EUROPEAN PATENT SPECIFICATION

APPLIKATIONSSYSTEM ZUM BEHANDELN VON WARZEN

SYSTEME D'APPLICATION POUR TRAITER DES VERRUES

(54) APPLICATION SYSTEM FOR TREATING WARTS

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(43) Date of publication of application:
02.03.1994 Bulletin 1994/09

(73) Proprietor: DVORETZKY, Israel
Hamden, CT 06514 (US)

(72) Inventor: DVORETZKY, Israel
Hamden, CT 06514 (US)

(74) Representative:
Brown, Michael Stanley et al
Alpha and Omega
Chine Croft
East Hill
Ottery St. Mary Devon EX11 1PJ (GB)

(56) References cited:
US-A- 4 756 299
US-A- 4 778 786
US-A- 4 963 360

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

TECHNICAL FIELD

[0001] This invention relates to an application system for treating warts and more particularly to a treatment system enabling the continuous application of heat to the warts.

BACKGROUND ART

[0002] Warts are very common and have long presented problems to individuals due to the pain, discomfort and the cosmetic problem associated therewith. Although various methods and treatments have been developed over the years for reducing or eliminating the undesirable effects associated with warts, these prior art applications, treatments and methods have been incapable of eliminating or curing warts or the problems associated with them.

[0003] Many different methods have been developed to treat warts. However, none of them are uniformly effective. The most common treatments for eliminating warts are surgery (conventional or laser surgery), cryosurgery, or the application of different acidic chemicals in order to completely remove the affected area. However, for many individuals, these processes are as difficult or as uncomfortable as the wart itself. The warts may return, and patients may be left with scar formation. Consequently, many individuals avoid these treatments and, instead, merely accept the discomfort associated with their warts. Unfortunately, when warts are left alone, they may also spread.

[0004] Various chemical compositions have been developed in an attempt to eliminate or reduce the size of the warts by inactivating or slowing the growth of the virus within the skin. In addition, other chemical compounds have been used to reduce or eliminate the overgrowth and keratinization of the wart and thereby lessen its sensitivity or tenderness. Unfortunately, these chemical compositions have been incapable of providing a universally successful treatment for warts and, at best, have only been partially successful.

[0005] Therefore, it is a principal object of the present invention to provide an application system for treating warts which will completely eliminate the wart by destroying or totally inactivating the wart viruses in most individuals.

[0006] US Patent Specification No. 4,756,299 and US-A-4 963 360 disclose a pad comprising chemicals which react together exothermically in the presence of oxygen, said pad being sealed within a container from which air is excluded. There is, however, no suggestion in US Patent Specification No. 4,756,299 that the exothermic pad described therein could be used for the treatment for the treatment of warts.

[0007] US-A-4 778 786 relates to the use of, for example, salicylic acid as part of a gel in the treatment of warts. There is no suggestion that the salicylic acid should be used with, or as part of, an exothermic pad.

[0008] It is accordingly a further object of the present invention to provide an improved form of exothermic pad.

Summary of the Invention

[0009] The invention is defined in the appended claims.

DETAILED DESCRIPTION

[0010] The skin is divided into three layers: the epidermis, the dermis, and the subcutaneous tissue. The outer layer of the skin is called the epidermis, and varies in thickness from about 0.3mm on the eyelids and flexural areas to 1.55mm on the palms and soles. The outermost layer of the epidermis is the stratum corneum (horny layer), which is comprised of completely keratinized dead cells. The thickness of the stratum corneum varies greatly on different parts of the body, being thickest on the palms and soles and totally absent on the oral mucosa.

[0011] The bottommost layer of the epidermis, the basal cell layer, rests upon the basement membrane separating the epidermis from the dermis. The basal cells are the only epidermal cells that proliferate. The basal cells proliferate and (by cell division) form the keratinocytes (squamous cell layer stratum spinosum, spinous layer). The keratinocytes synthesize insoluble protein which remains in the cells and will eventually become a major component of the outer layer (the stratum corneum horny layer). The keratinocytes continue to divide and to migrate from the bottommost layer to the outermost layer, until the cells finally die. In this process of keratinization, the cells continue to flatten and their cytoplasm appears granular (stratum granulosum, granular layer) until they finally die as they reach the surface to form the stratum corneum (horny layer).

[0012] Warts are known to be intra-epidermal tumors of the skin caused by infection with the human papilloma virus (HPV). The HPV induces an abnormal increase of cells in the skin tissue, commonly referred to as hyperplasia, with the hyperplasia being limited to the squamous epithelium. Typically, replication of the papilloma virus is confined to the nuclei of the upper layer of infected epidermal cells.

[0013] It has long been known that temperature is an important factor in the development of warts, as well as in treating warts. It is also known that the HPV prefers to produce lesions on cool sites of the body. Since the skin surface in general and the extremities of individuals, such as hands and feet, typically have temperatures of between about 24° and 31°C (less than the body temperature) these locations are typical for the development of the wart virus. The anogenital warts and laryngeal warts tend to replicate in more warmer loca-
tions and are clearly well known as comprising a different HPV.

[0014] Various studies have shown that the local application of heat causes the virus organisms to be slowed or inactivated. However, the only attempt to effectively apply heat as a wart treatment was the use of hot water baths, with the individual immersing the entire body part containing the wart into a hot water bath. In view of the inherent limitations of this system as well as its limited success, wide acceptance of hot water exposure was never realized.

[0015] In particular, one principal limitation found with hot water baths is the inherent difficulty in maintaining a constant temperature for long time periods. In addition, hot water baths are extremely difficult to employ since the entire body part must be immersed into the hot water and not only the wart. This is particularly difficult since long time exposures are required, as well as repeated exposures several times a day. Furthermore, the hot water bath procedure is particularly hazardous to children, due to the risk of getting severely burned.

[0016] Finally, hot water baths are not realistically practical due to the importance of precision in the application temperature. The application temperature is extremely important, since the leeway between a therapeutic temperature and a destructive temperature is very narrow. At 44°C, a six-hour exposure is needed to cause blistering or irreversible damage to the basal layer of the epidermis. However, at 51°C, an exposure of between about 3 to 5 minutes is sufficient to destroy the epidermis.

[0017] In the present invention, the difficulties and drawbacks of the prior art systems, methods and procedures have been eliminated and a local, easily employed, convenient consumer-oriented wart treatment system is achieved for the first time. In this invention, an exothermic pad incorporating a keratolytic agent is applied directly on the skin surface, thereby providing heat to the precise wart-bearing surface, preventing or impeding the wart's growth. No prior art treatment has ever taught or suggested this concept.

[0018] Exothermic pads have been previously developed and typically comprise a porous film or pad of woven or non-woven material incorporating chemicals which will react exothermically in the presence of oxygen. Although any desired chemicals can be employed, exothermic pads typically contain a mixture of alkaline sulfides and iron carbide which are dispersed in two pads. In addition, the pores of the pads are of sufficient size to assure the required air flow is achieved.

[0019] Prior to use, the pad is sealed within a pouch using an inert gas, such as nitrogen. As long as the pad remains in the sealed container until use, no chemical reaction takes place. However, once the pad is opened, the presence of the oxygen in the air causes the chemicals to react and the desired exothermic reaction is achieved.

[0020] In the present invention, after opening, the pad is applied to the skin at the site of the wart and allowed to remain on the skin for several hours. This procedure may be repeated several times a day. By applying the exothermic pad in this manner, the wart virus is inactivated or slowed in its development, thereby preventing further invasion of the virus to adjacent tissue. As a result, the normal reparative process of the skin takes effect, moving the infected portion to a higher and higher level in the spinous layer of the epidermis, towards the surface of the skin, until the wart is shed in the normal process with the stratum corneum.

[0021] By employing the exothermic pad of the present invention, the temperature of the skin is elevated and maintained at about 42°C-43°C for a period of about two hours. Preferably, however, the exothermic pad should remain on the skin for about six to seven hours and then replaced with a new pad. This treatment should continue for several days, as long as the skin surface shows no signs of being adversely affected.

[0022] It has been found that the skin can tolerate definite amounts of local hyperthermia without blistering or being damage. Furthermore, it has also been found that the skin surface can tolerate an external temperature of 44°C without blistering and, even at that temperature, will take at least six hours of continuous exposure before blistering will occur. In addition, even if blistering were to occur, such blistering may well enhance the recovery of warts, since it would eliminate some of the upper layer of the wart. If desired, several layers of sterilized gauze, or similar material, can be placed between the skin surface and the pad to reduce the heat exposure to the skin. One method available to treat warts today is using cryosurgery with liquid nitrogen. In this method, there is blistering formation which is supposed to help in the elimination of the wart.

[0023] The exothermic pad of the present invention incorporates keratolytic chemical agents which assist in reducing the thickness of the epidermis, particularly the stratum corneum. Inasmuch as the wart viruses are confined to the upper layer of the epidermis, the stratum granulosum and stratum corneum, any removal of the outermost horny layer technically eliminates a portion of the wart as well as the related viral particles contained therein, destroying the viral particles by shedding. In addition, the thinning of the stratum corneum enables the heat to penetrate deeper within the wart lesion, thereby achieving greater efficacy from the application of the pad.

[0024] Although various keratolytic agents can be incorporated into the exothermic pad in order to reduce the upper layer of the epidermis, it has been found that salicylic acid or salicylic and lactic acid are preferable, since such chemicals may be incorporated into the exothermic pad to attain the desired beneficial results. By incorporating either salicylic acid, salicylic and lactic acid, or other similar chemical compositions, the exothermic pad may operate more effectively, since the thickness of the epidermis is reduced, thereby allowing
the heat generated by the exothermic pad to penetrate the wart to a greater extent.

[0025] In order to further enhance the efficacy of the present invention, it is preferable to remove the layers of dead skin that have resulted from the application of the keratolytic chemical agents. Consequently, after each exothermic pad of this invention has been employed, it is desirable for the user to gently rub the affected area with an abrasive member, in order to reduce the thickness of the epidermis, particularly the stratum corneum. Typically, any mildly abrasive member may be employed, such as an emery board, manicure nail file, wash cloth, brush, etc. In this way, the process of reducing the thickness of the epidermis is enhanced and the removal of the wart, as well as the inactivation of the wart virus is accomplished more rapidly.

[0026] It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in carrying out the above method or in employing the system set forth, without departing from the scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.

[0027] It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.

[0028] Particularly, it is to be understood that in said claims, ingredients or compounds recited in the singular are intended to include compatible mixtures of such ingredients wherever the sense permits.

[0029] Having described my invention, what I claim as new and desire to secure by Letters Patent is:

Claims

1. A pad comprising chemicals which react together exothermically in the presence of oxygen, said pad being sealed within a container from which air is excluded, characterised in that said pad incorporates a keratolytic agent for reducing the thickness of the epidermis, thereby allowing the heat to penetrate more deeply within the wart lesion.

2. A pad as claimed in Claim 1, characterised in that said chemicals are so selected that, when the exothermic pad is placed in contact with the surface of the skin, the temperature of the skin is raised to between 42°C and 43°C for at least two hours.

3. A pad as claimed in Claim 1 or Claim 2, characterised in that the keratolytic agent is salicylic acid.

Patentansprüche

1. Eine Kompresse, die Chemikalien aufweist, welche in Gegenwart von Sauerstoff exotherm miteinander reagieren, wobei diese Kompresse in einem sauerstoffreien Behälter versiegelt ist, dadurch gekennzeichnet, daß die Kompresse ein keratolytisches Mittel zur Reduzierung der Dicke der Epidermis enthält, so daß die Wärme tiefer in die Warzenläsion eindringen kann.

2. Kompresse nach Anspruch 1, dadurch gekennzeichnet, daß die Chemikalien so ausgewählt sind, daß bei Kontakt der exothermischen Kompresse mit der Hautoberfläche die Temperatur der Haut wenigstens zwei Stunden lang auf 42 °C - 43 °C erhöht wird.

3. Kompresse nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das keratolytische Mittel Salizinsäure ist.

Revendications

1. Tampon comprenant des produits chimiques qui réagissent ensemble exothermiquement en présence d’oxygène, ledit tampon étant scellé à l’intérieur d’un récipient à partir duquel l’air est exclu, caractérisé par le fait que ledit tampon incorpore un agent kératolytique pour réduire l’épaisseur de l’épiderme, permettant ainsi à la chaleur de pénétrer plus profondément à l’intérieur de la lésion de la verrue.

2. Tampon selon la revendication 1, caractérisé par le fait que lesdits produits chimiques sont choisis de telle sorte que, lorsque le tampon exothermique est placé en contact avec la surface de la peau, la température de la peau est élevée jusqu’à une valeur comprise entre 42°C et 43°C pendant au moins deux heures.

3. Tampon selon la revendication 1 ou la revendication 2, caractérisé par le fait que l’agent kératolytique est l’acide salicylique.