An image recording apparatus
Bildaufzeichnungsgerät
Dispositif d’enregistrement d’images

Designated Contracting States:
DE FR IT NL

Priority: 09.09.1992 GB 9219050

Date of publication of application:
16.03.1994 Bulletin 1994/11

Proprietor: QUANTEL LIMITED
Newbury Berkshire RG13 2LT (GB)

Inventor: Owen, David Peter
Near Reading, Berkshire RG7 4TR (GB)

Representative: Whitten, George Alan et al
R.G.C. Jenkins & Co.,
26 Caxton Street
London SW1H 0RJ (GB)

References cited:

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The invention relates to an image recording apparatus and to a device for use in an image recording apparatus.

Electronic image processing apparatus is now widely used to modify images. Electronic graphics systems enable the painting or drawing of an image to be simulated and enable the merging of one image into another. Electronic graphics systems thus allow an original image to be generated or an initial image to be modified, for example by re-touching portions of the image, wholly within an electronic environment. Other image processing systems enable an image to be transformed so that for example its position in three dimensional shape appears to alter or the image appears to be applied to the surface of an object.

Images are represented electronically as an array of data defining respective image elements, or pixels. The pixel data may be generated internally by the system, as in the case where an image is painted, or it may be extracted from another medium, as in the case where an image on say a film is scanned electronically. Once an image has been created, modified and/or transformed to the satisfaction of the user of the system, the pixel data can be output through an output device which applies the image defined by the data to a medium such as paper or film. Printers can be used to transfer the image to paper, film, etc., and image recorders can be used to transfer the image to photographic film or other light sensitive media.

Image recorders are used in the movies industry to transfer modified movie frames back onto film on a frame-by-frame basis. A schematic diagram of a typical image recorder is shown in Figure 1 of the accompanying drawings. Referring to Figure 1, an image recorder system 1 comprises a store 2 for storing data representing pixels of an image. Typically, the image may be defined by 2560 x 2048 pixels, though of course larger or smaller images may instead be defined by the data in the store 2. Data is scanned from the store 2 at a row at a time under the control of an x, y address scanner 3. The data scanned from the store 2 is applied to an analogue-to-digital converter 4 which converts it to a signal which is applied to a cathode ray tube 5. The cathode ray tube 5 also receives h, v address signals from the scanner 3 thereby causing the beam to scan across the screen 6 of the cathode ray tube 5 in synchronism with the scanning of the data from the store 2. The recorder system 1 further comprises a camera 7 having a filter 8 and a lens 9 which focuses the image displayed on the screen 6 onto a film 10.

In use, the electronic image is scanned three times onto the screen 6, one for each red, green and blue separation with the appropriate filter placed over the lens 9 during each scan. It typically takes about 30 seconds to scan each separation and thus takes about three times that period to scan the whole image onto the film 10.

Once an image has been transferred to the film 10, new image data can be written into the store 2 and the film 9 advanced in the camera 7 in readiness for the scanning of the next processed image frame. One type of image recorder presently available is the "Solitaire" recorder by Management Graphics Inc.

There is a problem associated with image recording apparatus as described hereinabove, namely that of so-called haloing which occurs as a result of internal reflection in the screen 6 of the cathode ray tube 5. Turning now to Figure 2 of the accompanying drawings, there is shown a cross section through the screen 6 of a cathode ray tube. The screen 6 comprises a face plate 11 having deposited on one face a phosphor layer 12. In use, the phosphor layer 12 is excited by a scanning electron beam 13 causing the phosphor to emit light through the face plate 11. Most of the light passes through the face plate 11 and, as shown in Figure 3, is seen as a dot of light 14 on the screen 6. However, a significant proportion of the emitted light is reflected internally in the face plate 11 before passing out of the same. As shown in Figure 2, the majority of the reflected light 15 is reflected back out through the face plate and this primary reflection is seen as a halo 16 on the screen 6 (see Figure 3). The size of the halo 16 caused by the primary reflections 15 depends on the physical thickness and the constitution of the face plate 11 but typically will have a radius of about 15mm. In addition to the halo caused by the primary reflections there is an overall uplifting of the level of light seen on the screen caused by secondary reflections 17 where the light is reflected several times internally before passing out through the face plate.

The halo 16 is an area of illumination on the screen where there should be none and it will be appreciated that as the dot 14 is scanned across the screen 6 the halo 16 will move with it. Thus, in addition to a point or dot of light being directed as an image onto a corresponding point or dot on the film, the halo image causes the corresponding area of film to become fogged. As the halo moves across the screen the whole of the image frame on the film will become fogged thereby. The degree of fogging of the image on the film depends on the mean brightness of the electronic image represented by the pixel data in the store 2. The effect of fogging is to increase the overall brightness of the image on the film so that areas which should be black in fact appear as grey.

WO-A-87/01891 was cited by the European Patent Office during examination and describes a colour video printer for producing a colour photographic copy from a colour video signal. The printer comprises a monochrome cathode ray tube and a rotatable filter wheel having colour filters sequentially movable in front of the tube to filter monochrome images displayed thereon. Light from the filters is focused onto a photographic element to produce a full colour image thereon.

According to one aspect of the present invention there is provided an image recording apparatus com-
prising a raster scan display screen for displaying an image defined by electronic data, the display screen being arranged to display the image over a period of time by scanning a point of light thereon; and a focusing means for focusing the image displayed on the display screen onto a light sensitive medium, characterised by a masking means placed over the display screen, the masking means comprising a movable plate having an aperture; and positioning means for positioning the aperture over the point of light as the point of light is scanned to allow light therefrom to pass through the aperture, the aperture being dimensioned to prevent unwanted light caused by the displaying of the image on the display screen from being focused onto said light sensitive medium.

According to another aspect of the invention there is provided a device for use in an image recording apparatus in which electronic data representing an image is used to drive a scanning display to display the image over a period of time by scanning a point of light thereon and a light sensitive medium is exposed to the displayed image in order to record the image on said light sensitive medium; the device characterised by masking means positionable over the scanning display and comprising a movable plate having an aperture dimensioned to prevent unwanted light caused by the displaying of the image on the display passing through the masking means; and positioning means for positioning the masking means on the display, the positioning means being cooperable with the display so as to synchronise the positioning of the masking means with the scanning of the image such that the aperture is positioned over the point of light as the point of light is scanned to allow light therefrom to pass through the aperture.

The above and further features of the invention are set forth with particularity in the appended claims and together with advantages thereof will become clearer from consideration of the following detailed description of an exemplary embodiment of the invention given with reference to the accompanying drawings.

In the drawings:

Figure 1 is a schematic diagram of a known image recorder, as described hereinabove;

Figure 2 is a schematic cross section through the screen of a cathode ray tube, as described hereinabove;

Figure 3 is a schematic view of the screen of Figure 2, as described hereinabove;

Figure 4 is a schematic diagram of an image recorder embodying the invention;

Figure 5 is a schematic plan view of the image recorder of Figure 4 viewed in the direction x-x;

Figure 6 illustrates exemplary images and the density in images obtained using the systems of Figure 1 and Figure 4.

Turning now to Figure 4 of the accompanying drawings an image recorder system 20 embodying the invention is shown. In Figure 4 parts of the image recorder system 20 which are identical to corresponding parts of the image recorder system 1 of Figure 1 are designated by the same legend as in Figure 1. Reference is made to the description of those parts common to both recorder systems. The recorder system 20 further comprises a travelling mask 21 positioned over the screen 6 of the cathode ray tube 5. The mask 21 is mounted to a conveyer 22 which is driven by a servo motor 23 controlled by a motor control unit 24 coupled to the address scanner 3.

Figure 5 shows a schematic plan view of the recorder system 20 viewed in the direction of arrows x-x in Figure 4. As can be seen from Figure 5, the mask 21 defines an elongate aperture or slot 25 and has a width w at least equal to the diameter of the halo 16. The control unit 24 (see Figure 4) is arranged to synchronise movement of the mask 21 over the screen 6 with the reading of pixel data from the store 2 and display of corresponding pixels on the screen 6. The slot 25 has a length at least equal to the length of a line in the image as displayed on the screen and the mask 21 moves over the screen 6 as successive lines in the image are scanned. It will be appreciated that the effect of the mask is to blank out most of the halo 16 thereby preventing it from being seen by the camera 7.

The exact size of the slot 25 depends on the optical geometry of the system 20. Ideally, the slot would be of a width corresponding to that of a single line as displayed on the screen 6, i.e. the diameter of the dot of light 14. However, it is not possible to achieve this in practice because of the difficulty in machining such a narrow slot and because of the limitation in the accuracy of positioning the servo motor. Furthermore, the mask must be positioned out of contact with the screen 6 in order to avoid damage to the screen and is of finite thickness. The slot 25 must be wide enough to allow the light from the dot 14 to pass therethrough to the camera 7.

A slot 3mm wide defined in a mask positioned 1mm above the screen 6 has been found to be acceptable in a recorder system where the lens of the camera is approximately 250mm away from the screen. Such a slot has a width corresponding to several image lines and thus the degree of accuracy required in positioning the slot in relation to the line currently being scanned is not great. Whilst such a slot allows portions 16a, 16b of the halo 16 to pass therethrough the fogging effect of these portions 16a, 16b is relatively insignificant.

An advantage of using a slotted mask 21 will now be explained with reference to the graphs shown in Figure 6 of the accompanying drawings. Figure 6(a) shows an image 26 comprising a large area 27 of black on a background 28 of white. For the purpose of illustration it is assumed that the area 27 has a maximum value of black and that the background 28 has a maximum value of white. Figure 6(b) shows a graph of image density
along a line 29 in the image 26. The image 26 has a maximum density at positions on the line 29 which lie within the area 27 and a minimum density at positions on the line 29 which lie within the background 28. The broken-line plot 30 in Figure 6(b) represents the ideal image density situation, zero density in the background 28 and maximum in the area 27. The continuous-line plot 31 represents the density of the image transferred to film using the known system 1 shown in Figure 1. The effect of the halo is to reduce the density of the image on film so that the area on the film appears to be less black, i.e. greyer, than it should be. In other words, the overall brightness of the image on film is raised and the contrast between maximum black and maximum white is reduced.

Figure 6(c) shows a second initial image 32 comprising a smaller area 33 of black on a background 34 of white and Figure 6(d) is a graph of image density along a line 35 in the image 32. In Figure 6(d) a broken-line plot 36 represents the ideal situation of maximum density within the area 33 and zero density outside the area 33. The image density in an image transferred to film using the known system 1 of Figure 1 is represented by a continuous-line plot 37 in Figure 6(d). It will be seen that the maximum value of image density in plot 36 is considerably less than the ideal of plot 35 and indeed is less than the maximum of plot 31 in Figure 6(b). This reduction in plot 36 as compared to plot 31 is due to the increase in the size of the background as between image 26 and image 32. An increase in the size of the white background results in the halo being displayed on the screen of the cathode ray tube 5 in the known system 1 for a greater period of time and thus a greater degree of fogging occurs in the black area 33. In general, the degree of fogging in an image is proportional to the mean brightness of the image using the known system 1.

Figures 6(e) and 6(f) show graphs, similar to those in Figures 6(b) and 6(d), for images transferred to film using the system 20 of Figures 4 and 5. Again the ideal situation of maximum density in areas corresponding to areas 27 and 33 are shown by broken-line plots 38 and 39 respectively. A continuous-line plot 40 represents the density in the image 26 transferred to film using the system 20 and continuous-line plot 41 represents the density in the image 32 transferred to film using the system 20. The maximum density values in plots 40 and 41 are not reduced significantly, if at all, from the ideal maximum because in the system 20 most of the halo 17 which causes fogging is blanked out by the mask 21.

In the above described system 20 the mask 21 is an elongate member in which is defined a slot 25 at least equal in length to that of an image line. It will be appreciated by those possessing the appropriate skills that the mask 21 could be replaced by a mask only slightly greater in size than the halo 16 and having a circular aperture at the centre of the mask. Such a mask would move over the screen with the point of light as the image was scanned. However, in practice such an arrange-

ment would be complex to implement since the mask would need to be moved both from one side to the other of the screen and from top to bottom. Furthermore, the main advantage in using such an arrangement would be to blank out portions 18a and 18b of the halo but since the contribution of these portions to fogging is very little, the over all improvement in image density as compared to that using an elongate slot mask would be minimal.

Furthermore, having thus described the present invention by reference to a preferred embodiment it is to be well understood that the embodiment in question is exemplary only and that modifications and variations such as will occur to those possessed of appropriate knowledge and skills may be made without departure from the scope of the invention as set forth in the appended claims.

Claims

1. An image recording apparatus comprising:

 a raster scan display screen (6) for displaying an image defined by electronic data, the display screen being arranged to display the image over a period of time by scanning of a point of light thereover; and

 a focusing means (9) for focusing the image displayed on the display screen onto a light sensitive medium, characterised by a masking means (21) placed over the display screen, the masking means comprising a movable plate having an aperture, and positioning means (23, 24) for positioning the aperture over the point of light as the point of light is scanned to allow light therefrom to pass through the aperture, the aperture being dimensioned to prevent unwanted light caused by the displaying of the image on the display screen from being focused onto said light sensitive medium.

2. An apparatus as claimed in claim 1, further comprising a framestore (2) having a multiplicity of storage locations for storing said electronic data.

3. An apparatus as claimed in claim 1, wherein the display screen (6) comprises a multiplicity of scan lines over which the point of light is scanned and the aperture comprises an elongate slot (25) disposed substantially parallel to said scan lines having a length at least equal to that of a scan line and a width which limits the light transmitted therethrough mainly to the scan line being traversed by the light.

4. An apparatus as claimed in claim 2, wherein the positioning means comprises an address scanner (3)
for generating horizontal and vertical scanning signals for controlling the scanning of the point of light over the display screen and for generating corresponding address signals for addressing storage locations in said framestore.

5. An apparatus as claimed in claim 4, wherein the positioning means further comprises:

- a servo motor (23) coupled to the masking means for moving the same over the display screen; and
- controlling means (3, 24) connected to the servo motor and to the address scanner and responsive to said address signals for synchronising the location of the masking means with the scanning of the point of light over the display screen.

6. An apparatus as claimed in claim 1, wherein the focusing means further comprises filtering means to enable different colour separations to be focused individually onto said light sensitive medium.

7. A device for use in an image recording apparatus in which electronic data representing an image is used to drive a scanning display (6) to display the image over a period of time by scanning a point of light theretoever and a light sensitive medium is exposed to the displayed image in order to record the image on said light sensitive medium, the device being characterised by

- masking means (21) positionable over the scanning display (6) and comprising a movable plate having an aperture dimensioned to prevent unwanted light caused by the displaying of the image on the display passing through the masking means; and
- positioning means (23, 24) for positioning the masking means on the display (6), the positioning means being cooperative with the display so as to synchronise the positioning of the masking means with the scanning of the image such that the aperture is positioned over the point of light as the point of light is scanned to allow light therefrom to pass through the aperture.

8. A device as claimed in claim 7, wherein the scanning display (6) comprises a multiplicity of parallel scan lines and the aperture comprises an elongate slot (25) having a length at least equal to that of a scan line on the display disposed parallel to said scan lines.

9. A device as claimed in claim 7 or 8, wherein the positioning means comprises a servo motor (23) and a control circuit (24) for driving the servo motor, the control circuit (24) being connectable to the scanning display for synchronising the positioning of the masking means with the scanned point of the image on the display.

10. An apparatus as claimed in claims 1 to 6 or a device as claimed in claims 7 to 9, wherein the light sensitive medium comprises a photographic film (10).

Patentansprüche

1. Bildaufzeichnungsvorrichtung, umfassend

- einen Rasterabtastanzeigenbildschirm (5) zur Anzeige eines durch elektronische Daten definierten Bilds, wobei der Anzeigenbildschirm dazu ausgebildet ist, das Bild über einen Zeitraum hinweg anzuzeigen, indem ein Lichtpunkt darüber hinwegbewegt wird, und
- eine Fokussiereinrichtung (9) zum Fokussieren des auf dem Anzeigenbildschirm angezeigten Bilds auf ein lichtempfindliches Medium.

gekennzeichnet durch eine auf den Anzeigenbildschirm aufgesetzte Maskierungseinrichtung (21), wobei die Maskierungseinrichtung eine bewegliche Platte mit einer Öffnung umfaßt, sowie durch eine Positionierungseinrichtung (23, 24) zur Positionierung der Öffnung über dem Lichtpunkt, wenn der Lichtpunkt bewegt wird, damit Licht von diesem durch die Öffnung gelangen kann, wobei die Öffnung derart bemessen ist, daß die Fokussierung von unerwünschten, durch die Anzeige des Bilds auf dem Anzeigenbildschirm hervorgerufenem Licht auf das lichtempfindliche Medium vermieden ist.

2. Vorrichtung nach Anspruch 1, ferner umfassend einen Bildspeicher (2) mit einer Mehrzahl von Speicherbereichen zum Speichern der elektronischen Daten.

3. Vorrichtung nach Anspruch 1, bei der der Anzeigenbildschirm (5) eine Mehrzahl von Abtasteilen umfaßt, über die der Lichtpunkt hinwegbewegt wird, und die Öffnung einen im wesentlichen parallel zu den Abtasteilen angeordneten länglichen Schlitz (25) mit einer Länge, die wenigstens gleich derjenigen einer Abtastzeile ist, und einer Breite umfaßt, die das hindurchgelassene Licht hauptsächlich auf die von dem Licht überstrichene Abtastzeile begrenzt.

4. Vorrichtung nach Anspruch 2, bei der die Positionierungseinrichtung einen Adresseblaster (3) zum Erzeugen von horizontalen und vertikalen Abtastsignalen zur Steuerung der Bewegung des Lichtpunkts über den Anzeigenbildschirm und zum Erzeugen von entsprechenden Adresseignalen zur Adressie-
5. Vorrichtung nach Anspruch 4, bei der die Positionierungseinrichtung fernher umfaßt:
- einen mit der Maskierungseinrichtung gekoppelten Servomotor (23) zur Bewegung derselben über den Anzeigeschirm und
- Steuermittel (3.24), die mit dem Servomotor und dem Adreßabtaster verbunden sind und auf die Adresssignale ansprechen, um die Lage der Maskierungseinrichtung mit der Bewegung des Lichtpunkts über den Anzeigenschirm zu synchronisieren.

10. Vorrichtung nach den Ansprüchen 1 bis 6 oder Einrichtung nach den Ansprüchen 7 bis 9, bei der das lichtempfindliche Medium einen Photographfilm (10) umfaßt.

Revidierungen

1. Un appareil d'enregistrement d'images comprenant:
- un écran d'affichage (6) à balayage de trame pour afficher une image définie par des données électroniques, l'écran d'affichage étant agencé pour afficher l'image au cours d'un laps de temps en y balayant au-dessus de celui-ci un point lumineux; et
- un moyen de focalisation (9) pour focaliser sur un support sensible à la lumière l'image affichée sur l'écran d'affichage,

caractérisé par un moyen de masquage (21) placé au-dessus de l'écran d'affichage, le moyen de masquage comprenant une plaque mobile comportant une ouverture; et
- un moyen de positionnement (23, 24) pour positionner l'ouverture au-dessus du point lumineux sur le support d'affichage, de manière à empêcher qu'une surface indésirable provoquée par l'affichage de l'image sur l'écran d'affichage ne soit focalisée sur le support sensible à la lumière.

2. Un appareil selon la revendication 1, comprenant en outre une mémoire de trame (2) qui inclut une multiplicité d'emplacements de mémoire pour mémoriser les données électroniques.

3. Un appareil selon la revendication 1, dans lequel l'écran d'affichage (6) comprend une multiplicité de lignes de balayage au-dessus desquelles le point lumineux est balayé et l'ouverture comprend une fente allongée (25) disposée sensiblement en parallèle auxdites lignes de balayage, d'une longueur au moins égale à celle d'une ligne de balayage et d'une largeur qui limite principalement la ligne de balayage actuellement parcourue par la lumière lumineuse transmise à travers cette fente.

4. Un appareil selon la revendication 2, dans lequel le
moyen de positionnement comprend un dispositif de balayage (3) d'adresses pour engendrer des signaux de balayage horizontaux et verticaux afin de commander le balayage du point lumineux au-dessus de l'écran d'affichage et d'engendrer des signaux d'adresses correspondants pour adresser des emplacements de mémorisation de ladite mémoire de trame.

5. Un appareil selon la revendication 4, dans lequel le moyen de positionnement comprend en outre:

un servomoteur (23) couplé au moyen de masquage pour déplacer celui-ci au-dessus de l'écran d'affichage et un moyen de commande (3, 24) qui est connecté au servomoteur et au dispositif de balayage d'adresses et répond auxdits signaux d'adresses pour synchroniser l'emplACEMENT du moyen de masquage et le balayage du point lumineux au-dessus de l'écran d'affichage.

6. Un appareil selon la revendication 1, dans lequel le moyen de focalisation comprend en outre un moyen de filtrage pour permettre que des séparations différentes de couleurs soient focalisées individuellement sur ledit support sensible à la lumière.

7. Un dispositif à utiliser dans un appareil d'enregistrement d'images dans lequel des données électroniques qui représentent une image sont utilisées pour commander un affichage (6) à balayage pour qu'il affiche l'image au cours d'un laps de temps en balayant un point lumineux au-dessus de celui-ci et un support sensible à la lumière est exposé à l'image affichée pour enregistrer l'image sur ledit support sensible à la lumière, le dispositif étant caractérisé par:

un moyen de masquage (21) qui peut être positionné au-dessus de l'écran d'affichage (6) et comprenant une plaque mobile comportant une ouverture qui est dimensionnée pour empêcher qu'une lumière indésirable provoquée par l'affichage de l'image sur l'affichage ne traverse ledit masque, et un moyen de positionnement (23, 24) pour positionner le moyen de masquage sur l'affichage (6), le moyen de positionnement pouvant coopérer avec l'affichage pour synchroniser le positionnement du moyen de masquage avec le balayage de l'image d'une manière telle que l'ouverture est positionnée au-dessus du point lumineux tandis que le point lumineux est balayé pour permettre qu'une lumière qui en provient traverse l'ouverture.

8. Un appareil selon la revendication 7, dans lequel l'affichage (6) de balayage comprend une multipli-
cité de lignes de balayage parallèles et l'ouverture comprend une fente allongée (5) disposée en par-
allèle auxdites lignes de balayage, d'une longueur au moins égale à celle d'une ligne de balayage sur l'affichage.

9. Un dispositif selon la revendication 7 ou 8, dans lequel le moyen de positionnement comprend un ser-
vomoteur (23) et un circuit de commande (24) pour exciter le servomoteur, le circuit de commande (24) pouvant être connecté à l'affichage de balayage pour synchroniser le positionnement du moyen de masquage avec le point balayé de l'image sur l'affichage.

10. Un appareil selon l'une des revendications 1 à 6, ou un dispositif selon l'une des revendications 7 à 9, dans lequel le moyen sensible à lumière comprend un film photographique.
FIG. 6.