EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 04.06.1997 Bulletin 1997/23

(21) Application number: 93115854.7

(22) Date of filing: 30.09.1993

(54) Sealed edge gate

Abgedichtete, seitliche Angussöffnung

Entrée d'injection latérale étanche

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE


(43) Date of publication of application: 06.04.1994 Bulletin 1994/14

(73) Proprietor: HUSKY INJECTION MOLDING SYSTEMS LTD.
Bolton Ontario L7E 5S5 (CA)

(72) Inventor: Schmidt, Harald
Georgetown Ontario L7G 4W1 (CA)

(74) Representative: Weiss, Peter, Dr. rer. nat.
Patentanwalt,
Zeppelinstrasse 4
78234 Engen (DE)

(56) References cited:

- PLASTVERARBEITER vol. 37, no. 4, April 1986, SPEYER/RHEIN DE pages 124 - 127 LÖHL 'Stirnseitiger Mehrfachanschnitt als Problemlösung'
- KUNSTSTOFFE vol. 72, no. 12, December 1982, MUNCHEN DE pages 749 - 755 LANGE 'Standard-Heisskanalsysteme'

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Background of the Invention

The present invention relates to an improved nozzle assembly for an injection molding machine and, more particularly, to an improved sealed edge gate arrangement to be used therein and is described in the first part of claim 1.

Hot runner edge gating systems are well known in the art. Some of these hot runner edge gating systems are described in Plastverarbeiter, vol. 37, no. 4, April 1986, page 124 - 127 and in KUNSTSTOFFE, vol. 27, no. 12, December 1982, pages 749 - 755. There is shown a nozzle within a mold in that the nozzle has a tip end and a plurality of heads which fit into grooves in a recess in the nozzle body. Each of the heads has an angled channel which mates with an angled channel in the nozzle body. A space surrounding the tip of the nozzle is filled with resin as a means to insure a thermal barrier between the mold and the nozzle tip. When such systems are used to process heat sensitive resins however, it becomes important to minimize or, if possible, eliminate any bubble or resin insulation well so as to avoid degraded resins, trapped within the nozzle assembly and its components, from being drawn into the main melt stream and thereby into the molded part.

U.S.-A-4,344,750 and 4,981,431 show typical non bubble type hot runner edge gating systems. The system shown in the U.S.-A-4,344,750 uses individual hollow seals to connect the hot runner nozzle directly to the cavity gate. This totally eliminates the bubble because the nozzle is completely surrounded by an insulating air gap. The seals used in this system are pressed into recesses in the nozzle, one seal for each gate. As the nozzle assembly is fitted into the mold cavity plate, the seals deform slightly inwardly so as to effect a mechanical seal with the cavity plate. Removal and replacement of the nozzle for servicing requires the replacement of the seals each time. Another disadvantage of this approach is that the seal is made of titanium, which although having a lower thermal conductivity than steel, still permits a significant amount of heat to be conducted from the heated nozzle to the cooled mold cavity. As a consequence, the nozzle has to be heated to a higher temperature than would otherwise be required to process the resin. Normally this is not detrimental, but when heat sensitive resins are processed, this can be troublesome since these resins easily degrade at temperatures only slightly higher than their processing temperature.

The US-A-4,981,431 also uses a plurality of titanium seals individually screwed into the nozzle assembly. The seal design uses a very small bubble to locally insulate the gate from the nozzle and thereby reduce the heat conducted through the seal. A disadvantage of this design is that the stiffer seal construction is less elastic and does not readily deform during installation like the seal according to the US-A-4,344,750. This means greater accuracy in manufacture and assembly are required in order to assemble the nozzle. Also, since this seal is larger than the seal according to the US-A-4,344,750, there is less space in the nozzle to accommodate multiple seals for multiple gating. The most attempted has been four. Additional orifices tend to weaken the nozzle at the tip end where strength is most important. At the tip end, the injected resin travelling at high speed and under high pressure must change direction through ninety degrees subjecting the end of the nozzle to very high stresses. The risk of blowing the end off the nozzle is increased by the addition of seals for multi-cavity gating.

Both of the sealing devices shown in the US-A-4,344,750 and US-A-4,981,431 have the disadvantage that the sealing and the location of the gates is local to each gate. Thus, in a two cavity arrangement, there is a tendency for the nozzle assembly to cook or jam when being assembled or disassembled since alignment and contact with the mold cavity occurs in only two places within the mold cavity location diameter.

Accordingly, it is an object of the present invention to provide an improved sealed edge gate system for an injection molding system.

It is a further object of the present invention to provide an edge gate system as above which facilitates the processing of heat sensitive resins.

It is still another object of the present invention to provide an edge gate system as above which provides a nozzle assembly having improved thermal insulation properties.

Other objects and advantages of the present invention will become more apparent from the following description and the accompanying drawings in which like reference numerals depict like elements.

Summary of the Invention

The foregoing objects are attained by the sealed edge gate system of the present invention according to the second part of claim 1. In accordance with the present invention, a hot runner sealed edge gated injection molding system comprises a nozzle assembly having a tip end and at least one melt channel extending into the tip end and sealing means in the form of an annular seal or sealing ring snugly fitted over the tip end of the nozzle assembly. The seal ring has at least one melt channel for mating with the at least one melt channel in the nozzle assembly.

The seal ring of the present invention is further characterized by the presence of one or more orifices which can be aligned with one or more gates in a mold cavity plate and by the presence of two circumferential bubble grooves and a circumferential film groove about its periphery for receiving molten plastic material which acts as a thermal insulator. The seal ring is preferably formed from a material having a lower thermal coefficient of expansion than the material forming the tip end of the nozzle assembly. In this way, a gripping force can
be generated on the seal ring when the nozzle assembly and/or the tip end is heated and an effective sealing arrangement can be created between the seal ring and the mold cavity plate.

Still other features of the sealed edge gated injection molding system and the seal ring will be described in the following description.

**Brief Description of the Drawings**

Figure 1 is a cross sectional view of a nozzle assembly with a sealed edge gate in accordance with the present invention;

Figure 2 is an enlarged view of a portion of the nozzle assembly of Figure 1; and

Figure 3 is a perspective view of a seal ring in accordance with the present invention.

**Detailed Description**

Referring now to the drawings, Figure 1 illustrates a nozzle assembly for an injection molding system. The nozzle assembly includes a nozzle 12 formed from a thermally conductive material, such as steel or a copper alloy, having a central melt channel 14 through which molten plastic material is transferred from a source (not shown) to one or more injection gates 16 in a mold cavity plate 28. As shown in Figure 1, the central melt channel 14 can terminate in one or more angled melt channels 38 located in or extending into a tip end 40 of the nozzle 12. It should be recognized that, while only two angled melt channels 38 have been illustrated in Figure 1, the melt channel 14 could terminate in any desired number of angled melt channels 38 with the number of such angled melt channels generally corresponding to the number of injection gates 16 in the mold cavity plate 28.

As shown in Figure 1, the nozzle 12 has one or more grooves 18 machined therein and extending along its longitudinal axis for housing a tubular heater 20 which covers the plastic material within the melt channel 14 in a molten condition. A steel sleeve 22 is provided around a central portion of the nozzle 12 and serves to retain the heater 20 in the groove(s) 18. If desired, a heater 20 may also be housed in a groove in the tip end 40 of the nozzle 12. The heater 20 could be part of the heater 20 or alternatively may be a separate heater. The heater(s) 20, 20' may comprise any suitable heater known in the art.

An annular insulator 24 is preferably positioned between the head 26 of the nozzle 12 and the mold cavity plate 28 to reduce the amount of heat transferred from the nozzle 12 to the mold cavity plate 28. As can be seen from Figure 1, the insulator 24 surrounds a portion of the sleeve 22. It has a lower end 30 which rests on a surface 32 cut into the mold cavity plate 28 and an upper end 34 abutting a lower surface 36 of the nozzle head 26. The insulator 24 is held in place against the nozzle head by the sleeve 22. Preferably, the insulator is formed from steel, whose thin section 24 limits the flow of heat to the cavity plate.

Access openings 21 and 23 are provided in the nozzle 12 and/or the insulator 24 to permit wiring (not shown) to be connected to the heater(s) 20 and the thermocouple located at 100.

In accordance with the present invention, the nozzle assembly includes an annular seal ring 42 snugly fitted over the tip end 40 of the nozzle 12 and housed within a recess 46 defined by a lower portion of a bore 45 in the mold cavity plate 28. The seal ring, as shown in Figure 3, is formed by an annular body having a central bore 44 with a diameter D1 which is substantially equal to the outer diameter of the tip end 40 of the nozzle 12. The seal ring also has an outer diameter D2 which substantially corresponds to the diameter of the recess 46. When assembled, the seal ring 42 contacts the wall(s) of the bore defining the recess 46 about its entire periphery and extends about or surrounds the tip end 40 of the nozzle. Since contact between the seal ring and the recess wall(s) is not limited to a few locations, cocking is avoided and easy assembly/disassembly and proper alignment of the nozzle assembly is ensured.

As shown in the drawings, the seal ring 42 has a number of angled melt channels 56 machined therein. These angled melt channels mate with the angled melt channels 38 in the tip end 40 of the nozzle and form passageways which serve to transport molten plastic material from the melt channels 38 to the injection gates 16 in the mold cavity plate. Of course, the number and the location of the angled melt channels 56 in the seal ring corresponds to the number and the location of the angled melt channels 38 in the tip end of the nozzle. In addition to cooperating with a respective melt channel 38, each melt channel 56 is in communication with an orifice 54 drilled into the seal ring 42 which also forms part of the passageway for transporting plastic material. The number of orifices 54 drilled into the seal ring 42 and their locations correspond to the number and the locations of the gates 16 in the mold cavity plate 28. The orifices 54 permit molten plastic material within the channels 56 to flow into the gates 16. It should be recognized that one advantage of the design of the seal ring 42 is that many such orifices can be drilled into the ring around the ring periphery without causing any substantial weakening of the ring. Thus 8, 12 or even 16 small cavity gates can be accommodated from a single nozzle assembly fitted with the seal ring of the present invention.

Preferably, the seal ring 42 is made from a material having a thermal coefficient of expansion lower than the thermal coefficient of expansion of the material forming the nozzle 12. In this way, the nozzle 12 when heated will expand inside the seal ring 42. Since the outer periphery of the seal ring abuts the walls defining the recess 46, expansion of the nozzle will press the seal ring outwardly to seal against the wall(s) of the recess as well as cause a gripping effect on the seal ring 42. As
a result, a good seal is formed between the seal ring and the mold cavity plate and between the melt channels 38 and 56 so that leakage of molten plastic material between the nozzle and the seal ring is avoided. In a preferred embodiment of the present invention, the seal ring is formed from titanium (a material having a thermal coefficient of expansion of 5.3 x 10^-6 in/in/°F) or a titanium alloy, while the nozzle is formed from steel (a material having a thermal coefficient of expansion of 6.8 x 10^-6 in/in/°F) or a copper alloy, such as BeCu25 or Ampco 945 having a thermal coefficient of expansion of 9.5 x 10^-6 in/in/°F.

Two circumferential bubble grooves 48 and 50 and a circumferential film groove 52 are machined into the seal ring 42. The grooves 48, 50 and 52 extend about the entire periphery of the seal ring with the film groove 52 extending between the bubble grooves 48 and 50. In operation, at least some of the molten plastic material injected into the gates 16 via the angled melt channels 56 and the orifices 54 will initially fill the circumferential film and bubble grooves 48, 50 and 52 because the orifices 54 are in communication with the grooves. This plastic material acts as a thermal insulator. As a result, there is a minimization of the heat transferred via the seal ring 42 to the mold cavity plate 28.

It has been found that by using the seal ring of the present invention, there is no bleeding of the insulating plastic material into the main melt stream flowing through the orifices 54 and the gates 16. Thus, the sealed edge gate system of the present invention has particular utility in the processing of heat sensitive resins where degradation and contamination of the resin needs to be avoided. The sealed edge gate system of the present invention is also advantageous in that the improved thermal insulation properties obtained thereby mean that the nozzle heater 20 need not be operated unnecessarily high in order to overcome heat losses.

The design of the seal ring 42 is most advantageous in that when frequent color change or change of resin is required it maintains strength integrity and allows easy assembly/disassembly. Still further, the design provides an ability to offer more gates per nozzle which is an important benefit.

While the seal ring 42 has been illustrated as having an annular configuration, it should be recognized that the seal ring could have any desired configuration or shape.

Claims

1. A hot runner sealed edge gated injection molding system comprising:

   a mold cavity plate (28) with a recess (45, 46) having at least one injection gate (16); a nozzle (12) engaging said recess (45, 46) and having a tip end (40) and at least one melt channel (14, 38) for transporting molten plastic material, said at least one melt channel (14) extend-

   into said tip end (40) of said nozzle (12); and

   a sealing means (42) snugly fitted over said tip end (40) of said nozzle (12), said sealing means (42) having at least one melt channel (56) for transporting said molten plastic material from said at least one melt channel (14, 38) to said at least one injection gate (16), said at least one melt channel (56) in said sealing means (42) mating with said at least one melt channel (14, 38) in said nozzle (12); characterized in that

   said sealing means acts as insulating means and as for avoiding leakage from the injection gate (16) to the recess (45, 46), the sealing means being located within said recess (46) in said mold cavity plate (28) and being in contact with at least one wall defining said recess (46);

   said recess (46) has a diameter; and

   said sealing means (42) has an outer diameter (D2) substantially equal to said diameter of said recess (46), whereby expansion of said nozzle assembly (12) due to heating presses said sealing means (42) outwardly to seal against said at least one wall defining said recess (46);

   said sealing means (42) is in contact with said mold cavity plate (28) and has means for minimizing heat transferred from said sealing means (42) to said mold plate (28) and said heat minimizing means comprises two bubble grooves (48, 50) and a film groove (52) machined into said sealing means (42), said grooves (48, 50, 52) being filled by plastic material acting as a thermal insulator.

2. The injection molding system of claim 1 characterized in that said seal ring (42) is made of a material having a lower thermal coefficient expansion than the material forming said nozzle (12) so that when said nozzle (12) is heated and expands within said seal ring (42) a gripping effect is created which ensures a good seal between said at least one melt channel (38) in said nozzle (12) and said at least one melt channel (56) in said seal ring (42).

3. The injection molding system of claim 1 or 2 further comprising:

   at least one groove (18) extending along said nozzle (12);

   at least one heater (20, 20') positioned within
sai at least one groove (18) to maintain said plastic material in said melt channels (14, 38) in a molten condition;

a sleeve (22) surrounding a portion of said nozzle (12) and serving to hold said at least one heater (20) in position;

an annular insulator (24) surrounding a portion of said sleeve (22);

said insulator (24) having a lower end (30) contacting said mold cavity plate (28) and an upper end (34) contacting said nozzle (12); and

said insulator (24) being held in place by said sleeve (22).

Patentansprüche

1. Spritzgiesssystem mit einem seitlich abgedichteten Heisskanalauflage, bestehend aus:

   einer Formenhohlraumplatte (28) mit einer Ausnehmung (45, 46), welche wenigstens eine Spritzungsoffnung (16) aufweist;

   einer Düse (12), welche in diese Ausnehmung (45, 46) eingreift und ein Endstück (40) und wenigstens einen Schmelzkanal (14, 38) für den Transport des geschmolzenen Kunststoffes aufweist, wobei dieser wenigstens eine Schmelzkanal (14) sich in das Endstück (40) der Düse (12) erstreckt; und

   einem Dichtungselement (42), welches eng auf dem Endstück (40) der Düse (12) sitzt, wobei das Dichtungselement (42) wenigstens einen Schmelzkanal (56) aufweist, um den geschmolzenen Kunststoff von dem wenigstens einen Schmelzkanal (14, 38) zu der wenigstens einen Spritzungsoffnung (16) zu befördern, wobei dieser wenigstens eine Schmelzkanal (56) in dem Dichtungselement (42) mit dem wenigstens einen Schmelzkanal (14, 38) in der Düse (12) korrespondiert; dadurch gekennzeichnet,

dass das Dichtungselement als Isolierung und als Auslaufschanz für die Spritzungsoffnung (16) zu der Ausnehmung (45, 46) wirkt, wobei das Dichtungselement in der Ausnehmung (46) in der Formenhohlraumplatte (28) angeordnet ist und wenigstens einer Wand, welche diese Ausnehmung (46) definiert, anliegt;

diese Ausnehmung (46) einen Durchmesser aufweist; und

das Dichtungselement (42) einen äusseren Durchmesser (D₂) aufweist, welcher im wesentlichen dem Durchmesser der Ausnehmung (46) entspricht;

wobei die durch Erwärmung verursachte Ausdehnung der Düsenanordnung (12) das Dichtungselement (42) nach aussen drückt, um es gegen die wenigstens eine Wand, welche die Ausnehmung (46) bestimmt, zu drücken;

wobei das Dichtungselement (42) mit der Formenhohlraumplatte (28) in Verbindung steht und Mittel zur Verminderung der von dem Dichtungselement (42) auf die Formenhohlraumplatte (28) übertragenen Wärme aufweist und diese wärmevernichtenden Mittel zwei Blasenrutan (48, 50) und eine Angussnut (52) aufweisen, welche in das Dichtungselement (42) eingefügt sind, wobei die Nuten (48, 50, 52) mit Kunststoff gefüllt sind, welcher als Wärmeisolator wirkt.

2. Spritzgiesssystem nach Anspruch 1, dadurch gekennzeichnet, dass der Dichtungring (42) aus einem Werkstoff mit einem niedrigeren Wärmeausdehnungskoeffizienten hergestellt ist, als der Werkstoff, welcher die Düse (12) bildet, so dass, wenn die Düse (12) erwärmt wird und sich in diesem Dichtungssring (42) ausdehnt, eine Klemmwirkung auftritt, welche eine gute Dichtung zwischen dem wenigstens einen Schmelzkanal (38) in der Düse (12) und dem wenigstens einen Schmelzkanal (56) in dem Dichtungssring (42) gewährleistet.

3. Spritzgiesssystem nach Anspruch 1 oder 2, gekennzeichnet ferner durch:

   wenigstens eine Ausnehmung (18), welche sich entlang der Düse (12) erstreckt;

   wenigstens ein Heizelement (20, 20'), welches in der wenigstens eine Ausnehmung (18) angeordnet ist, um den Kunststoff in den Schmelzkanälen (14, 38) in geschmolzenem Zustand zu erhalten;

   einer Hülse (22), welche einen Teil der Düse (12) umgibt und dazu dient, das wenigstens eine Heizelement (20) in Position zu halten;

   einen ringförmigen Isolator (24), welcher einen Teil der Hülse (22) umgibt; wobei der Isolator (24) ein unteres Endstück (30), welches mit der Formenhohlraumplatte (28) in Verbindung steht, und ein oberes Endstück, welches mit der Düse (12) in Verbindung steht, aufweist; und wobei der Isolator (24) mittels der Hülse (22) in Posi-
Revisions

1. Système de moulage par injection à entrée d’injection latérale étanche, pour trou de coulée à chaud, comprenant :

- une plaque de cavité de moule (28) comportant un évidement (45, 46) muni d’au moins une entrée d’injection (16) ; une buse (12) s’engageant dans l’évidement (45, 46) et comportant, à son extrémité, un embout (40) ainsi qu’au moins un canal de matière en fusion (14, 38) pour transporter de la matière plastique en fusion, au moins un canal (14) de matière en fusion s’étendant dans l’extrémité de l’embout (40) de la buse (12) ; et

- un moyen d’étanchéité (42) embolité et ajusté sur l’extrémité de l’embout (40) de la buse (12), ce moyen d’étanchéité (42) comportant au moins un canal de matière en fusion (56) pour transporter la matière plastique en fusion d’au moins un canal de matière en fusion (14, 38) au moins vers une entrée d’injection (16), au moins un canal de matière en fusion (56) du moyen d’étanchéité (42) s’adaptant au moins à un canal de matière en fusion (14, 38) de la buse (12) ;

caractérisé en ce que

- le moyen d’étanchéité fonctionne comme moyen d’isolation et sert à éviter des fuites de l’entrée d’injection (16) vers l’évidement (45, 46), ce moyen d’étanchéité étant placé dans l’évidement (46) de la plaque de cavité de moule (28) et se trouvant en contact avec au moins une paroi définissant l’évidement (46) ;

- la cavité (46) présente un certain diamètre ; et

- le moyen d’étanchéité (42) présente un diamètre extérieur (D2) exactement égal au diamètre de l’évidement (46), de façon que la dilatation du dispositif de buse (12), du fait du chauffage, presse le moyen d’étanchéité (42) vers l’extérieur pour le sceller contre la paroi au moins unique définissant l’évidement (46) ; et

- le moyen d’étanchéité (42) est en contact avec la plaque de cavité de moule (28) et comporte des moyens pour minimiser la chaleur transférée du moyen d’étanchéité (42) vers la plaque de moule (28), le moyen pour minimiser le transfert de chaleur comprenant deux rainures à bulles (48, 50) et une rainure à film (53) insé- nées dans le moyen d’étanchéité (42), ces rainures (48, 50, 52) remplies de matière plastique servant d’isolateur thermique.

2. Système de moulage par injection selon la revendication 1, caractérisé en ce que

l’anneau d’étanchéité (42) est réalisé dans un matériau présentant un coefficient de dilatation thermique inférieur à celui du matériau formant la buse (12), de façon que, lorsque cette buse (12) est chauffée et se dilate à l’intérieur de l’anneau d’étanchéité (42), cela crée un effet de serrage assurant une bonne étanchéité entre au moins un canal de matière en fusion (38) de la buse (12), et au moins un canal de matière en fusion (56) de l’anneau d’étanchéité (42).

3. Système de moulage par injection selon la revendication 1 ou 2, caractérisé en ce qu’il comprend en outre

- au moins une rainure (18) s’étendant le long de la buse (12) ;

- au moins un dispositif de chauffage (20, 20’) positionné à l’intérieur au moins d’une rainure (18) pour maintenir à l’état fondu la matière plastique se trouvant dans les canaux de matière en fusion (14, 38) ;

- un manchon (22) entourant une partie de la buse (12) et servant à maintenir en place le dispositif au moins d’un chauffage (20) ;

- un isolateur annulaire (24) entourant une partie du manchon (22) ;

- cet isolateur (24) comportant une extrémité inférieure (30) venant en contact avec la plaque de cavité de moule (28), et une extrémité supérieure (34) venant en contact avec la buse (12) ; et

- l’isolateur (24) étant maintenu en place par le manchon (22).