(54) **Improved process for producing linear alkylbenzenes**

Verfahren zur Herstellung von linearen Alkylbenzolen

Procédé pour la production d'alkylbènènes linéaires

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 24.09.1992 IT MI922177

(43) Date of publication of application:

30.03.1994 Bulletin 1994/13

(73) Proprietor: CONDEA AUGUSTA S.p.A.

90143 Palermo (IT)

(72) Inventors:

- Radici, Pierino
 I-22078 Turate (Como) (IT)

- Cozzi, Pierluigi
 I-20014 Nerviano (Milan) (IT)

- Giuffrida, Giuseppe
 I-21042 Caronno Pertusella (Varese) (IT)

- Zatta, Agostino
 I-20097 San Donato Milanese (Milano) (IT)

(74) Representative: Fusina, Gerolamo et al

Via Borgonuovo, 10

20121 Milano (IT)

(56) References cited:

- CHEMICAL ABSTRACTS, vol. 85, no. 1, 5 July 1976, Columbus, Ohio, US; abstract no. 5348j, page 427-428;

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The present invention relates to an improved process for preparing linear alkylbenzenes falling within such range as used in detergency (C₁₀-C₁₄). It is known from JP-A-7616618 (Chemical Abstracts, vol. 55, 5348g) a process for the preparation of linear alkylbenzenes in which benzene is reacted with linear olefins in presence of AlCl₃ as catalyst. The olefins are obtained by partial dehydrogenation of paraffins. The molar ratio benzene:n-olefins is 5 and the reaction temperature is 21 to 60°C. The present invention relates to an integrated process for preparing linear alkylbenzenes having 10-14 carbon atoms in the alkyl chain comprising:

- dehydrogenating n-paraffins to the corresponding n-olefins in a dehydrogenation reactor;
- selectively hydrogenating diolefins formed during the preceding step to convert them into mono-olefins, thus forming a reaction mixture of olefins and paraffins in a hydrogenation reactor;
- adding benzene in said reaction mixture of olefins and paraffins and send the same to the alkylation reactor in the presence of an active catalytic species based on AlCl₃ so as to form an alkylated benzene mixture;
- forming a hydrocarbonaceous catalytic complex between said AlCl₃ catalytic species and the alkylated benzene mixture;
- discharge the mixture from the alkylation reactor and separate said hydrocarbonaceous catalytic complex from said alkylated benzene;
- adding an additional amount of AlCl₃ to said hydrocarbonaceous catalytic complex into the alkylation reactor.

More specifically, in the case of benzene alkylation, the mixture of olefins and paraffins leaving the dehydrogenation reaction, after a preliminary separation of hydrogen and light hydrocarbons, is admixed with benzene and is sent to the alkylation zone together with the AlCl₃ based catalyst.

After leaving the alkylation unit, the mixture is allowed to decant in order to enable a complex of catalyst and hydrocarbons, substantially insoluble in the reaction mixture, to separate; said separated complex is partially recycled to the alkylation mixture.

The raw alkylated liquid is subsequently washed with acid solutions, such as, e.g., hydrochloric acid, or with a solution of sodium hydroxide and finally with water, before being sent to the distillation. In this step, the excess of benzene is first separated and recycled to the alkylation, and subsequently the excess of paraffins are separated together with small amounts of light aromatics. This stream, after make-up with fresh paraffins, is recycled to the dehydrogenation reactor.

The residual mixture of alkylated products is sent to a third distillation tower, in which linear alkylbenzene and the mixture of heavy alkylated species are obtained as the overhead and, respectively, the bottom streams; the latter can be partially recycled to the alkylation reactor.

Linear alkylbenzene can be used in order to be directly converted into benzene-sulfonic acid, or, according to a preferred embodiment, it may be first submitted to a purification treatment with H₂SO₄ or to a hydrogenation treatment in the presence of a nickel or noble metal-based supported catalyst. In that way, a sulfonic acid product is obtained which displays the best colour characteristics even at high ratios of SO₃-organic matter during the sulfonation step.

Recycling the paraffins coming from alkylation to the dehydrogenation reactor preferably requires a purification treatment over a material capable of removing any possible traces of organic chlorine present. An example of such a kind of product may be activated alumina. In that way, the active life time of the dehydrogenation catalyst results to be extended, with obvious financial advantages. Furthermore, the same selectivity of the dehydrogenation reaction results to be considerably improved. In fact, it is well known that during the reaction, besides normal monoolefins, also diolefins, aromatics and lower than C₁₀ cracking products are formed, which must be removed before the alkylation reaction. Furthermore, isomerization reactions take place, with iso-paraffins and iso-olefins being formed.

Besides the reaction conditions (LHSV, T, P and hydrogen:hydrocarbon ratio), the impurities are important, which are present in recycled n-paraffins. In fact, during the alkylations, reactions take place of olefin breakdown and of alkyl- and poly-alkylbenzenes transalkylation, leading to the formation of products with aromatic character displaying a lower boiling point than of linear alkylbenzene.

The amounts and types of these light products are of basic importance as to the usable lifetime of the dehydrogenation catalyst. The use of AlCl₃-based catalyst in benzene alkylation processes leads, as compared to hydrofluoric acid, to a decrease in the contents of such light products in the recycled paraffins, with a consequent improvement in the economic balance as regards the usable life of the dehydrogenation catalyst and the selectivity of the latter.

The aromatic products, prevailing constituent by light alkylbenzenes, are less prone to undergo a cracking reaction on the dehydrogenation catalyst -- which may also lead to carbon formation -- than geminal diphenyls and light diphenylalkanes contained in paraffins coming from alkylation in the presence of HF.

All these products are added to those which are already contained in fresh paraffins and which are directly formed during the reaction of n-paraffin dehydrogenation: in any cases, the average contents of aromatic compounds present in recycled paraffins and conse-
sequently in the other streams leaving the dehydrogenation reactor, are lower.

The dehydrogenation is carried out according to well-known procedures for those skilled in the art. Thus, the reaction is carried out in the presence of a catalyst comprising a noble metal, suitably supported on porous material: the catalyst basically comprises an element from platinum group at a level of from 0.01 to 2%, an alkali or alkaline-earth metal, at a level of from 0.1 to 5%; it may furthermore contain a component selected from one or more of the following:

* tin from 0.1 to 1%,
* indium from 0.1 to 1%,
* thallium from 0.1 to 1%.

In those cases when indium and thallium are simultaneously present, they are present in such amounts that

* \(\text{In/Th} \geq 0.3 \)
* \(\text{Pd/(In+Th)} \geq 1.5 \)

Still according to the prior art, the dehydrogenation reaction is carried out at a temperature comprised within the range of from 400 to 600°C, under a pressure comprised within the range of from 9.8 to 980.7 kPa (0.1 to 10 kg/cm²) and with a space velocity (LHSV) comprised within the range of from 0.1 to 100 h⁻¹; the ratio of hydrogen to paraffins is comprised within the range of from 0.5 to 20, by mol.

During the process of dehydrogenation of paraffins into olefins, notably negligible amounts of dieolefins are formed. On an absolute basis, their level depends on the conversion rate and on the conditions of the same process. Their presence leads subsequently, during the alkylation reaction, to the formation such impurities, such as tetraols in the alkylbenzene; and of high-boiling heavy products such as, e.g., diphenylalkanes and higher-molecular-weight tetraols and indanes. Therefore, selectively hydrogenating dieolefins in order to convert them into monoolefins may prove advantageous in order to reduce the outlined drawbacks.

The hydrogenation is carried out on a stationary bed catalyst based on nickel supported on alumina, partially poisoned, or on a noble metal based catalyst such as palladium supported on carbon. In any case, the ratio of \(\text{H}_2/\text{dieolefins} \) is kept higher than 1, and is generally comprised within the range of from 1.1:1 to 5:1, according to the catalyst and to the process conditions selected. Also the choice of the position of the different steps in the general scheme of the production process is important. In particular, the selective hydrogenation may be carried out upstream or downstream from the tower of separation of cracking products from olefin-paraffin mixture coming from the dehydrogenation step.

The reaction can be carried out at a temperature comprised within the range of from 50 to 250°C, according to the type of catalyst used and under a pressure comprised within the range of from 98.07 to 1961.4 kPa (1 to 20 kg/cm²), whilst the space velocity of the liquid hydrocarbon stream may be comprised within the range of from 0.5 to 20 h⁻¹. In that way, yields of olefin conversion of up to 100% are obtained with selectivity rates up to 90%.

The alkylation reaction is carried out after mixing the reactants (olefins in paraffin and benzene) inside the reactor, together with \(\text{AlCl}_3 \). According to a preferred embodiment, the fresh catalyst is added to the hydrocarbonaceous catalytic complex which is recycled and fed to the reactor.

The catalyst amount used is generally comprised within the range of from 0.05 to 10% by mol, relatively to the olefin, and the molar ratio of benzene to olefin is comprised within the range of from 1:1 to 20:1, preferably from 3:1 to 15:1. The reaction is generally carried out at a temperature comprised within the range of from 20 to 80°C, under a pressure comprised within the range of from 98.07 to 490.35 kPa (1 to 5 kg/cm²), over times which usually range from 5 to 180 minutes.

The separation of the aluminum-chloride-based hydrocarbonaceous catalytic complex makes it possible that catalyst portion which is still active to be used again, and the catalytic activity to be kept constant by means of the addition of fresh \(\text{AlCl}_3 \). The addition of the latter to the complex catalyst causes a very active catalytic species to be formed. In fact, the presence of a heterogeneous catalytic phase makes it possible the reaction of transalkylation of polyalkylated species formed from the reaction of benzene with olefin to be activated, with high yields of linear alkylbenzene being obtained and the residual alkylated products with higher molecular weight values to be decreased.

It is well known that \(\text{AlCl}_3 \) requires the presence of a cocatalyst to be transformed into an active species for alkylation. For that purpose, generally such compounds are used as water and/or hydrochloric acid, with different active species being obtained. According to a preferred embodiment, water is added in a regular mode by controlling the humidity in the reactants, in particular in benzene. The ratio of \(\text{H}_2\text{O} \) to \(\text{AlCl}_3 \) may be comprised within the range of from 1 to 100% by mol, and preferably of from 5 to 50%.

To the alkylation reactor, the high-boiling products recovered from the bottom of alkylbenzene distillation tower can be recycled. Their amount may be as high as about 50% of total weight of olefin charged together with the paraffin.

In that way, their recovery is favoured with the transalkylation reaction being developed up to thermodynamic equilibrium values.

The alkylbenzene [LAB] obtained according to the process of the present invention displays better characteristics in term of purity and overall linearity. The contents of cyclic compounds, such as dialkyl-tetraols and dialkyl-indanes are reduced to values lower than 2%.
preferably lower than 1%, and the linear alkylbenzenes reach purity values higher than 95%. Such purity values reduce the need for a burdensome process of subsequent purification by treatment with sulphuric acid in order to obtain end alkylbenzene sulfonates with light colour and good stability over time.

Furthermore, the high contents of linear alkylbenzenes also accelerates the subsequent biodegradation of the respective sulfonic acid in waste liquors. This is a very important feature, when one considers that more and more stringent rules for products which are as environmentally compatible as possible are being passed from day to day.

It should be finally observed that the high level of 2-phenyl-isomers supplies sodium alkylbenzene sulfonate with high water solubility and good viscosity values, thus making it suitable for use above all in liquid detergent formulations.

The high-boiling products are prevalingly (>85%) constituted by polyaalkylates having molecular weight >320, with a high fraction of dialkylates having molecular weight >360. These characteristics open wide application possibilities for use as high molecular weight sulfonic acid particularly used in the sector of lubrication. Their value is such as to transform a material which practically is a byproduct, into a novel, high-added-value product.

EXAMPLE 1

A mixture, in gas phase, of hydrogen and normal C_{10}-C_{13} paraffin in a molar ratio of 8 is sent to a tubular reactor containing a solid dehydrogenation catalyst as a 250-mm thick bed, kept at a temperature of 485°C under a pressure of 196.1 kPa (2.0 kg/cm²), with a hourly space velocity, evaluated on the liquid paraffin feedstock, of 21 h⁻¹ (volumes of liquid paraffin at 20° per catalyst volume per hour). The reactor leaving mixture, after hydrogen and light products from cracking being separates, displays a content of olefin of 12.5%, with a bromine number of 12.11 (as determined according to the ASTM method).

The analysis of the dehydrogenation mixture under steady-state conditions, carried out by HPLC, yields the following composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>paraffin</td>
<td>85.0%</td>
</tr>
<tr>
<td>monolein</td>
<td>11.9%</td>
</tr>
<tr>
<td>diolefin</td>
<td>0.6%</td>
</tr>
<tr>
<td>aromatics</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

To such a mixture, benzene is added in a molar ratio of 8:1 relatively to the olefin content, and the resulting mixture is fed, together with a suspension of 10% anhydrous aluminum chloride in C_{10}-C_{13} paraffin, to the bottom of an alkylation reaction. The temperatures of the feedstock streams are so adjusted as to realize a temperature of 55°C inside the alkylation reactor.

The reactor used in this test has a cylindrical shape with a height/diameter ratio of 5:1, is equipped with a stirrer consisting of 5 turbines arranged at regular distances along the shaft and revolving at 150 rpm. It additionally is provided, inside its interior, with 4 separation baffles installed at regular distances between the blades, and provided with a central hole of 40% of inner reactor diameter, and with 4 vertical baffles installed along the wall of the reactor. An outer skirt for water circulation makes it possible the reactor to be precisely thermostatted at any desired temperatures.

After a one hour stay inside the reactor, the reaction mixture is discharged from top reactor end and is allowed to decant inside a non-stirred cylindrical tank having a ratio of height to diameter of 5:1, and with such a capacity as to ensure a stay time of 45 minutes.

In that way, the separation of the hydrocarbons-catalytic complex is accomplished: a portion thereof is recycled in such an amount that inside the alkylation reactor approximately 5 parts by weight of such a product is present, with the residual portion being sent to disposal.

After being washed with an aqueous solution of HCl at 5% and subsequently with water inside two towers arranged in cascade, the raw alkylated liquid is sent to the distillation.

This process step is carried out inside three towers installed in cascade: inside the first and second towers, benzene and respectively paraffins and other light hydrocarbons are separated, and inside the third column an overhead stream of linear alkylbenzene and a bottom stream of high-boiling alkylated products are recovered.

The paraffins separated in the second tower are recycled to the dehydrogenation reactor together with the topping-up paraffins. The high-boiling alkylated products are partially recycled to the alkylation reactor in such an amount that under steady-state conditions approximately 4 parts by weight is present.

When the whole process has reached its steady-state conditions, the composition of the stream fed to the dehydrogenation reactor is as follows:

* paraffins 69.3 parts by weight
* hydrogen 13.73 parts by weight

wherein the paraffins are constituted as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-C_{10}</td>
<td>15.4%</td>
</tr>
<tr>
<td>n-C_{11}</td>
<td>33.2%</td>
</tr>
<tr>
<td>n-C_{12}</td>
<td>27.5%</td>
</tr>
<tr>
<td>n-C_{13}</td>
<td>19.4%</td>
</tr>
<tr>
<td>n-C_{14}</td>
<td>0.2%</td>
</tr>
<tr>
<td>branched hydrocarbons</td>
<td>4.3%</td>
</tr>
</tbody>
</table>

and the hydrogen stream is composed by:
* H₂ = 92.4%
* C₁ = 1.61%
* C₂ = 4.18%
* C₃ = 1.65%
* C₄ = 0.16%

The resulting linear alkylbenzene [LAB] product displays the following characteristics, as determined according to the usual techniques:

| Gas-chromatography |
|-------------------|------------------|
| <n-phenyl-C₁₀ = | 0.46% |
| n-phenyl-C₁₀ = | 14.81% |
| n-phenyl-C₁₁ = | 32.92% |
| n-phenyl-C₁₂ = | 28.83% |
| n-phenyl-C₁₃ = | 19.77% |
| n-phenyl-C₁₄ = | 0.20% |
| total n-phenyl-C₁₀-C₁₃’s = | 96.53% |
| dialkyl tetraëns = | 0.75% |
| isoo alkyl benzenes = | 2.26% |
| 2-phenylisomer = | 30.10% |
| bromine number = | 20 mg of Br/100 g |
| chlorine = | 8 ppm |

The heavy alkylated product separated by distillation displays the following characteristics:

* Residual LAB : 0.8% [1]
* Alkyl-polialkylbenzenes = 91.85% [2]
* Naphthalenes = 2.60% [3]
* Dinaphthenebenzenes = 0.58% [2]
* Tetraëns, indanes = 3.65% [2]
* Molecular weight : 340.5
* Gardner colour = 7.

In an analogous way, the alkylation mixture is constituted as follows:

* mixture from dehydrogenation reactor (8.44 parts of olefin) = 67.5 parts
* benzene = 32.5 parts
* AlCl₃ = 0.1 parts
* high-boiling alkylates = 4.0 parts
* Hydrocarbonaceous catalytic complex = 6.0 parts

wherein the total amount of water added together with the reactants is 0.002 parts.

Under steady-state conditions, the following results are obtained:

** Raw materials

per each 1000 parts of linear alkylbenzene [LAB]

<table>
<thead>
<tr>
<th>865 parts of n-paraffin</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 parts of benzene</td>
</tr>
<tr>
<td>8 parts of AlCl₃</td>
</tr>
</tbody>
</table>

** Other products:

<table>
<thead>
<tr>
<th>hydrogen and hydrocarbons</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>heavy alkylates</td>
<td>150</td>
</tr>
</tbody>
</table>

- wherein the "n-paraffins" are constituted as follows:

<n-C₁₀ =	0.05%
n-C₁₀ =	10.29%
n-C₁₁ =	31.73%
n-C₁₂ =	30.83%
n-C₁₃ =	26.14%
>n-C₁₃ =	0.60%
iso-paraffins =	0.31%
aromatics =	0.25%

** Example 2

The same mixture coming from the dehydrogenation reactor and constituted by paraffins and 12.5% of olefin, used in Example 1, was sent to the alklylation reactor, so as to have, under steady-state conditions, at a temperature of 60°C, the following composition in the reactive system:

* mixture from dehydrogenation reactor = 67.5 parts
* benzene = 32.5 parts
* AlCl₃ = 0.2 parts
* high-boiling alkylates = 4.0 parts
* hydrocarbonaceous catalytic complex = 6.0 parts

wherein the total amount of water added together with the reactants is 0.01 parts.

The linear alkylbenzene produced after the removal of benzene and paraffins according to the above disclosed methodology displays the following characteristics:

n-phenyl-C₁₀-C₁₃’s =	95.6%
tetraëns =	1.0%
iso alkyl benzenes =	3.0%
2-phenylisomers C₁₀-C₁₃ =	29.8%
bromine number =	22 (ASTM)

The heavy alkylated product separated from the bottom of the distillation tower displays the following composition:
Residual LAB : 2.1% [1]
Alkyl-polyalkylbenzenes = 86.5 [2]
Diphenyl-alkane-acenaphthenes = 5.0 [2]
Naphthenes = 1.6 [2]
Dinaphtheno-benzenes = 1.7 [2]
Tetralins, indanes = 5.2 [2]
Molecular weight : 361.3

Under steady-state conditions, the following results are obtained:

raw materials per each 1000 parts of linear alkylbenzene [LAB]

827 parts of paraffin
335 parts of benzene
15 parts of AlCl₃

other products

<table>
<thead>
<tr>
<th>Hydrogen and light hydrocarbons</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy alkylates</td>
<td>96</td>
</tr>
</tbody>
</table>

EXAMPLE 3

The mixture of paraffins and olefins from the dehydrogenation reactor maintained under the same conditions as of Example 1 is submitted to a reaction of selective hydrogenation of the diolefins contained in it. The mixture having the same composition as indicated as of Example 1 is admixed with hydrogen in a molar ratio, relatively to diolefins, of 1.15 and is subsequently fed to a reactor containing a solid catalyst composed by 0.25% of palladium on aluminia. The reactor has a ratio of height/diameter of 8.1 and operates at a temperature of 80°C with a pressure of 3 kg/cm. By operating with an LHSV of 3, the overhead mixture leaving the reactor top has the following composition:

- paraffin 85.2%
- monolefin 12.3%
- diolefin not measurable
- aromatics 2.5%

Such a mixture is sent to the alkylation reactor so as to have, under steady-state conditions, at a reaction temperature of 50°C, the following composition in the reactant system:

- Paraffin-olefin-aromatic mixture 67.5 parts
- Benzene 32.5 parts
- AlCl₃ 0.1 parts
- High-boiling alkylates 2.0 parts
- Hydrocarbonaceous catalytic complex 2 parts

wherein the total amount of water added together with the reactants is 0.002 parts

Upon leaving the reactor, the mixture is treated as disclosed in Example 1, and, after the excess of benzene and the paraffins being separated, an overhead distilled stream of linear alkylbenzene product is obtained which displays the following characteristics:

<table>
<thead>
<tr>
<th>n-phenyl-C₁₀⁻C₁₃’s</th>
<th>97.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetralins</td>
<td><0.5%</td>
</tr>
<tr>
<td>Iso alkyl benzenes</td>
<td>2.3%</td>
</tr>
<tr>
<td>2-phenylisomers C₁₀⁻C₁₃</td>
<td>30.1%</td>
</tr>
<tr>
<td>Bromine number</td>
<td>18 mg of Br/100 g</td>
</tr>
<tr>
<td>Chlorine</td>
<td>7 ppm</td>
</tr>
</tbody>
</table>

The heavy alkylation product separated on the bottom of the distillation tower displays the following composition:

G Cₒ₂₃ residual LAB : 1.2%

Mass analysis:

- alkyl-polyalkylbenzenes : 93.1%
- diphenylalkanes-acenaphthenes : 2.6%
- naphthenes : 1.3%
- tetralins-indanes : 3.0%

Molecular weight = 327.5
Under steady-state conditions, from the alkylation the following mass balance data are obtained:

- 155 parts of heavy alkylates
- 1000 parts of charged LAB.

The overall data relevant to the whole production process, relatively to the production of 1000 parts of LAB are as follows:

- 868 parts of paraffin
- 352 parts of benzene
- 8 parts of AlCl₃

EXAMPLE 4

The olefin-paraffin mixture, having the same composition as disclosed at Example 3, is sent to the alkylation reactor after being mixed with benzene, so that under steady-state conditions at 65°C, the following composition of the reaction system is obtained:

- Olefin-paraffin-aromatics mixture 67.5 parts
- Benzene 40 parts
- AlCl₃ 0.12 parts
- High-boiling alkylates 4.0 parts
- Hydrocarbonaceous catalytic complex 4.0 parts

[1] as determined by gas-chromatography
[2] as determined by mass analysis
wherein the total amount of water added together with the reactants is 0.005 parts.

Upon leaving the reactor, the mixture is treated as disclosed in Example 1, and, after the excess of benzene and the paraffins being separated, an overhead distilled stream of linear alkylbenzene product is obtained which displays the following characteristics:

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-phenyl-C_{10}C_{13} 's</td>
<td>96.6%</td>
</tr>
<tr>
<td>2-phenylisomer</td>
<td>30.0</td>
</tr>
<tr>
<td>tetralins</td>
<td>0.7%</td>
</tr>
<tr>
<td>iso alkyl benzenes</td>
<td>2.5%</td>
</tr>
<tr>
<td>bromine number</td>
<td>20 mg of Br/100 g</td>
</tr>
<tr>
<td>chlorine</td>
<td>10 ppm</td>
</tr>
</tbody>
</table>

The heavy alkylated product separated at the bottom of the distillation tower displays the following composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>residual LAB</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Mass analysis:

- alkyl-polyalkylbenzenes : 91.8%
- diphenylalkanes-acenaphthenes : 2.9%
- naphthalenes : 1.4%
- tetrathalenes-indanes : 3.9%

Molecular weight = 388.5

Under steady-state conditions, from the alklylation the following mass balance data are obtained:

- 52 parts of heavy alkylates per 1000 parts of charged LAB.

The overall balance data relevant to the whole process of dehydrogenation of the paraffins, of selective dehydrogenation of the diolefins and of benzene alklylation, relevant to the production of 1000 parts of LAB, are the following:

- 788 parts of paraffin
- 330 parts of benzene
- 10 parts of AlCl₃

Conditions of the several steps of continuous process.

Claims

1. Integrated process for preparing linear alkylbenzenes having 10-14 carbon atoms in the alkyl chain comprising:
 - dehydrogenating n-paraffins to the corresponding n-olefins in a dehydrogenation reactor;
 - selectively hydrogenating diolefins formed during the preceding step to convert them into mono-olefins, thus forming a reaction mixture of olefins and paraffins in a hydrogenation reactor;
 - adding benzene in said reaction mixture of olefins and paraffins and sending the same to the alkylation reactor in the presence of an active catalytic species based on AlCl₃ so as to form an alkylated benzene mixture;
 - forming a hydrocarbonaceous catalytic complex between said AlCl₃ catalytic species and the alkylated benzene mixture;
 - discharge the mixture from the alkylation reactor and separate said hydrocarbonaceous catalytic complex from said alkylated benzene;
 - adding an additional amount of AlCl₃ to said hydrocarbonaceous catalytic complex;
 - recycling said AlCl₃ hydrocarbonaceous catalytic complex into the alkylation reactor.

2. Process for preparing linear alkylbenzenes according to claim 1 characterized in that the alkylation reaction is carried out in the presence of an amount of AlCl₃ which may range from 0.05 to 10 mol%, based on n-olefin.

3. Process for preparing linear alkylbenzenes according to one or more of claims from 1 to 2, characterized in that the alkylation reaction is carried out at a molar ratio of benzene:n-olefins comprised within the range of from 1:1 to 20:1.

4. Process for preparing linear alkylbenzenes according one or more of the preceding claims, characterized in that the alkylation reaction is carried out at a temperature comprised within the range of from 20 to 80°C.

5. Process for preparing linear alkylbenzenes according one or more of the preceding claims, characterized in that the alkylation reaction is carried out under a pressure comprised within the range of from 98.07 KPa to 490.35 KPa (1 to 5 kg/cm²).

Patentansprüche

1. Integriertes Verfahren zur Herstellung linearer Alkylbenzole mit 10 - 14 Kohlenstoffatomen in der Alkyllkette, umfassend:
 - Dehydrieren von n-Paraffinen zu den korrespondierenden n-Olefinen n einem Dehydrierungsreaktor;
 - selektives Hydrieren von Di-Olefinen, welche während des voranstehenden Schritts gebildet wurden, um diese in Mono-Olefine umzu-
wandeln, um dabei eine Reaktionsmischung von Olefinen und Paraffin in einem Hydrierungsreaktor zu bilden;

- Zugabe von Benzol zu der Reaktionsmischung von Olefinen und Paraffinen und Transfer der selben zu einem Alkylierungsreaktor in Gegenwart einer aktiven katalytischen Spezies, welche auf AlCl₃ basiert, um eine alkylierte Benzolmischung zu bilden;

- Bildung eines kohlenwasserstoffhaltigen katalytischen Komplexes zwischen der katalytischen AlCl₃-Spezies und der alkylierten Benzolmischung;

- Entleeren der Mischung aus dem Alkylierungsreaktor und Trennen des kohlenwasserstoffhaltigen katalytischen Komplexes von dem alkylierten Benzol;

- Zugabe einer zusätzlichen Menge an AlCl₃ zu dem kohlenwasserstoffhaltigen katalytischen Komplex;

- Zurückführen des katalytischen kohlenwasserstoffhaltigen AlCl₃-Komplexes in den Alkylierungsreaktor.

2. Verfahren zur Herstellung linearer Alkybenzole entsprechend Anspruch 1, dadurch gekennzeichnet, daß die Alkylierungsreaktion in Gegenwart einer Menge an AlCl₃ durchgeführt wird, welche von 0,05 bis 10 mol-% reichen kann, basierend auf dem n-Olefin.

5. Verfahren zur Herstellung linearer Alkybenzole gemäß einem oder mehreren der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Alkylierungsreaktion unter einem Druck im Bereich von 98,07 kPa bis 490,35 kPa (1 - 5 kg/cm²) durchgeführt wird.

Revendications

1. Procédé intégré pour préparer des alkybenzènes linéaires comportant 10 à 14 atomes de carbone dans la chaîne alkylique, comprenant :

- déshydrogénation des n-paraffines en les n-oléfines correspondantes dans un réacteur de déshydrogénation ;

- dégénération sélective des dioléfines formées au cours l'étape précédente pour les convertir en mono-oléfines, formant ainsi un mélange réactionnel d'oléfines et de paraffines dans un réacteur d'hégénation ;

- addition de benzène au dit mélange réactionnel d'oléfines et de paraffines et envoi de celui-ci au réacteur d'alkylation en présence d'une substance catalytique active à base de AlCl₃ en vue de former un mélange de benzènes alkylés ;

- formation d'un complexe catalytique hydrocarboné entre ladite substance catalytique AlCl₃ et le mélange de benzènes alkylés ;

- évacuation du mélange du réacteur d'alkylation et séparation dudit complexe hydrocarboné catalytique dudit benzène alkylé ;

- addition d'une quantité supplémentaire d'AlCl₃ au dit complexe hydrocarboné catalytique ;

- recyclage dudit complexe hydrocarboné catalytique AlCl₃ au réacteur d'alkylation.

2. Procédé de préparation d’alkybenzènes linéaires selon la revendication 1, caractérisé en ce qu’il met en oeuvre la réaction d’alkylation en présence d’une quantité d’AlCl₃ pouvant être de 0,05 à 10 % en moles, par rapport à la n-oléfine.

3. Procédé de préparation d’alkybenzènes linéaires selon une ou plusieurs des revendications 1 à 2, caractérisé en ce qu’il met en oeuvre la réaction d’alkylation dans un rapports molaire du benzène : n-oléfines compris dans l’intervalle de 1:1 à 20:1.

4. Procédé de préparation d’alkybenzènes linéaires selon une ou plusieurs des revendications précédentes, caractérisé en ce qu’il met en oeuvre la réaction d’alkylation à une température comprise dans l’intervalle entre 20 et 80°C.

5. Procédé de préparation d’alkybenzènes linéaires selon une ou plusieurs des revendications précédentes, caractérisé en ce qu’il met en oeuvre la réaction d’alkylation sous une pression comprise entre 98,07 KPa et 490,35 KPa (1 à 5 kg/cm²).