EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 11.12.1996 Bulletin 1996/50
(21) Application number: 92917231.0
(22) Date of filing: 28.07.1992

(51) Int. Cl.6: B01J 37/20, C10G 49/02
(86) International application number: PCT/US92/06263
(87) International publication number: WO 93/02793 (18.02.1993 Gazette 1993/05)

(54) A METHOD OF PRESULFURIZING A CATALYST
VERFAHREN ZUR VORSULFIDIERUNG EINES KATALYSATORS
PROCEDÉ DE PRE-SULFURATION D'UN CATALYSATEUR

(84) Designated Contracting States: BE DE FR GB IT LU NL
(30) Priority: 30.07.1991 US 737630
(43) Date of publication of application: 25.05.1994 Bulletin 1994/21
(73) Proprietor: CRI INTERNATIONAL, INC. Houston, TX 77252-2463 (US)
(72) Inventors:
- SEAMANS, James, Dallas Woodlands, TX 77381 (US)
- ADAMS, Charles, Terrell Houston, TX 77079 (US)
- DOMINGUEZ, Wendy, Beth Rosenberg, TX 77471 (US)
- CHEN, Andrew, An-Ju Houston, TX 77077 (US)

(74) Representative: Cresswell, Thomas Anthony et al J.A. KEMP & CO. 14 South Square Gray’s Inn London WC1R 5LX (GB)

(56) References cited:
EP-A-0 064 429
US-A-4 177 136

Remarks:
The file contains technical information submitted after the application was filed and not included in this specification.

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention relates to a method of presulfurizing a metal oxide catalyst for use in hydrotreating and/or hydrocracking hydrocarbon feed stocks or in treating sulfur-containing effluent gas streams.

A hydrocracking catalyst is used to catalyze the hydrogenation of hydrocarbon feedstocks, and most particularly to hydrogenate particular components of the feed stock, such as sulfur-, nitrogen- and metals-containing organo-compounds and unsaturates. A hydrocracking catalyst is used to crack massive and complex petroleum derived molecules to provide smaller molecules with the concomitant addition of hydrogen to the molecules. A tail gas catalyst is used to catalyze the conversion of hazardous effluent gas streams to less harmful products, and most particularly to convert oxides of sulfur to hydrogen sulfide which can be recovered and readily converted to elemental sulfur.

Catalyst compositions for hydrotreating and/or hydrocracking or tail gas treating are well known and several are commercially available. Metal oxide catalysts which come within this definition include cobalt-molybdenum, nickel-tungsten, and nickel-molybdenum, supported usually on alumina, silica and silica-alumina, including zeolite, carriers. Also, transition element catalysts may be employed for these purposes. Catalysts comprising at least one element selected from V, Cr, Mn, Re, Co, Ni, Cu, Zn, Mo, W, Rh, Pd, Pt, Ag, Au, Cd, Sn, Sb, Bi and Te have been disclosed as suitable for these purposes.

For maximum effectiveness the metal oxide catalysts are converted at least in part to metal sulfides. The metal oxide catalysts can be sulfided in a reactor by contact at elevated temperatures with hydrogen sulfide or a sulfur-containing oil or feed stock. However, it is advantageous to the user to be supplied with presulfurized catalysts, that is metal oxide catalysts having sulfur incorporated therein. These presulfurized catalysts can be loaded into a reactor and brought up to reaction conditions in the presence of hydrogen causing the sulfur to react with hydrogen and the metal oxides thereby converting them into sulfides without any additional process steps being needed. These presulfurized catalysts provide an economic advantage to the plant operator and avoid many of the hazards such as flammability and toxicity, which are encountered when using hydrogen sulfide, liquid sulfides, polysulfides and/or mercaptans to sulfide the catalysts.

The use of high boiling oils, such as vacuum gas oils, and hydrocarbon solvents to aid the incorporation of sulfur into a catalyst is described in US-A-4,943,547.

Hydrotreating catalysts have been presulfurized by incorporating sulfur compounds into the porous catalyst prior to hydrotreating a hydrocarbon feedstock. For example, US-A-4,530,917 discloses a method of presulfurizing a hydrotreating catalyst with organic polysulfides.

US-A-4,117,136 discloses a method of catalyst presulfurizing wherein a catalyst is treated with elemental sulfur. Hydrogen is then used as a reducing agent to convert the elemental sulfur to hydrogen sulfide in situ.

Prior art ex-situ methods of presulfurizing supported metal oxide catalysts have suffered from excessive stripping of sulfur upon start-up of a hydrotreating reactor in the presence of a hydrocarbon feedstock. As a result of sulfur stripping, a decrease in catalyst activity or stability is observed.

The present invention provides a method of presulfurizing porous particles of a sulfidable catalyst containing at least one metal or metal oxide, which method comprises

(a) contacting said porous catalyst particles with elemental sulfur at a temperature such that said elemental sulfur is incorporated in the pores of said catalyst by sublimation and/or melting and at the same time or subsequently
(b) heating said catalyst particles at a temperature greater than 150°C in the presence of a hydrocarbon which is liquid at said temperature and which contains above 10% by weight of at least one hydrocarbon of at least 6 carbon atoms and containing at least one olefinic carbon-carbon double bond.

The method of the invention minimizes sulfur stripping upon start-up of a reactor and improves catalyst activity. The method provides a safe, stable, presulfurized hydrotreating and/or hydrocracking or tail gas treating catalyst, either fresh or regenerated, that can be started up rapidly.

In the method of the invention porous catalyst particles are contacted with elemental sulfur under conditions which cause the sulfur to be incorporated into the pores of the catalyst by sublimation, by melting or by a combination of both sublimation and melting. The sulfur-incorporated catalyst particles are contacted with a liquid olefin at elevated temperatures for times sufficient to cause the sulfur-incorporated catalyst particles to have enhanced resistance to sulfur stripping during startup in a hydrotreating and/or hydrocracking reactor in the presence of a hydrocarbon feedstock. When such olefinically treated presulfurized catalysts are used to tail gas treating, they can be started up more rapidly than conventional catalysts.

The mechanism by which the sulfur-incorporated catalyst becomes more resistant to sulfur stripping upon heating at elevated temperatures in the presence of the olefin is not known and will be referenced herein as "reaction" or "reacts" for lack of better terminology. In any event, the result of this mechanism can readily be determined without undue experimentation by measuring the resistance to sulfur stripping of catalysts subjected to differing tempera-
ture/time treatments with the olefin and without the olefin and measuring the resistance to sulfur stripping of the resulting catalysts. Catalysts produced in accordance with the invention have enhanced resistance to sulfur stripping. A suitable method for determining sulfur stripping resistance is described in Example 1, Part C below wherein acetone is used as a stripping agent.

The catalysts referred to herein as "sulfidizable metal oxide(s) catalysts" are in fact catalyst precursors, that is they are used as actual catalysts while in the sulfided form and not in the oxide form. While reference is made to metal oxide(s) catalysts, it should be understood that while the normal catalyst preparative techniques will produce metal oxide(s), it is possible to utilize special preparative techniques to produce the catalytic metals in a reduced form, such as the zero valent state. Since metals in the zero valent state will be sulfided as well as the oxides when subjected to sulfiding conditions, catalysts containing such sulfidizable metals even in reduced or zero valent states will be considered for the purposes of this invention as sulfidizable metal oxide(s) catalysts. Further, since the preparative technique of the invention can be applied to regenerated catalysts which may have the metal sulfide not completely converted to the oxides, "sulfidizable metal oxide(s) catalysts" also refers to these catalysts which have part of their metals in the sulfided state.

The catalyst is typically presulfurized by one of two methods. The first method comprises contacting the sulfidizable catalyst with elemental sulfur at a temperature such that said elemental sulfur is incorporated in the pores of said catalyst by sublimation and/or melting and subsequently heating the sulfur-incorporated catalyst in the presence of a liquid olefinic hydrocarbon at a temperature greater than 150 °C. The second method comprises contacting a sulfidizable metal oxide(s)-containing catalyst with a mixture of powdered elemental sulfur and a liquid olefinic hydrocarbon and heating the resultant mixture to a temperature above 150 °C. In this second method the heating rate is sufficiently slow for the sulfur to be incorporated into the pores of said catalyst by sublimation and/or melting before reaching the temperature at which the olefin reacts to make the sulfur more resistant to stripping.

In the preferred embodiment the porous catalyst particles are first contacted with elemental sulfur at a temperature such that the sulfur is incorporated into the catalyst by sublimation and/or melting. While the catalyst particles can be contacted with sulfur in the molten state, it is preferred to first mix the catalyst particles with powdered elemental sulfur and then heat the mixture to above the temperature at which sublimation of the sulfur occurs.

Generally the catalyst particles are heated in the presence of the powdered elemental sulfur at a temperature greater than 80 °C. Preferably this first sulfur impregnation step will be carried out at a temperature of from 90 °C to 130 °C or higher, say up to the boiling point of sulfur of about 445 °C. The lower temperature limit for sublimation/melting characteristics of sulfur under the specific conditions of impregnation, whereas the upper temperature limit is fixed primarily by economics, higher temperatures being more costly to produce as well as more difficult to work with.

In a preferred embodiment the catalyst and sulfur are heated together at a temperature of from 105 °C to 125 °C. Typically the catalyst and powdered sulfur are placed in a vibratory or rotary mixer and heated to the desired temperature for sufficient time to allow the sulfur to be incorporated into the pores of the catalyst. Times typically will range from 0.1 to 10 hours or longer.

The amounts of sulfur used will depend upon the amounts of catalytic metal present in the catalyst that needs to be converted to the sulfide. Typically the amount of sulfur used is determined on the basis of the stoichiometric amount of sulfur required to convert all of the metal in the catalyst to the sulfide form. For example a catalyst containing molybdenum would require two moles of sulfur to convert each mole of molybdenum to molybdenum disulfide, with similar determinations being made for other metals. On regenerated catalysts, existing sulfur levels may be factored into the calculations for the amounts of elemental sulfur required.

It has been found that the addition of presulfurizing sulfur in amounts down to 50 percent of the stoichiometric requirement results in catalysts having enhanced hydrodenitification activity, which is an important property of hydrotreating and first stage hydrocracking catalysts. Thus, the amount of presulfurizing sulfur used for incorporation into the catalyst will typically range from 0.5 to 1.5 times the stoichiometric amount, and preferably from 0.7 to 1.2 times the stoichiometric amount.

For hydrotreating/hydrocracking and tail gas treating catalysts containing Group VII B and/or Group VIII metals the amount of sulfur employed is typically 2 to 15%, preferably 6% to 12%, by weight of the catalyst charged. It is preferred not to add so much sulfur to the catalyst that the pores are completely filled up. By leaving residual pore volume, the olefin can penetrate the pores and react therein.

The key step to the invention is to contact the sulfur impregnated metal catalyst with a liquid olefin at an elevated temperature and for sufficient time at a temperature such that the olefin reacts and provides a sulfurized catalyst that is more resistant to sulfur leaching than those not contacted with an olefin. The contact temperature is greater than 150 °C and typically is above 150 °C to 350 °C, preferably from 200 °C to 325 °C. Contact times will depend on temperature and the vapor pressure of the olefin, higher temperatures and higher vapor pressures requiring shorter times. In general times will range from 0.1 to 10 hours.

The key property of the olefin is that it must be a liquid at the elevated temperature of contact. The olefin is a higher olefin, i.e. one having a carbon number of at least six, preferably greater than eight. The upper carbon number of useful olefins is determined by the melting point of the olefin in question. While waxy olefinic materials having carbon numbers
around 60 can be used, they are inconvenient since they must be heated to a higher temperature in order to be converted into a liquid, although they can be used with a solvent to put them in liquid form. Olefins with carbon numbers ranging from 6 to 30, preferably from 8 to 25, are found most useful.

The term "olefin" as used herein refers to hydrocarbon molecules containing at least one carbon-carbon double bond and will include hydrocarbons containing at least one carbon-carbon double bond in addition to other functional moieties, such as, for example, carboxylate or halo, provided such additional moieties do not adversely react with the catalytic metals on the catalyst. The olefins may be monoolefins or polyolefins, cyclic or acyclic, linear or branched. Non-limiting examples of monoolefins include decene, undecene, dodecene, tridecene, tetradecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene and eicosene, whether branched, linear or cyclic, alpha or internal olefin. Similar materials in the form of di-, tri- and polyolefins may be used. Polycyclic olefins and polyolefins may also be used. The readily available compound dicyclopentadiene can be used.

The olefins may also be mixed with non-olefinic hydrocarbons, such as alkanes or aromatic solvents. The olefin content of any olefin-containing hydrocarbon used in the process of the invention should be above 10%wt., and most preferably above 30%wt. Generally, higher olefin contents are used, say, about 50%wt, and most conveniently the olefin is used in the undiluted form. The term "olefinic hydrocarbon" as used herein refers to a hydrocarbon that contains olefinic molecules with or without the presence of non-olefinic molecules. It is understood that the olefins may be provided as olefinic precursors which are converted to olefins before or upon reaching the reaction temperature.

The minimum amount of olefin used should be such that upon reaction at elevated temperature, a catalyst is obtained that has reduced sulfur leaching properties. The maximum amount of olefin used is determined primarily by economics. In a preferred embodiment the amount of olefinic hydrocarbon is used that will just fill the pore volume of the sulfur impregnated catalyst or just slightly less, down to 60 percent, preferably down to 80 percent of the pore volume. A preferred target range is from 80 to 95 percent of the pore volume. In this manner, the treated catalyst will be "dry" and is more convenient to handle.

In another embodiment according to the present invention, the catalyst particles are contacted with both the elemental sulfur, preferably powdered, and the olefinic hydrocarbon simultaneously. According to this method, a mixture of powdered elemental sulfur and olefinic hydrocarbon solvent is first produced. A weight ratio of olefin to sulfur of from 1:1 to 4:1 is suitable, with about 2:1 being a preferred ratio. The mixture may be heated to promote homogeneous mixing of the components, particularly if the olefinic hydrocarbon is not liquid at ambient conditions. Toluene or other light weight hydrocarbon solvents may be added to decrease the viscosity of the mixture. Also, increased heat will achieve the same effect. The mixture is then added to a preweighed catalyst sample and mixed. The mixture is then heated to the olefin reaction temperature of about 150°C. Preferably the temperature is 150°C to 350°C and more preferably from 200°C to 325°C. The times are the same as in the preferred two-step embodiment described above, that is from 0.1 to 10 hours. During the heating process the sulfur first impregnates the pores of the catalyst and then the olefin reacts to form the sulfur leaching resistant catalyst.

The presulfurized catalyst of the instant invention may be converted to a sulfided catalyst by contact with hydrogen at temperatures greater than 200°C, preferably from 200°C to 425°C. Times can run from 0.5 hours to up to 3 days.

In preferred operation the presulfurized catalyst of the instant invention is loaded into a hydrotreating and/or hydrocracking reactor or tail gas reactor and hydrogen flow is started to the reactor and the reactor is heated up to operating (hydrotreating and/or hydrocracking or tail gas treating) conditions. In the presence of hydrogen, activation of the catalyst takes place. That is, the metal oxides and hydrogen react with substantially all of the sulfur incorporated into the catalyst pores, thus producing hydrogen sulfide, water and metal sulfides. In the hydrotreating and/or hydrocracking process, a hydrocarbon feedstock flow may be started simultaneously with the hydrogen or later.

The process of the present invention is further applicable to the sulfurizing of spent catalysts which have been oxy-regenerated. After a conventional oxy-regeneration process, an oxy-regenerated catalyst may be presulfurized as would fresh catalyst in the manner set forth above and specifically in a manner set forth by way of the following examples.

The invention is also intended to encompass a method for stabilizing (enhancing the resistance to sulfur leaching) a supported metal catalyst containing elemental sulfur, particularly a Group VIIB and/or Group VIII metal catalyst, by contacting said catalyst with an olefinic hydrocarbon at a temperature greater than 150°C.

The presulfurizing process is particularly suitable for application to hydrotreating and/or hydrocracking or tail gas treating catalysts. These catalysts typically comprise Group VIIB and/or Group VIII metals supported on porous supports such as alumina, silica or silica-alumina, including zeolite. The materials are well defined in the art and can be prepared by techniques described herein, such as in US-A-4,530,911 and US-A-4,520,128. Preferred hydrotreating and/or hydrocracking or tail gas treating catalysts will contain a group VIIB metal selected from molybdenum and/or tungsten and a Group VIII metal selected from nickel and/or cobalt supported on alumina. Versatile hydrotreating and/or hydrocracking catalysts which show good activity under various reactor conditions are alumina-supported nickel-molybdenum and cobalt-molybdenum catalysts. Phosphorous is sometimes added as a promoter. A versatile tail gas treating catalyst which shows good activity under various reactor conditions is an alumina-supported cobalt-molybdenum catalyst.
Hydrotreating catalysts which are specifically designed for hydrodenitrification operations, such as alumina-supported nickel-molybdenum catalysts, presulfurized by the methods described herein have higher initial activities, particularly hydrodenitrification activities, than catalysts sulfided by prior art methods. This higher initial activity, coupled with ability to avoid sulfiding in the presence of hydrogen sulfide, provides the instant presulfurized catalysts with a significant commercial advantage. It allows the hydrotreating and/or hydrocracking reactor to get into full operation quicker, and, once at operating conditions, have a higher activity, allowing the reactor to be operated at either lower temperature or higher conversion. Tail gas treating reactors can also be started up more quickly.

Thus, the invention also relates to an improved process for starting up a hydrotreating and/or hydrocracking reactor, which comprises loading the catalyst presulfurized according to the methods described herein into the reactor and heating the reactor to operating conditions in the presence of hydrogen and optionally a hydrocarbon feedstock. The invention also relates to an improved hydrotreating and/or hydrocracking process which comprises contacting at hydrotreating and/or hydrocracking conditions a hydrocarbon feedstock and hydrogen with a catalyst which has been presulfurized according to the methods described herein and which has been heated to hydrotreating and/or hydrocracking temperature in the presence of hydrogen and optionally a hydrocarbon feedstock.

Hydrotreating conditions comprise temperatures of from 100°C to 425°C, pressures above 40 atmospheres. The total pressure will typically range from 2.8 to 17.2 MPa gauge (400 to 2500 psig). The hydrogen partial pressure will typically range from 1.4 to 15.2 MPa gauge (200 to 2200 psig). The hydrogen feed rate will typically range from 1.6 to 80 Ni/hr (33.77 to 1688.5 Ni (H₂)/l (oil)). The feedstock rate will typically have a liquid hourly space velocity (“LHSV”) of from 0.1 to 15.

Hydrotreating conditions comprise temperatures of from 300°C to 500°C, pressures above about 40 atmospheres. The total pressure will typically range from 2.8 to 20.7 MPa gauge (400 to about 3000 psig). The hydrogen partial pressure will typically range from 2.1 to 17.9 MPa gauge (300 to 2600 psig). The hydrogen feed rate will typically range from 8 to 80 Ni/hr (168.85 to 1688.5 Ni (H₂)/l (oil)). The feedstock rate will typically have a liquid hourly space velocity (“LHSV”) of from 0.1 to 15. First stage hydrocrackers, which carry out considerable hydrotreating of the feedstock, may operate at high temperatures than hydrotreaters and at lower temperatures than second stage hydrocrackers.

Tail gas treatment reactors typically operate at temperatures ranging from 200°C to 400°C and at atmospheric pressure. About 0.5-5% vol. of the tail gas fed to the reactor will comprise hydrogen. Standard gaseous hourly space velocities of the tail gas through the reactor will range from 500 to 10,000 hr⁻¹. There are several ways the catalysts can be started up in a tail gas treatment reactor. Claus unit feed or tail gas can be used to start up the subject catalysts.

Supplemental hydrogen, as required, may be provided by a gas burner operating at a substoichiometric ratio in order to produce hydrogen.

The invention will be described by reference to the following Examples.

Example 1: Presulfurization Method

Part A: Sulfur Impregnation

A commercial hydrotreating catalyst having the properties listed below was used to prepare the sulfurized catalysts.

<table>
<thead>
<tr>
<th>Catalyst Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel</td>
</tr>
<tr>
<td>Molybdenum</td>
</tr>
<tr>
<td>Phosphorus</td>
</tr>
<tr>
<td>Support</td>
</tr>
<tr>
<td>Surface Area, m²/g</td>
</tr>
<tr>
<td>Water Pore Vol., cm³/g</td>
</tr>
<tr>
<td>Size</td>
</tr>
</tbody>
</table>

A 430 gram sample of the above sample was dried at 370°C for one hour and then cooled to ambient under vacuum. The sample was then placed in a flask and enough sulfur, in powdered form, was added to produce a sulfur level of about 10% by weight. The flask was provided with a slow nitrogen purge and placed in a heating mantle at 107°C for 1 hour. During this time period the flask was vibrated continually to provide mixing of sulfur and catalyst. The final sulfur
level was about 10.5% by weight of the total catalyst. The water pore volume of the sulfur-impregnated catalyst was determined to be about 0.3 cm3/g.

Part B: Olefin Reaction

The Sulfur-impregnated catalyst from Part A was impregnated with the various hydrocarbons listed in Table 2. The catalyst was impregnated with hydrocarbon sufficient to fill 90% of the pore volume. The eicosane, vacuum gas oil ("VGO") and the C$_{20}$ olefin, being solids or semi-solids at room temperature, were heated to 40°C before being applied to the catalyst. All other hydrocarbons were simply added to the catalyst. The catalyst was shaken with the hydrocarbon until the catalyst appeared dry. This took approximately 10 minutes per sample.

100 Grams of the hydrocarbon-containing catalyst were loaded into a quartz reactor tube and placed in a furnace. The reactor outlet was tubed to a liquid trap, then to a silicone oil-filled container to prevent air back-diffusion. Nitrogen flow was established to the reactor inlet at 230 cm3/min, and the catalyst bed was purged of air for 30 minutes. The nitrogen flow was reduced to 30 cm3/min for the duration of the heat treatment.

The reactor was heated to 205°C over the course of one hour and held there for 3 hours. After heat treatment was complete, the reactor contents were cooled to room temperature under nitrogen purge. The samples were analyzed for sulfur content.

Part C: Sulfur Leaching Tests

Acetone was used as an extractive solvent for measuring the ability of the catalysts to resist sulfur leaching. Acetone is a more aggressive solvent for sulfur than the typical hydrotreating and/or hydrocracking feedstocks. Catalysts that are found to be resistant to sulfur leaching by acetone are also found to be resistant to leaching by hydrocarbon feedstocks and have thus acquired the benefits of the instant invention. Thus, the acetone extraction test as described herein can be used by one skilled in the art to determine if sulfur-leaching resistant catalysts as defined and claimed herein have been obtained.

A Soxhlet extractor was used in this test. The thimble of the extractor was filled with 20 cm3 of catalyst and the flask of the extractor was filled about 3/4 full (about 600 cm3) with acetone. The extractor was heated to the boiling point of acetone (57°C) and allowed to reflux for 18 hours. After extraction, the flask was cooled, the catalyst removed and dried at 40°C for 16 hours. The extracted catalysts were analyzed for sulfur content. The percent of sulfur retained after extraction is shown in Table 2 below. This percent of retained sulfur is calculated as the amount of sulfur on the catalyst after the extraction of Part C divided by the sulfur in the catalyst after the heat treatment of Part B times 100%.
Table 2

<table>
<thead>
<tr>
<th>Hydrocarbon Type</th>
<th>Amount of Sulfur After Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEODENE® 10 olefins</td>
<td>92.2</td>
</tr>
<tr>
<td>n-DECANE</td>
<td>15.6</td>
</tr>
<tr>
<td>NEODENE® 14/16 OLEFINS</td>
<td>88.5</td>
</tr>
<tr>
<td>n-C14/C16 BLEND</td>
<td>30.6</td>
</tr>
<tr>
<td>CHEVRON TETRAMER M</td>
<td>94.3</td>
</tr>
<tr>
<td>CHEVRON POLYMER 560</td>
<td>88.5</td>
</tr>
<tr>
<td>DIESEL FUEL</td>
<td>77.1</td>
</tr>
<tr>
<td>VACUUM GAS OIL</td>
<td>85.2</td>
</tr>
<tr>
<td>NEODENE® 20 OLEFINS</td>
<td>96.4</td>
</tr>
<tr>
<td>EICOSANE</td>
<td>65.3</td>
</tr>
</tbody>
</table>

a) An olefin product manufactured by Shell Chemical Co. whose composition is 96%wt. minimum C10 alpha-monoolefin.
b) An olefin product manufactured by Shell Chemical Co. whose composition is 94%wt. minimum alpha-monoolefin comprising 65%wt. C14 alpha-monoolefin and 35%wt. C16 alpha-monoolefin.
c) A blend of normal C14 and C16 alkanes blended to have the same C14/C16 ratio as b) above.
d) An olefin product manufactured by Chevron Chemical Co. which is a tetramer of propylene.
e) An olefin product manufactured by Chevron Chemical Co. whose composition is C12 - C18 branched monoolefins.
f) An olefin product manufactured by Shell Chemical Co. whose composition is 94%wt. minimum C20 alpha-monoolefin.

Example II: Use of Presulfurized Catalyst in Hydrotreating Process

Six types of catalysts, two comparative and four of this invention, were used to demonstrate the advantages of the invention as applied to a hydrotreating process. These were:

1) COMP Catalyst - This is a comparative commercial hydrotreating catalyst listed in Table 1 which has been sulfided by an industry accepted sulfiding method using hydrogen and hydrogen sulfide as described below.
2) A100 Catalyst - This is a catalyst prepared as described in Example I with 100% stoichiometric sulfur and using the normal C14/C16 olefin blend described in Table 2 as one treating hydrocarbon.
3) A75 Catalyst - This is a catalyst prepared as described in Example I with 75% stoichiometric sulfur and using the normal C14/C16 olefin blend described in Table 2 as the treating hydrocarbon.
4) A50 Catalyst - This is a catalyst prepared as described in Example I with 50% stoichiometric sulfur and using the normal C14/C16 olefin blend described in Table 2 as the treating hydrocarbon.
5) COMP C14/16 Catalyst - This is a comparative catalyst prepared as described in Example I with 100% stoichiometric sulfur and using the normal C14/C16 alkane blend described in Table 2 as the treating hydrocarbon.
6) A C14/16 Catalyst - This is a catalyst prepared as described in Example I with 100% stoichiometric sulfur and using the normal C14/C16 olefin blend described in Table 2 as the treating hydrocarbon. This catalyst is substantially similar to the A100 catalyst except the A100 catalyst was a large scale preparation and this was a laboratory
scale preparation.

Microreactors were utilized to test the hydrotreating activity of the catalysts. The catalysts were loaded into the reactor as follows: 30 cm³ of catalyst (basis compacted bulk density) was divided into 3 aliquots. The first aliquot contained 2.5 cm³ of catalyst and was diluted 10:1 (SiC to catalyst) with 60/80 mesh SiC. The remaining two aliquots contained 13.75 cm³ of catalyst each and were diluted 1:1 with 60/80 mesh SiC. These aliquots were loaded into the reactor tube with the dilute one on top (the inlet end).

Part A: Short Term Activity Tests

A blend of vacuum gas oil and light cycle oil (VGO/LCO) was used as feedstock and had the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>%wt Sulfur</td>
<td>1.7</td>
</tr>
<tr>
<td>ppm Nitrogen</td>
<td>1120</td>
</tr>
<tr>
<td>Refractive Index</td>
<td>1.5183 (25°C)</td>
</tr>
<tr>
<td>Density</td>
<td>0.9242 (60°F or 15°C)</td>
</tr>
</tbody>
</table>

1) COMP Catalyst Activation

The COMP Catalyst was dried at 400°C for one hour in air, cooled in a desiccator and loaded into the reactor. It was sulfided in a flow of 45 Nl/hr of 95%vol hydrogen/5%vol hydrogen sulfide according to the following schedule:

a. ambient to 121°C at 5.6°C/min
b. 121°C to 204°C at 0.56°C/min
c. hold at 204°C for 90 min
d. heat from 204°C to 371°C at 1.1°C/min
e. hold at 371°C for 60 min
f. cool reactor and hold at 149°C

2) Diesel Activation

This method was used to activate catalysts of this invention using a diesel refined for cars and trucks and was as follows:

a. Unit was pressurized to 4.8 MPa gauge (700 psig) and hydrogen circulation was established at 168.85 Nl (H₂)/l (oil) [8 Nl of hydrogen/hr].
b. Diesel feed was started to the catalyst bed at 1.5 LHSV and ambient temperature.
c. The reactor temperature was raised to 121°C in one hour, then increased to 343°C at 27.8°C/hour. Temperatures were held at 343°C for 30 minutes.
d. Since the temperature ramp occurred overnight, the reactor was also cooled overnight at 149°C for feed switch in the morning.

3) Gas Activation

This method was used to activate catalysts of this invention using first hydrogen, followed by diesel, and simulates the startup of certain commercial hydrotreaters. This method is as follows:

a. Unit was pressurized to s.1 MPa gauge (300 psig) and hydrogen circulation was established at 168.85 Nl (H₂)/l (oil) [Nl of hydrogen/hr].
b. Temperature was ramped from ambient to 121°C at 27.8°C/hr.
c. Temperature was ramped from 121°C to 204°C in one hour. Off gas was sampled for H₂S during period.
d. When 204°C was reached, unit was pressurized to 4.8 MPa gauge (700 psig) and held for one hour.
e. Diesel feed (same as in 2) above) was introduced at 204°C.
f. The temperature was ramped to 260°C at 27.8°C/hr and the unit cooled to 149°C with diesel feed continuing over-
4) Activity Testing

For activity testing the unit was pressured up to 4.8 MPa gauge (700 psig) and heated to 246°C with a hydrogen gas rate of 168.85 Nl (H₂)/Nl (oil) [8 Nl of hydrogen/hr]. The VGO/LCO feed was started to the unit at 1.5 LHSV (41.6 gm/hr). After the feed had wetted the entire bed (and product was noted in the separator), the temperature was raised to 329°C at 22.2°C/hr.

After the reactor was at 329°C, a 12 hour break-in period was begun. The product from this period was not analyzed. The run was continued with additional weight periods of 12 hours and the products of each weight period were analyzed for nitrogen and sulfur. From these values rate constants were calculated for the hydro-denitification ("HDN") reaction and the hydrode-sulfurization ("HDS") reaction. Rate constants provide an indication of how active the catalyst is, the higher the rate constant, the faster the reaction process, and the higher the conversion of sulfur and nitrogen at a given space velocity (feed rate). For HDN the reaction order is 1.0 and the k value is calculated by the equation:

\[k = \text{space velocity} \cdot \ln \left(\frac{\text{conc. of N in feed}}{\text{conc. of N in product}} \right) \]

For HDS the reaction is not first order and many values are used, but 1.7 is the value most used and is used herein to calculate as follows:

\[R = \left(\frac{\text{space velocity}}{1.7-1} \right) \left(\frac{1}{\text{conc. of S in product}^{0.7}} \cdot \frac{1}{\text{conc. of S in feed}^{0.7}} \right) \]

The relative rate constants are provided in Table 3. They have been normalized against the values of the third weight period for the COMP Catalyst.
Table 3

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Activation</th>
<th>Weight Period (12 hrs each)</th>
<th>HDS Rel. K Value</th>
<th>HDN Rel. K Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP A100</td>
<td>1) Standard</td>
<td>3rd</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>3) Gas</td>
<td>3rd</td>
<td>1.01</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th</td>
<td>1.01</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5th</td>
<td>0.98</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6th</td>
<td>1.00</td>
<td>1.12</td>
</tr>
<tr>
<td>A100</td>
<td>2) Diesel</td>
<td>3rd</td>
<td>0.98</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th</td>
<td>0.98</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5th</td>
<td>0.97</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6th</td>
<td>1.00</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7th</td>
<td>0.99</td>
<td>1.11</td>
</tr>
<tr>
<td>A75</td>
<td>2) Diesel</td>
<td>3rd</td>
<td>1.04</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th</td>
<td>1.04</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5th</td>
<td>1.05</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6th</td>
<td>1.05</td>
<td>1.22</td>
</tr>
<tr>
<td>A50</td>
<td>2) Diesel</td>
<td>3rd</td>
<td>0.92</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th</td>
<td>0.90</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5th</td>
<td>0.90</td>
<td>1.08</td>
</tr>
<tr>
<td>COMP C14/16</td>
<td>2) Diesel</td>
<td>3rd</td>
<td>0.76</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th</td>
<td>0.76</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5th</td>
<td>0.74</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6th</td>
<td>0.72</td>
<td>0.87</td>
</tr>
<tr>
<td>AC14/16</td>
<td>2) Diesel</td>
<td>3rd</td>
<td>0.93</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th</td>
<td>0.91</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5th</td>
<td>0.91</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6th</td>
<td>0.92</td>
<td>1.16</td>
</tr>
</tbody>
</table>

As can be seen from the above table the catalysts of this invention show a clear advantage over a traditional hydrotreating catalyst with regard to hydrodenitification activity.

Part B: Long Term Activity Tests

COMP Catalyst and A100 Catalyst were used in long term tests to measure HDN activity. The feed used was an Alaskan north slope diesel with the following properties:

- 0.556 %wt Sulfur
- 269 ppm Nitrogen
- 31.1 API Gravity
- 13.29 %wt Aromatics
One hundred cc of catalyst was used in the microreactor with 1:1 dilution with 60/80 mesh SiC.

The operating conditions were as follows:

- 4.1 MPa gauge (600 psig)
- 168.85 Nl (H₂)/l (oil) [35.6 Nl of hydrogen/hr]
- 2.0 space velocity
- 90% desulfurization

The A₁₀₀ Catalyst was activated by pressuring the reactor to 600 psig with hydrogen. Hydrogen flow was started at 168.85 Nl (H₂)/l (oil) and diesel feed brought in at 1.5 LHSV and ambient temperature. The reactor temperature was raised to 121°C at 1.7°C/min, then increased to 343°C at 0.56°C/min. The reactor was then cooled to the estimated start-of-run temperature of 302°C.

The COMP Catalyst was activated using the following:

- a. 120 Nl/hr of a 95% H₂/5% H₂S mixture
- b. Ramp temperature from ambient to 204°C at 0.56°C/min
- c. Hold at 204°C for two hours
- d. Ramp to 316°C at 0.55°C/min and hold for one hour
- e. Ramp to 371°C at 0.55°C/min and hold for two hours
- f. Cool to 302°C for feed introduction

The operating procedure was as follows: At 302°C the feed rate was increased to 2.0 LHSV and a reactor temperature profile was taken and weight periods were started when the profile was flat and at target. The reactor lined out after about 190 hours with the reactor temperature being adjusted for 100 ppm sulfur in the product. This temperature was held for the remainder of the run. Sulfur and nitrogen were analyzed by a combustion technique. Sulfur detector was UV fluorescence and nitrogen detector was chemiluminescence.

The results of these runs are shown in Tables 4 and 5 and are reported as %HDN and %HDS which is the difference in N and S in the product and feed over the N and S in the feed, expressed as a percentage.

<table>
<thead>
<tr>
<th>Run Hrs.</th>
<th>Deg. C</th>
<th>%HDN</th>
<th>%HDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>191</td>
<td>331</td>
<td>55.0</td>
<td>90.5</td>
</tr>
<tr>
<td>216</td>
<td>329</td>
<td>53.2</td>
<td>90.3</td>
</tr>
<tr>
<td>271</td>
<td>329</td>
<td>89.9</td>
<td></td>
</tr>
<tr>
<td>287</td>
<td>330</td>
<td>52.0</td>
<td>90.3</td>
</tr>
<tr>
<td>311</td>
<td>330</td>
<td>52.4</td>
<td>90.1</td>
</tr>
<tr>
<td>335</td>
<td>330</td>
<td>52.4</td>
<td>89.7</td>
</tr>
<tr>
<td>359</td>
<td>330</td>
<td>52.4</td>
<td>89.7</td>
</tr>
</tbody>
</table>
TABLE 5

<table>
<thead>
<tr>
<th>COMP CATALYST</th>
<th>Run Hrs.</th>
<th>Deg. C</th>
<th>%HDN</th>
<th>%HDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>190</td>
<td>329</td>
<td>50.2</td>
<td>90.5</td>
</tr>
<tr>
<td></td>
<td>214</td>
<td>329</td>
<td>49.8</td>
<td>90.5</td>
</tr>
<tr>
<td></td>
<td>268</td>
<td>329</td>
<td>49.8</td>
<td>90.5</td>
</tr>
<tr>
<td></td>
<td>286</td>
<td>330</td>
<td>49.4</td>
<td>90.5</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>330</td>
<td>49.1</td>
<td>90.3</td>
</tr>
<tr>
<td></td>
<td>324</td>
<td>329</td>
<td>49.1</td>
<td>90.3</td>
</tr>
<tr>
<td></td>
<td>348</td>
<td>330</td>
<td>48.3</td>
<td>90.6</td>
</tr>
</tbody>
</table>

As can be seen from the above, the catalyst produced in accordance with the invention retains an improved HDN activity even over a long test term.

Claims

1. A method of presulfurizing porous particles of a sulfidable catalyst containing at least one metal or metal oxide, which method comprises

 (a) contacting said porous catalyst particles with elemental sulfur at a temperature such that said elemental sulfur is incorporated in the pores of said catalyst by sublimation and/or melting and at the same time or subsequently

 (b) heating said catalyst particles at a temperature greater than 150°C in the presence of a hydrocarbon which is liquid at said temperature and which contains above 10% by weight of at least one hydrocarbon of at least 6 carbon atoms and containing at least one olefinic carbon-carbon double bond.

2. A method according to claim 1 wherein the catalyst contains at least one oxide of a metal from Group VIB and Group VIII of the Periodic Table.

3. A method according to claim 1 wherein powdered sulfur is used in step (a).

4. A method according to claim 1, 2 or 3 wherein step (a) is carried out before step (b) at a temperature of from 90°C to 130°C.

5. A method according to any one of the preceding claims wherein the amount of sulfur used in step (a) is from 0.7 to 1.2 times the stoichiometric amount required to convert the metal or metal oxides to sulfides.

6. A method according to claim 1, 2 or 3 wherein step (b) is carried out subsequent to step (a) at a temperature of from 200°C to 325°C.

7. A method according to any one of the preceding claims wherein the duration of step (a) and/or step (b) is from 0.1 to 10 hours.

8. A method according to any one of the preceding claims wherein said hydrocarbon has from 8 to 25 carbon atoms and contains at least one olefinic carbon-carbon double bond.

9. A method according to any one of the preceding claims wherein said hydrocarbon containing at least one olefinic carbon-carbon double bond also contains carboxylate.

10. A method according to any one of the preceding claims which comprises the further step of heating the catalyst to a temperature of from 200°C to 425°C in the presence of hydrogen to cause the sulfur to react with the metal oxides to produce metal sulfides and thereby provide a catalyst suitable for hydrotreating and/or hydrocracking a hydrocar-
bon stream or tail gas treating a sulfur-containing gas stream.

11. A method according to claim 10 wherein heating in the presence of hydrogen is carried out at least in part in the presence of a hydrocarbon to provide a catalyst for hydrotreating and/or hydrocracking a hydrocarbon stream.

12. A method according to claim 11 which comprises the further step of hydrotreating and/or hydrocracking hydrocarbon streams or tail gas treating sulfur-containing gas streams by contacting the streams in the presence of hydrogen with the hydrotreating and/or hydrocracking or tail gas treating catalyst.

13. A method according to claim 1 or 10 which comprises the further step of loading the catalyst into a hydrotreating and/or hydrocracking or tail gas treating reactor and heating the reactor up to a hydrotreating and/or hydrocracking or tail gas treating temperature of from 100°C to 425°C in the presence of hydrogen.

14. A method according to any one of the preceding claims wherein the liquid hydrocarbon contains at least 30% by weight of said hydrocarbon containing at least one olefinic carbon-carbon double bond.

Patentansprüche

1. Verfahren zur Vorschwefelung von porösen Teilchen eines sulfidierbaren Katalysators, der mindestens ein Metall oder Metalloxid enthält, bei dem man

(a) die porösen Katalysatorpartikeln mit elementarem Schwefel bei einer Temperatur in Berührung bringt, bei der der elementare Schwefel durch Sublimation und/oder Schmelzen in die Poren des Katalysators aufgenommen wird, und gleichzeitig oder anschließend

(b) die Katalysatorpartikeln in Gegenwart eines Kohlenwasserstoffs auf eine Temperatur von über 150°C erwärmt, wobei der Kohlenwasserstoff bei dieser Temperatur flüssig ist und mehr als 10 Gew.-% mindestens eines Kohlenwasserstoffs mit mindestens 6 Kohlenstoffatomen und mindestens einer olefinischen Kohlenstoff-Kohlenstoff-Doppelbindung enthält.

2. Verfahren nach Anspruch 1, bei dem man einen Katalysator einsetzt, der mindestens ein Oxid eines Metalls der Gruppe VIB und der Gruppe VIII des Periodensystems enthält.

3. Verfahren nach Anspruch 1, bei dem man in Schritt (a) Schwefel in Pulverform einsetzt.

4. Verfahren nach Anspruch 1, 2 oder 3, bei dem man Schritt (a) vor Schritt (b) und bei einer Temperatur von 90°C bis 130°C durchführt.

5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem man in Schritt (a) Schwefel in einer Menge einsetzt, die dem 0,7- bis 1,2fachen der zur Überführung des Metalls oder der Metalloxide in Sulfide erforderlichen stöchiometrischen Menge entspricht.

6. Verfahren nach Anspruch 1, 2 oder 3, bei dem man Schritt (b) nach Schritt (a) und bei einer Temperatur von 200°C bis 325°C durchführt.

7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Dauer von Schritt (a) und/oder Schritt (b) 0,1 bis 10 Stunden beträgt.

11. Verfahren nach Anspruch 10, bei dem man das Erwärmen in Gegenwart von Wasserstoff mindestens zum Teil in
Gegenwart eines Kohlenwasserstoffs durchführt, wobei man einen Katalysator zur Hydrierbehandlung und/oder zum Hydrocracken eines Kohlenwasserstoffstroms erhält.

Revendications

1. Procédé de présulfuration de particules poreuses d’un catalyseur sulfurable contenant au moins un métal ou un oxyde métallique, lequel procédé comprend

 - (a) la mise en contact desdites particules poreuses de catalyseur avec du soufre élémentaire à une température telle que ledit soufre élémentaire soit incorporé dans les pores du dit catalyseur par sublimation et/ou fusion et simultanément ou ultérieurement
 - (b) le chauffage desdites particules de catalyseur à une température supérieure à 150°C en présence d’un hydrocarbure qui est liquide à ladite température et qui contient plus de 10% en poids d’au moins un hydrocarbure d’au moins 6 atomes de carbone et contenant au moins une double liaison carbone-carbone olefinique.

2. Procédé selon la revendication 1, caractérisé en ce que le catalyseur contient au moins un oxyde d’un métal du groupe VIB et du groupe VIII du Tableau Périodique.

3. Procédé selon la revendication 1, caractérisé en ce que de la poudre de soufre est utilisée à l’étape (a).

4. Procédé selon la revendication 1, 2 ou 3, caractérisé en ce que l’étape (a) est réalisée avant l’étape (b) à une température de 90°C à 130°C.

5. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la quantité de soufre utilisée à l’étape (a) est de 0,7 à 1,2 fois la quantité stœchiométrique nécessaire pour convertir le métal ou les oxydes métalliques en sulfures.

6. Procédé selon la revendication 1, 2, ou 3, caractérisé en ce que l’étape (b) est réalisée après l’étape (a) à une température de 200°C à 325°C.

7. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la durée de l’étape (a) et/ou de l’étape (b) est de 0,1 à 10 heures.

8. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le dit hydrocarbure a de 8 à 25 atomes de carbone et contient au moins une double liaison carbone-carbone olefinique.

9. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le dit hydrocarbure olefinique contenant au moins une double liaison carbone-carbone olefinique contient également un carboxylate.

10. Procédé selon l’une quelconque des revendications précédentes, qui comprend l’étape supplémentaire de chauf-fage du catalyseur à une température de 200°C à 425°C en présence d’hydrogène pour amener le soufre à réagir avec les oxydes métalliques pour produire des sulfures métalliques et ainsi fournir un catalyseur adapté à l’hydrotraitement et/ou l’hdrocracking d’un courant d’hydrocarbures ou le traitement par un gaz de queue d’un courant gazeux contenant du soufre.

11. Procédé selon la revendication 10, caractérisé en ce que le chauffage en présence d’hydrogène est réalisé au
moins en partie en présence d'un hydrocarbure pour fournir un catalyseur pour l'hydrotraitement et/ou l'hydrocra-
quage d'un courant d'hydrocarbures.

12. Procédé selon la revendication 11, qui comprend l'étape supplémentaire d'hydrotraitement et/ou d'hydrocraquage
de courants d'hydrocarbures ou de traitement par un gaz de queue de courants gazeux contenant du soufre, par
la mise en contact des courants en présence d'hydrogène avec le catalyseur d'hydrotraitement et/ou d'hydrocra-
quage ou de traitement par un gaz de queue.

13. Procédé selon la revendication 1 ou 10, qui comprend l'étape supplémentaire de chargement du catalyseur dans
un réacteur d'hydrotraitement et/ou d'hydrocraquage ou de traitement par un gaz de queue, et de chauffage du
réacteur jusqu'à une température d'hydrotraitement et/ou d'hydrocraquage ou de traitement par un gaz de queue
de 100°C à 425°C en présence d'hydrogène.

14. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'hydrocarbure liquide contient au
moins 30% en poids dudit hydrocarbure contenant au moins une double liaison carbone-carbone oléfinique.