH-Gruppe, oder COO-Alkylgruppe.

Y ist ein Halogenatom, Nitrogruppe, Nitrilgruppe, Alkylgruppe, Alkoxygruppe, Trifluormethylgruppe, die Grup-
pe:

\[\text{- N} \quad \text{Z}^1 \quad \text{Z}^2 \]

(in der Z1 und Z2, unabhängig voneinander, ein Wasserstoffatom oder eine Alkylgruppe sind, oder Z1 und Z2 einen Ring, bestehend aus Kohlenstoffatomen, oder einen Ring, bestehend aus Kohlenstoffatomen und Heteroatomen, bilden können) die Gruppe:
(in welcher Z₁ und Z₂ wie oben definiert sind und Z₃ für Sauerstoff oder Schwefel steht), Thiolgruppe, Hydroxygruppe, Alkylthiogruppe, Arylthiogruppe, Acyloxygruppe, Acylaminogruppe, Acylthiogruppe, Acylgruppe, Alkenyigruppe, Arylgruppe, Cycloalkylgruppe, COOH-Gruppe, oder COO-Alkylgruppe. m steht für Null oder eine ganze Zahl von bis zu 3; n steht für Null oder eine ganze Zahl von bis zu 4; und jedes X von (X)ₘ und jedes Y von (Y)ₙ kann sowohl identisch als auch unterschiedlich voneinander sein; A ist -(CH₂)ₐ-S-(CH₂)ₖ-(worin 'a' und 'b' Null oder ganze Zahlen von bis zu 10 sind); B ist ein Wasserstoffatom, eine Alkylgruppe, Aminogruppe, Monoalkylaminogruppe, Dialkylaminogruppe, Acylaminogruppe, Alkoxygruppe, Trialkysiloxygruppe oder eine Acyloxygruppe; und jedes R₁, R₂, R₃ und R₄, die jeweils identisch zueinander oder unterschiedlich voneinander sein können, ist ein Wasserstoffatom, eine gerad- oder verzweigkettige Alkylgruppe die 1 bis 7 Kohlenstoffatome hat oder ein pharmakologisch akzeptables Kation].

3. Anwendung einer Verbindung der Formel (I), gegeben und definiert in Anspruch 2, für die Herstellung eines Medikamentes zur Behandlung, um zum Beispiel antioxidative Wirkung bereitzustellen.

4. Ein Verfahren zur Herstellung eines Methandiphosphonsäurederivats gemäß Anspruch 2, worin eine Verbindung der Formel (III):

\[
\text{Hal-A} \quad \text{(III)}
\]

(worin Hal ein Halogen ist, und X, Y, M, n, und A wie in Anspruch 2 definiert sind) oder eine Verbindung der Formel (IV):

\[
\text{(CH₂)ₐ-S-S-(CH₂)ₖ} \quad \text{(IV)}
\]

(worin X, Y, m, n, und a wie in Anspruch 2 definiert sind) wird mit einer Diphosphonatverbindung der allgemeinen Formel (II):

\[
\text{(II)}
\]

(worin jedes R⁵ eine geradkettige oder verzweigkettige Alkylgruppe ist, die 1 bis 7 Kohlenstoffatome hat, und
identisch oder unterschiedlich von jedem anderen R⁵ sein kann), in Anwesenheit einer Base umgesetzt, um ein Methandiphosphonsäurederivat der Formel (1) zu erhalten.

5. Eine pharmazeutische Zusammensetzung welche als einen aktiven Inhaltsstoff ein Methandiphosphonsäurederivat gemäß Anspruch 2 umfaßt.

7. Eine Verbindung, gemäß Anspruch 2, zur Verwendung als Antirheumatikum.

9. Eine Verbindung, gemäß Anspruch 2, zur Verwendung als Hemmstoff für die Knochenresorption.

10. Anwendung einer Verbindung gemäß Anspruch 2, für die Herstellung eines Medikaments zur Behandlung entzündlicher Erkrankungen.

11. Anwendung einer Verbindung gemäß Anspruch 2, für die Herstellung eines Medikaments zur Behandlung rheumatischer Krankheiten.

12. Anwendung einer Verbindung gemäß Anspruch 2, für die Herstellung eines Medikaments zur Behandlung von Erkrankungen des Knochenstoffwechsels

Revendications

1. Utilisation, pour la préparation d’un médicament destiné à réaliser une inhibition de la production d’interleukine-1, d’un composé comprenant un dérivé d’acide méthanediphosphonique représenté par la formule générale (I')

![Chemical Structure](image)

(dans laquelle X' et Y' sont des groupes substituants sur le groupe naphtyle, et sont un atome d’halogène, un groupe nitro, un groupe nitrile, un groupe alkyle, un groupe alcoxy, un groupe trifluorométhyle, le groupe :

![Chemical Structure](image)

(dans lequel Z¹ et Z² sont, indépendamment l’un de l’autre, un atome d’hydrogène ou un groupe alkyle, ou Z¹ et Z² peuvent former un cycle comprenant des atomes de carbone ou un cycle comprenant des atomes de carbone
et des hétéroatomes), le groupe :

(dans lequel \(Z^1 \) et \(Z^2 \) sont tels que définis ci-dessus, et \(Z^3 \) est un oxygène ou un soufre), un groupe thiol, un groupe hydroxyde, un groupe alkylthio, un groupe arythio, un groupe acyloxy, un groupe acylamino, un groupe acylthio, un groupe acyle, un groupe alcényle, un groupe aryle, un groupe cycloalkyle, un groupe COOH ou un groupe COO-alkyle ;

\(m \) représente zéro ou un entier jusqu’à 3 ; \(n \) représente zéro ou un entier jusqu’à 4 ; et chaque \(X' \) des \((X')_m \) et chaque \(Y' \) des \((Y')_n \) peuvent être identiques ou différents ; \(\equiv \) représente une double liaison ou une liaison simple ; \(A' \) est \(-(CH_2)_a-(D)-(CH_2)_c-(\) où \(D \) est un soufre, un oxygène, NH, N substitué par un alkyle, ou CH, 'a' et 'c' valent zéro ou sont des entiers jusqu’à 10 et 'b' vaut 0 ou 1), ou \-(CH=CH)_d-CH=(\) où 'd' vaut zéro ou est un entier jusqu’à 2, et \(B' \) n’existe pas quand \(A' \) représente \-(CH=CH)_d-CH=,(\)

\(B' \) est un atome d'hydrogène, un groupe alkyle, un groupe aminos, un groupe monoalkylamino, un groupe dialkylamino, un groupe acylamino, un groupe acyloxy, un groupe trialkylsiloxy ou un groupe acyloxy, et chacun des \(R^1, R^2, R^3 \) et \(R^4 \) est un atome d'hydrogène, un groupe alkyle linéaire ou ramifié ayant 1 à 7 atomes de carbone, ou un cation pharmacologiquement acceptable, et ceux-ci peuvent être identiques ou différents].

2. Dérivé d’acide méthanediphosphonique représenté par la formule générale (I) :

[...]
(dans lequel Z_1 et Z_2 sont tels que définis ci-dessus, et Z_3 est un oxygène ou un soufre), un groupe thiol, un groupe alkylthio, un groupe arylthio, un groupe acyloxy, un groupe acylamino, un groupe acylthio, un groupe acyle, un groupe alcényle, un groupe aryle, un groupe cycloalkyle, un groupe COOH ou un groupe COO-alkyle ;

Y est un atome d'halogène, un groupe nitro, un groupe nitrile, un groupe alkyle, un groupe alcoxy, un groupe trifluorométhyle, le groupe :

(dans lequel Z_1 et Z_2 sont, indépendamment l'un de l'autre, un atome d'hydrogène ou un groupe alkyle, ou Z_1 et Z_2 peuvent former un cycle comprenant des atomes de carbone ou un cycle comprenant des atomes de carbone et des hétéroatomes), le groupe :

(dans lequel Z_1 et Z_2 sont tels que définis ci-dessus, et Z_3 représente un oxygène ou un soufre), un groupe thiol, un groupe hydroxy, un groupe alkylthio, un groupe arylthio, un groupe acyloxy, un groupe acylamino, un groupe acylthio, un groupe acyle, un groupe alcényle, un groupe aryle, un groupe cycloalkyle, un groupe COOH ou un groupe COO-alkyle ;

m représente zéro ou un entier jusqu'à 3 ; n représente zéro ou un entier jusqu'à 4 ; et chaque X des $(X)_m$ et chaque Y des $(Y)_n$ peuvent être identiques ou différents ;

A est $-(CH_2)_a-S-(CH_2)_b-$ (où a et b valent zéro ou sont des entiers jusqu'à 10 ;

B est un atome d'hydrogène, un groupe alkyle, un groupe amino, un groupe monoalkylamino, Un groupe dialkylamino, un groupe acylamino, un groupe acyloxy, un groupe trialkylsiloxy ou un groupe acyloxy ; et chacun des R^1, R^2, R^3 et R^4 est un atome d'hydrogène, un groupe alkyle linéaire ou ramifié ayant 1 à 7 atomes de carbone, ou un cation pharmacologiquement acceptable, et ceux-ci peuvent être identiques ou différents).

3. Utilisation, pour la préparation d'un médicament destiné à un traitement tel que celui permettant d'assurer une action antioxydante, d'un composé de formule (I), donnée et définie dans la revendication 2.

4. Procédé de production d'un dérivé d'acide méthanediphosphonique selon la revendication 2, dans lequel un composé de formule (III) :
(dans laquelle Hal est un halogène, et X, Y, m, n et A sont tels que définis dans la revendication 2), ou un composé de formule (IV) :

![Formula IV](image)

(dans laquelle X, Y, m, n et a sont tels que définis dans la revendication 2), est mis à réagir avec un composé diphosphonate de formule générale (II) :

![Formula II](image)

(dans laquelle chaque R⁵ est un groupe alkyle linéaire ou ramifié ayant 1 à 7 atomes de carbone, qui est identique à ou différent de chaque autre R⁵), en présence d'une base pour obtenir un dérivé d'acide méthanediphosphonique de formule (I) .

5. Composition pharmaceutique comprenant, en tant qu'ingrédient actif de celle-ci, un dérivé d'acide méthanediphosphonique selon la revendication 2.

6. Composé selon la revendication 2 destiné à être utilisé comme agent anti-inflammatoire.

7. Composé selon la revendication 2 destiné à être utilisé comme agent anti-rhumatismal.

8. Composé selon la revendication 2 destiné au traitement de maladies métaboliques ostéoporotiques.

9. Composé selon la revendication 2 destiné à être utilisé comme inhibiteur de résorption ostéoporotique.

10. Utilisation, pour la préparation d'un médicament destiné à traiter des maladies inflammatoires, d'un composé selon la revendication 2.

11. Utilisation, pour la préparation d'un médicament destiné à traiter des maladies rhumatismales, d'un composé selon la revendication 2.

12. Utilisation, pour la préparation d'un médicament destiné à traiter des maladies métaboliques ostéoporotiques, d'un composé selon la revendication 2.
13. Utilisation, pour la préparation d'un médicament destiné à réaliser une inhibition de la résorption osseuse, d'un composé selon la revendication 2.