EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 06.08.1997 Bulletin 1997/32

Application number: 93305440.5

Date of filing: 12.07.1993

Dispensing apparatus for powdered medicaments
Abgabevorrichtung für pulverförmige Medikamente
Appareil pour dispenser des médicaments pulvéreux

Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

Priority: 28.07.1992 GB 9216038

Date of publication of application: 02.02.1994 Bulletin 1994/05

Proprietor: BESPAK PLC
King’s Lynn Norfolk PE30 2JJ (GB)

Inventor: Martin, Trevor Neil
Watton, Norfolk IP25 6BJ (GB)

Representative: Alexander, Thomas Bruce et al
BOULT WADE TENNANT,
27 Furnival Street
London EC4A 1PQ (GB)

References cited:
EP-A- 0 406 893
FR-A- 2 380 032
DE-A- 2 704 574
GB-A- 2 061 735

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

This invention relates to dispensing apparatus for powdered medicaments supplied in capsules for inhalation therapy.

It is known to dispense powdered medicaments using apparatus in which capsules containing the powder are mechanically opened at a dispensing station where inhaled air subsequently entrains the powder which is then dispensed through a mouth piece.

GB 1598081 discloses apparatus in which portions of a capsule are separated to release the powder, this technique being preferred to disrupting the capsule by piercing or crushing techniques which may result in debris from the capsule material being inhaled. A disadvantage of this apparatus is that individual capsules must be loaded prior to use and this may be a difficult procedure for some users.

GB 2061735B discloses apparatus in which a feed mechanism in the form of a carousel delivers capsules to the dispensing station at successive actuations of an actuator which also operates a capsule opening means which separates portions of the capsule at the dispensing station ready for inhalation. The spent capsules are retained in the carousel and this has the disadvantage that it is possible for a spent capsule to be again presented at a subsequent actuation in the dispensing station when a complete revolution is completed. It is also difficult for the user to examine the spent capsule immediately following actuation in order to determine whether the powder has been entirely dispensed.

EP 0406893 discloses dispensing apparatus for use in the inhalation of medicaments supplied in capsules, the apparatus comprising a body having a capsule storage means receiving a number of capsules in use, an actuator movably mounted on the body, a feed mechanism operable at successive actuations of the actuator to feed successive capsules from the storage chamber to a dispensing station defining a dispensing chamber, capsule opening means operable in response to movement of the actuator to expose at the dispensing station the contents of the capsule within the dispensing chamber and a duct defining an airway communicating between the dispensing chamber and an outlet defined by the body through which air is inhaled in use, wherein the capsule storage means define a storage chamber having a cylindrical portion to receive capsules arranged in linear array and the feed mechanism comprises at least one feed member operable at successive actuations to move a capsule longitudinally along the cylindrical portion towards the dispensing station.

The present invention is characterised in that, in apparatus as described above, the actuator comprises a tubular sleeve overlaying the body and reciprocatingly movable relative to the body in a direction coaxial with the cylindrical portion.

Preferably the feed member is operatively connected to the actuator by a respective jaw facilitating movement of the feed member into and out of operative engagement with capsules within the cylindrical portion of the storage chamber.

The jaws may be formed integrally with the actuator such that the feed members are longitudinally movable in unison with the actuator and wherein the jaws are flexible to accommodate movement of the feed members relative to the actuator.

Alternatively the jaws may be formed separately from the actuator and the feed mechanism may further comprise biasing means operable to between the body and the jaws to bias the jaws longitudinally towards the dispensing station, the actuator being engageable with the jaws to move the jaws away from the dispensing station and operable to release the jaws for travel towards the dispensing station by action of the biasing means.

Preferably the body is provided with first cam formations cooperative with the feed members such that the jaws are moved to a closed position during at least part of forward longitudinal motion of the jaws towards the dispensing station and are retracted to an open position during return motion of the jaws relative to the body, the closed position of the jaws corresponding to the respective feed member being operatively engageable with a capsule within the cylindrical portion and the open position corresponding to the feed member being retracted out of operative engagement with the capsules.

Preferably the apparatus further comprises a generally tubular end cap into which the body extends longitudinally, the end cap comprising a first gripping means operable to grip a forward portion of a capsule at the dispensing station, the body comprising second gripping means operable to grip a rear portion of a capsule at the dispensing station, the end cap being movable relative to the body in response to movement of the actuator whereby the first and second gripping means are relatively movable to effect separation of the first and second portions and thereby constitute the capsule opening means.

Conveniently the apparatus comprises latch means operable between the body and the end cap to retain the end cap in a fixed position relative to the body during a first stage of movement of the actuator relative to the body and to release the end cap from the body so as to travel in unison with the actuator during a second stage of motion of the actuator relative to the body.

The latch means conveniently comprises at least one latch member connected to the end cap and cooperate with a respective recess formed in the body to prevent relative motion between the end cap and the body and wherein the actuator comprises second cam formations cooperative with respective latch members to control the operation thereof according to the position of the actuator relative to the body.

In a preferred embodiment the end cap defines a passageway receiving the forward portion of a capsule and the first gripping means comprises an O-ring located in the passageway.

Preferably the passageway communicates with an
ejection aperture defined by the end cap and through which spent capsules are ejected in use.

Spent capsules may thereby be inspected by the user after use in order to confirm that the powder has been fully dispensed.

Conveniently the second gripping means comprises a collet of variable diameter and defining an aperture through which a capsule is received at the dispensing station, the end cap being provided with third cam formations cooperative with the collet to reduce the aperture in response to movement of the end cap relative to the body to thereby grip the rear portion of a capsule.

Preferably the apparatus comprises means for creating turbulence in the air flow in the dispensing chamber during inhalation.

Conveniently the body comprises a mouthpiece defining the outlet, the mouthpiece being connected to a tube defining the storage chamber, the mouthpiece and the tube being removably connected to a main portion of the body to provide access to the storage chamber.

Specific embodiments of the present invention will now be described by way of example only and with reference to the accompanying drawings of which:

Figure 1 is a side elevation of dispensing apparatus in accordance with the present invention in the rest position;
Figure 2 is an end elevation of the apparatus of Figure 1 viewed from left to right;
Figure 3 is a transverse section of the apparatus of Figure 1 taken at III-III during the first stage of movement;
Figure 4 is a transverse section of the apparatus of Figure 1 taken at IV-IV during the first stage of movement;
Figure 5 is an end view of the apparatus of Figure 1 viewed from right to left;
Figure 6 is a staggered longitudinal section through the apparatus of Figure 1 in the rest position taken at VI-VI with reference to Figure 2;
Figure 7 is a horizontal section taken at VII-VII with reference to Figure 2 of the apparatus of Figure 1 in its rest position;
Figure 8 is a horizontal section taken at VIII-VIII of the apparatus of Figure 1 in its rest position;
Figure 9 is a two-part horizontal section of the apparatus at the commencement of its second stage of actuation, the upper portion being viewed at VII-VII and the lower portion being viewed at VIII-VIII;
Figure 10 is a staggered vertical elevation taken at VI-VI of the apparatus at the commencement of the second stage of actuation;
Figure 11 is a two-part horizontal section of the apparatus at the end of the second stage of actuation in which the upper portion of the Figure is viewed at VII-VII and the lower portion is viewed at VIII-VIII;

Figure 12 is a longitudinal section taken at VI-VI at the end of the second stage of actuation;
Figure 13 is a view corresponding to that of Figure 7 of a modified apparatus; and
Figure 14 is a view corresponding to Figure 9 of the modified apparatus of Figure 13.

In Figure 1 an apparatus 1 comprises a mouthpiece 2 connected to a body 3 which projects from a tubular sleeve 4.

As shown in the end view of Figure 5 the mouthpiece 2 defines an orifice 5 communicating with an airway 6 which extends longitudinally of the apparatus 1 and is also visible in the transverse section views of Figures 3 and 4.

The body 3 is generally tubular but of part-circular and part rectangular profile as is evident from Figures 3 and 4, the body having a planar partition 7 which separates the airway 6 of part circular profile from a conduit 8 extending longitudinally of the apparatus.

As shown in Figure 7 the mouthpiece 2 is formed integrally with a tube 9 defining a capsule storage chamber 10, the tube 9 being accommodated within the conduit 8 such that the capsule storage chamber extends longitudinally of the apparatus 1.

The tube 10 is provided with left and right-hand slots 12 and 11 respectively which extend longitudinally of the tube 9. The slots 12 and 11 allow left and right-hand feed members 14 and 13 respectively to project into the capsule storage chamber 10 and to be capable of longitudinal motion as part of a feed mechanism for moving capsules linearly along the chamber 10.

The body 3 is inserted within a tubular end cap 15 which in turn is received as a sliding fit within the sleeve 4. The body 3 therefore has a mouthpiece end portion 16 which is connected to the mouthpiece 2 and a distal end portion 17 which is received within and which is closed by the end cap 15. The end cap 15 is provided with a cylindrically shaped capsule ejection aperture 18 which is coaxially in alignment with the capsule storage chamber 10. The end cap 15 is also provided with slots 60 as seen in Figure 7 allowing the jaws 21 and 20 to project from the sleeve 4 into the slots 12 and 11.

During a complete cycle of operation of the apparatus 1 the sleeve 4 moves relative to the body 3 in four distinct successive stages of motion. During a first stage the sleeve 4 moves away from the mouthpiece 2 while the end cap 15 remains static relative to the body 3. During the second stage the sleeve continues to move away from the mouthpiece 2 but the end cap 15 moves in unison with the sleeve 4. During the third stage the sleeve 4 and the end cap 15 move in unison towards the mouthpiece 2. During the fourth stage the end cap 15 is retained in its static position relative to the body 3 and the sleeve 4 continues to move towards the mouthpiece 2.

Actuation for this movement is provided by the user gripping with one hand the mouthpiece end portion 16 of the body 3 and with the other hand the sleeve 4 and
then moving the sleeve 4 relative to the body.

During the first stage of movement the motion of the sleeve 4 actuates a capsule feed mechanism 19 as shown in Figure 7, the feed mechanism comprising the feed members 14 and 13 which are connected to the sleeve 4 by respective left and right feed jaws 21 and 20. As seen in Figure 7 the feed members 13 and 14 are arranged to push a capsule 22 in a direction away from the mouthpiece 2 and towards a dispensing station 23.

During this first stage of movement the end cap 15 is prevented from moving relative to the body 3 by left and right-hand latch members 25 and 24 respectively which are formed integrally with the end cap and which are cooperable with left and right-hand latch recesses 27 and 26 respectively formed as indentations in the body 3.

The distal end portion 17 of the body 3 is provided with a collet 28 which is split by a radially extending slot 29 as shown in Figure 8 so as to allow the diameter of the collet to be varied in order to grip the capsule 22. Each capsule 22 is inserted in the storage chamber 10 in a specific orientation in which a capsule body 30 is directed so as to be facing the mouthpiece 2 and a capsule cap 31 is directed so as to be facing away from the mouthpiece, the capsule body being of smaller diameter than the cap such that an open mouth 32 of the capsule body is received within and closed by the cap 31.

During the first stage of movement a capsule 22 is pushed towards the dispensing station 23 so as to extend through the collet 28 as illustrated in Figure 9 in which the capsule body remains within the collet and the capsule cap projects beyond the collet into the capsule ejection aperture 18.

An O-ring 33 located in the entrance 34 of aperture 18 is dimensioned so as to be a sliding fit over the capsule cap 31 and to provide a degree of frictional resistance to such sliding motion. As shown in Figure 11 the O-ring 33 grips the capsule cap 31 such that, with the capsule body 30 being gripped by the collet 28, relative movement between the body 3 and the end cap 15 during the second stage of movement results in separation of the capsule body and cap.

The collet 28 is radially compressed during the second stage of movement so as to have a reduced diameter which grips the capsule body 32, the radial compression being the result of cam action provided by a radially inward projection 35 formed on the end cap 15 as shown in the lower half of Figure 11. Compression of the collet continues throughout the third stage of movement and is released at the end of the third stage of movement at which time the end cap 15 has returned to its rest position relative to the body 3.

Motion of the feed members 13 and 14 in providing feeding of capsules relies upon the action of a first cam track 36 formed on the body 3 and a second cam track 37 formed on the collet 28 which is also an integral part of the body 3. In the rest position of Figure 6 the jaws 20 and 21 lie in a horizontal plane with the jaws in a closed position in which feed members 13 and 14 are in close proximity with one another and extend into the chamber 10. At the commencement of the first stage of movement the sleeve 4 begins to move relative to the body 3 and the feed members 13 and 14 move with the sleeve and encounter upwardly sloping ramps 38 provided by the first cam track 36.

The jaws 20 and 21 are bent such that the feed members 13 and 14 are raised above the initial horizontal plane of the jaws and continued motion during the first stage of movement results in the feed members 13 and 14 riding along horizontal upper surfaces 39 of the first cam track 36 as shown by arrow A in Figure 6. The raised positions of the feed members 13 and 14 can also be seen in Figures 3 and 4. In this raised position the jaws 20, 21 are prevented from opening by the presence of stops 57 and 58 projecting inwardly of the sleeve 4 as seen in Figures 3 and 4. In the rest positions of the jaws 20, 21 the jaws assume the closed position shown in Figure 7 by virtue of shape memory.

At the end of the first stage of movement the feed members 13 and 14 encounter a downward step 40 provided by the first cam track 36 and the jaws 20 and 21 return to their original horizontal planar position.

Throughout the first stage of movement a capsule 22 is moved forwardly by the feed members 13 and 14 towards the dispensing station 23.

At the beginning of the second stage of movement the feed members 13 and 14 encounter upwardly sloping ramps 41 formed externally on the collet 28 and the jaws are upwardly deflected allowing the feed members 13 and 14 to travel along a horizontal upper surface 42. The upwardly sloping ramps 41 are complemented by laterally deflecting ramps 43 arranged to move the jaws into an opened position in which the feed members 13 and 14 are moved clear of the capsule 22 and are external of the chamber 10 as shown in Figure 11.

During the third stage of movement the feed members 13 and 14 return along the horizontal upper surfaces 42 and descend the ramps 41. At the start of the fourth stage of motion the feed members 13 and 14 encounter laterally deflecting ramps 44 which deflect the feed members so as to open the jaws 20 and 21 whilst retaining the jaws in their original horizontal plane. During the fourth stage of motion the feed members 13 and 14 are returned to their original rest position as shown in Figure 6 whilst the jaws are held open and the feed members are clear of the storage chamber 10. At the end of the fourth stage of motion the feed members 13 and 14 reach the end of the first cam track 36 and snap back to their rest position in which the jaws 20 and 21 are closed.

Return motion of the feed members during the fourth stage of motion is shown by arrow B in Figure 6.

During the first stage of motion the sleeve 4 prevents the latch members 24 and 25 from moving out of engagement with the recesses 26 and 27 in the body 3 by contact between left and right latch retaining shoulders 46 and 45 respectively. The shoulders 45 and 46 terminate in ramped surfaces 47 and 48 respectively.
which are encountered by the latch members 24 and 25 at the commencement of the second stage of motion. The latch members 24 and 25 are then able to move transversely outwardly relative to the body 3 and out of the recesses 26 and 27. The end cap 15 is then unlatched from the body 3 throughout the second and third stages of motion and moves in unison with the sleeve 4. During the second stage of motion the longitudinal motion of the end cap 15 relative to the body is sufficient to open the capsule 22 so as to leave a gap of 1 mm between the capsule body 30 and the capsule cap 31. At the end of the second stage of motion the travel of the end cap 15 is limited by contact between forward ends 56 of the latch members 45, 46 and shoulders 55 provided by the latch recesses 26, 27.

The dispensing station 23 comprises an end portion 49 of the end cap 15 and the collet 28 which cooperate to separate the capsule 22 as described above. When moving apart during the second stage of motion a dispensing chamber 50 is created as shown in Figures 11 and 12 through which air is drawn by the user who inhales at the mouthpiece orifice 5 so as to draw air through the airway 6. The airway 6 communicates with the dispensing chamber 50 and air is drawn into the dispensing chamber 50 through inlet slots 51 which are provided in a side wall 52 of the end cap 15 as shown in Figures 6, 10 and 12. The end portion 49 of the end cap 15 has a smoothly curved surface 53 arranged at the upper end of the dispensing chamber 50 so as to smoothly deflect air from an upward vertical direction to longitudinal flow through the airway 6.

Air is supplied to the inlet slots 51 through an intake channel 54 provided between the sleeve 4 and the side wall 52 of the end cap 15.

The slots 51 comprise three individual slots which are angled with respect to one another so as to create turbulence within the dispensing chamber 50 in the vicinity of the mouth 32 of the capsule body 30 when opened.

In use, the capsule storage chamber 10 is filled with capsules arranged in linear array, the capsules being oriented such that the body 30 of each capsule 22 is closer to the mouthpiece 2 than the cap 31. The tube 9 of the mouthpiece 2 is inserted into the end cap 15 such that the leading capsule shown as 22 in Figure 7 is forward of the feed members 13 and 14. In order for the leading capsule 22 to pass beyond the feed members 13 and 14 it is necessary for the jaws 20, 21 to open sufficiently for the capsule to pass. This is accommodated by pushing the tube 9 so as to urge the capsule between the feed members 13 and 14.

The user holds the mouthpiece 2 in one hand and the sleeve 3 in the other hand and pushes the sleeve away from the mouthpiece during a first stage of motion. The feed members 13 and 14 are moved upwardly by action of the ramps 38 to a position where they engage the capsule 22 and further motion of the sleeve results in capsule 22 being pushed forwardly in a direction away from the mouthpiece 2 towards the dispensing station 23. The cap 31 of the capsule 22 is pushed through the O-ring 33 whilst the body 30 remains located within the collet 28 in which it is retained as a loose fit as shown in Figure 9.

The second stage motion then begins in which the collet 28 is reduced in diameter by action of projection 35 thereby closing around the body 30 and gripping the body firmly against axial motion within the chamber 10. At the same time the feed members 13 and 14 are withdrawn from the chamber 10 as the jaws 20, 21 open as a result of cam action with the second cam track 37.

At the same time the latch members 24 and 25 are released from the recesses 26 and 27 and during the second stage of motion the sleeve moves in unison with the end cap 15 away from the mouthpiece 2. During this motion the capsule 22 is opened by movement of the cap 31 away from the body 30 until the exposed mouth 32 of the capsule body is spaced from the cap by a distance of 1 mm.

At the end of the second stage of motion the dispensing chamber 50 is formed by separation of the end cap 15 from the body 3 and the apparatus 1 is ready for inhalation to take place.

The user inhales through the mouthpiece thereby drawing air through the dispensing chamber 50 and powder from within the capsule 22 is entrained in the air flow and inhaled.

Turbulence within the dispensing chamber 50 is created by the slots 51 thereby ensuring that the full dose is entrained in the air flow.

The second stage of motion is then commenced in which the sleeve returns in a direction towards the mouthpiece 2 to the position shown in Figure 9, the end cap 15 moving in unison during this stage of motion and the feed members 13 and 14 returning to engage the laterally deflecting ramp 44. The user then turns the apparatus 1 into an orientation in which the mouthpiece 2 is uppermost so that capsules within the storage chamber 10 move under gravity towards the dispensing station. A new capsule then occupies the part of the dispensing chamber 10 which coincides in longitudinal extent with the first cam track 36.

Continued motion into the fourth stage of motion then follows in which the feed members 13 and 14 return to their rest positions adjacent the ramps 38 so as to close behind the new capsule and retain it in position.

During the third stage of the motion the cap 31 of capsule 22 will typically not become re-assembled with the capsule body 30 and will interfere with the open mouth 32 of the body such that the cap 31 will be ejected from the apparatus leaving the capsule body 30 in situ.

During the next successive dispensing operation the first stage of motion will advance a capsule forward to the dispensing station thereby displacing from the capsule ejection aperture the spent capsule body 30 from the preceding actuation.

A modified apparatus 61 is shown in Figures 13 and
14 and will be described using corresponding reference numerals to those of preceding Figures where appropriate for corresponding elements.

The modified apparatus 61 differs primarily from the apparatus 1 in that jaw members 20 and 21 together with feed members 13 and 14 are formed separately from the sleeve 4. The jaws 20 and 21 are biased towards the dispensing station 23 by a compression spring 62 mounted on the body 3 and extending into the mouth piece 2.

The sleeve 4 is provided with a catch mechanism (not shown) which is operable to control the longitudinal movement of the jaws 20 and 21 such that during the fourth stage of movement the jaws are returned to their rest position as shown in Figure 13 in which they are furthermost from the dispensing station 23 and whereby upon reaching the end of travel during the fourth stage of movement the jaws are released so as to travel under influence of the spring 62 in a direction towards the dispensing station.

This movement automatically feeds the next capsule 22 forward into the dispensing station and at the same time ejects the spent capsule body 30 of the preceding actuation.

The end cap 15 of the modified apparatus 61 has slots 60 which do not extend into the dispensing station 23 in the manner of the slots 60 of apparatus 1. Forward travel of the feed members 13 and 14 of the modified apparatus 61 is limited to a position shown in Figure 14, this limit of travel being accommodated since the jaws 20 and 21 are not formed integrally with the sleeve 4.

One advantage of the modified apparatus 61 is that ejection of the spent capsule is completed at the end of the fourth stage of operation. The spent capsule may therefore be inspected immediately following an inhalation by a user to ensure that the contents of the capsule have been fully dispensed.

A further advantage is that, because the slots 60 do not extend into the dispensing station 23, the inlet of air to the dispensing chamber 50 is limited to the intake channels 54 thereby allowing the intake of air to be more precisely controlled.

In a further alternative arrangement (not shown) the capsule storage chamber 10 may be connected to a bulk reservoir of capsules from which capsules are fed into the capsule storage chamber where they form in linear array ready for feeding by the feeding mechanism defined by the jaws 20 and 21, the feed members 13 and 14 and the first and second cam tracks 36 and 37.

In an alternative arrangement the storage chamber 10 may be provided by a disposable tube which is pre-packed with a supply of capsules.

Alternative gripping mechanisms may be employed for separating the two parts of the capsules. Such mechanisms may be adapted if required to accommodate any orientation of the capsule so that for example the capsules could be fed to the dispensing station with the capsule body being forward.

Alternative mechanisms may be provided for ejecting spent capsules and in particular the spent capsule may be ejected at the end of the second stage of motion in order to provide confirmation that the contents of the capsule have been fully dispensed.

For ease of manufacture, the slots 51 may be reconfigured so as to extend longitudinally instead of transversely relative to the end cap. Such an arrangement is easier to mould using axially moving mould parts.

Claims

1. Dispensing apparatus (1, 61) for use in the inhalation of medicaments supplied in capsules (22), the apparatus comprising a body (3) having a capsule storage means (9) receiving a number of capsules in use, an actuator movably mounted on the body (3), a feed mechanism (19) operable at successive actuations of the actuator to feed successive capsules from the capsule storage means (9) to a dispensing station (23) defining a dispensing chamber (50), capsule opening means (28, 33) operable in response to movement of the actuator to expose at the dispensing station (23) the contents of the capsule within the dispensing chamber (50) and a duct defining an airway (6) communicating between the dispensing chamber (50) and an outlet (5) defined by the body (3) through which air is inhaled in use, in which the capsule storage means (9) define a storage chamber (10) having a cylindrical portion to receive capsules arranged in linear array and the feed mechanism (19) comprises at least one feed member (13, 14) operable at successive actuations to move a capsule longitudinally along the cylindrical portion towards the dispensing station (23), characterised in that the actuator comprises a tubular sleeve (4) overlying the body (3) and reciprocatingly movable relative to the body (3) in a direction coaxial with the cylindrical portion.

2. Apparatus as claimed in claim 1 wherein the feed member is operatively connected to the actuator by a respective jaw (20, 21) facilitating movement of the feed member into and out of operative engagement with capsules within the cylindrical portion of the storage chamber.

3. Apparatus as claimed in claim 2 wherein the jaws are formed integrally with the actuator such that the feed members are longitudinally movable in unison with the actuator and wherein the jaws are flexible to accommodate movement of the feed members relative to the actuator.

4. Apparatus as claimed in claim 2 wherein the jaws are formed separately from the actuator and wherein the feed mechanism further comprises biasing means (62) operable between the body and the jaws to bias the jaws longitudinally towards
the dispensing station, the actuator being engageable with the jaws to move the jaws away from the dispensing station and operable to release the jaws for travel towards the dispensing station by action of the biasing means.

5. Apparatus as claimed in any of claims 2 to 4 wherein the body is provided with first cam formations (36,37) operable with the feed members such that the jaws are moved to a closed position during at least part of forward longitudinal motion of the jaws towards the dispensing station and are retracted to an open position during return motion of the jaws relative to the body, the closed position of the jaws corresponding to the respective feed member being operatively engageable with a capsule within the cylindrical portion and the open position corresponding to the feed member being retracted out of operative engagement with the capsules.

6. Apparatus as claimed in any preceding claim further comprising a generally tubular end cap (15) into which the body extends longitudinally, the end cap comprising a first gripping means (33) operable to grip a forward portion (31) of a capsule (22) at the dispensing station, the body comprising second gripping means (28) operable to grip a rear portion (30) of a capsule at the dispensing station, the end cap being movable relative to the body in response to movement of the actuator whereby the first and second gripping means are relatively movable to effect separation of the first and second portions and thereby constitute the capsule opening means.

7. Apparatus as claimed in Claim 6 comprising latch means (24,25,26,27) operable between the body and the end cap to retain the end cap in a fixed position relative to the body during a first stage of movement of the actuator relative to the body and to release the end cap from the body so as to travel in unison with the actuator during a second stage of motion of the actuator relative to the body.

8. Apparatus as claimed in Claim 7 wherein the latch means comprises at least one latch member (24,25) connected to the end cap and operable with a respective recess formed in the body to prevent relative motion between the end cap and the body wherein the actuator comprises second cam formations (47,48) operable with respective latch members (24,25) to control the operation thereof according to the position of the actuator relative to the body.

9. Apparatus as claimed in any of claims 6 to 8 wherein the end cap defines a passageway receiving the forward portion of a capsule and the first gripping means comprises an O-ring (33) located in the passageway.

10. Apparatus as claimed in claim 9 wherein the passageway communicates with an ejection aperture (18) defined by the end cap and through which spent capsules are ejected in use.

11. Apparatus as claimed in any of claims 6 to 10 wherein the second gripping means comprises a collet (28) of variable diameter being connected to the body and defining an aperture through which a capsule is received at the dispensing station, the end cap being provided with a third cam formation (35) operable with the collet to reduce the aperture in response to movement of the end cap relative to the body to thereby grip the rear portion of a capsule.

12. Apparatus as claimed in any preceding claim comprising means (51) for creating turbulence in the air flow in the dispensing chamber during inhalation.

13. Apparatus as claimed in any preceding claim wherein the body comprises a mouthpiece (2) defining the outlet, the mouthpiece being connected to a tube (9) defining the storage chamber, the mouthpiece and the tube being removably connected to a main portion of the body to provide access to the storage chamber.

Patentansprüche

1. Abgabevorrichtung (1, 61) zur Verwendung bei der Inhalation von in Kapseln (22) bereitgestellten Medikamenten, wobei die Vorrichtung umfaßt: einen Körper (3) mit einem Kapselaubewahrungs- mittel (9), welches im Gebrauch eine Anzahl von Kapseln aufnimmt, einen beweglich an dem Körper (3) angebrachten Aktuator, einen Zufuhrmechanismus (19), welcher so betreibbar ist, daß er bei einanderfolgenden Betätigungen des Aktuators Kapseln von dem Kapselaubewahrungsmedium (9) nacheinander einer eine Abgabekammer (50) begrenzenden Abgabestation (23) zuführt, Kapselöffnungsmittel (28, 33), welche so betreibbar sind, daß sie in Antwort auf eine Bewegung des Aktuators den Inhalt der Kapsel an der Abgabestation (23) in der Abgabekammer (50) freisetzen, sowie einen Kanal, welcher einen Luftweg (6) begrenzt, der die Abgabekammer (50) mit einem durch den Körper (3) begrenzten Auslaß (5) verbindet, durch den im Gebrauch Luft inhaliert wird, wobei die Kapselaubewahrungsmedium (9) eine Aufbewahrungs- kammer (10) mit einem zylindrischen Abschnitt zur Aufnahme von in geradliniger Reihe angeordneten Kapseln begrenzen und der Zufuhrmechanismus (19) mindestens ein Zufuhrmedium (13, 14) umfaßt, welches so betreibbar ist, daß es bei einanderfolgenden Betätigungen eine Kapsel in
Längsrichtung längs des zylindrischen Abschnitts zu der Abgabestation (23) hin bewegt, dadurch gekennzeichnet, daß der Aktuator eine rohrförmige Hülse (4) umfaßt, welche den Körper (3) überlappt und in Richtung koaxial zu dem zylindrischen Abschnitt relativ zu dem Körper (3) hin- und herbeweglich ist.


3. Vorrichtung nach Anspruch 2, bei der die Backen integral mit dem Aktuator ausgebildet sind, so daß die Zufuherlemente gemeinsam mit dem Aktuator in Längsrichtung beweglich sind, und bei der die Backen flexibel sind, um eine Bewegung der Zufuherlemente relativ zu dem Aktuator auszugleichen.

4. Vorrichtung nach Anspruch 2, bei der die Backen gesondert von dem Aktuator ausgebildet sind und bei der der Zufuhrmechanismus ferner Vorspannmittel (62) umfaßt, welche so zwischen dem Körper und den Backen in Wirkung bringbar sind, daß sie die Backen in Längsrichtung zu der Abgabestation hin vorspannen, wobei der Aktuator mit den Backen in Eingriff bringbar ist, um die Backen von der Abgabestation weg zu bewegen, und so betreibbar ist, daß er die Backen zur Bewegung zur Abgabestation hin durch Wirkung der Vorspannmittel freigibt.


6. Vorrichtung nach einem der vorhergehenden Ansprüche, ferner umfassend eine allgemein rohr- förmige Endkappe (15), in die sich der Körper in Längsrichtung erstreckt, wobei die Endkappe ein erstes Greifmittel (33) umfaßt, welches so betreib-

bar ist, daß es einen vorderen Abschnitt (31) einer Kapsel (22) an der Abgabestation ergreift, wobei der Körper zweite Greifmittel (28) umfaßt, welche so betreibbar sind, daß sie einen hinteren Abschnitt (30) einer Kapsel an der Abgabestation ergreifen, wobei die Endkappe relativ zu dem Körper in Antwort auf eine Bewegung des Aktuators bewegbar ist, wodurch die ersten und zweiten Greifmittel relativ bewegbar sind, um eine Trennung der ersten und zweiten Abschnitte zu bewirken und auf diese Weise die Kapselöffnungsmittel zu bilden.


9. Vorrichtung nach einem der Ansprüche 6 bis 8, bei der die Endkappe einen Durchgang begrenzt, welcher den vorderen Abschnitt einer Kapsel aufnimmt, und das erste Greifmittel einen O-Ring (33) umfaßt, welcher in dem Durchgang angeordnet ist.


11. Vorrichtung nach einem der Ansprüche 6 bis 10, bei der das zweite Greifmittel eine Spannzange (28) veränderbarer Durchmessers umfaßt, welche mit dem Körper verbunden ist und eine Öffnung begrenzt, durch die eine Kapsel an der Abgabestation aufgenommen wird, wobei die Endkappe mit einer dritten Nockenformation (35) versehen ist, welche so mit der Spannzange in Zusammenwirkung bringbar ist, daß die Öffnung in Antwort auf eine Bewegung der Endkappe relativ zu dem Körper verkleinert wird, um auf diese Weise den hinte-
12. Vorrichtung nach einem der vorhergehenden Ansprüche, umfassend Mittel (51) zum Erzeugen einer Turbulenz in dem Luftstrom in der Abgabekammer während einer Inhalation.

13. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der der Körper ein Mundstück (2) umfaßt, welches den Auslaß begrenzt, wobei das Mundstück mit einer die Aufbewahrungskammer begrenzenden Röhre (9) verbunden ist, wobei das Mundstück und die Röhre lösbar mit einem Hauptteil des Körpers verbunden sind, um einen Zugang zu der Aufbewahrungskammer vorzusehen.

Revendications

1. Appareil distributeur (1, 61) pour utilisation dans l'inhalation de médicaments placés dans des capsules (22), l'appareil comprenant un corps (3) comportant un moyen de stockage de capsules (9) recevant un nombre de capsules à l'utilisation, un organe d'actionnement monté de manière amovible sur le corps (3), un mécanisme distributeur (19) adapté à fonctionner lors d'actionnements successifs de l'organe d'actionnement afin de distribuer des capsules successives du moyen de stockage de capsules (9) à une station distributrice (23) délimitant une chambre distributrice (50), un moyen d'ouverture de capsules (28, 33) adapté à fonctionner en réponse à un déplacement de l'organe d'actionnement de manière à exposer à la station distributrice (23) le contenu de la capsule au sein de la chambre distributrice (50) et un conduit délimitant un passage d'air (6) communiquant entre la chambre distributrice (50) et une sortie (5) définie par le corps (3) via laquelle de l'air est inhalé à l'utilisation, dans lequel le moyen de stockage de capsules (9) définit une chambre de stockage (10) comportant une portion cylindrique pour recevoir des capsules agencées linéairement et le mécanisme distributeur (19) comprend au moins un organe distributeur (13, 14) adapté à fonctionner lors d'actionnements successifs pour déplacer une capsule longitudinallement le long de la portion cylindrique vers la station distributrice (23), caractérisé en ce que l'organe d'actionnement comprend un manchon tubulaire (4) recouvrant le corps (3) et pouvant aller et venir par rapport au corps (3) dans une direction coaxiale relativement à la portion cylindrique.

2. Appareil selon la revendication 1, dans lequel l'organe distributeur est fonctionnellement coupé à l'organe d'actionnement par une mâchoire respective (20, 21) facilitant le déplacement de l'organe distributeur dans une opération d'engagement et de dégagement des capsules au sein de la portion cylindrique de la chambre de stockage.

3. Appareil selon la revendication 2, dans lequel les mâchoires sont formées d’un seul tenant avec l'organe d'actionnement de manière que les organes distributeurs soient adaptés à un déplacement longitudinal en même temps que l'organe d'actionnement, et dans lequel les mâchoires sont flexibles pour permettre le déplacement des organes distributeurs relativement à l'organe d'actionnement.

4. Appareil selon la revendication 2, dans lequel les mâchoires sont formées séparément de l'organe d'actionnement et dans lequel le mécanisme distributeur comprend en outre un moyen de sollicitation (62) adapté à opérer entre le corps et les mâchoires pour solliciter les mâchoires longitudinalment vers la station distributrice, l'organe d'actionnement étant adapté à être engagé avec les mâchoires pour éloigner les mâchoires de la station distributrice et adapté à libérer les mâchoires pour qu'elles se déplacent vers la station distributrice sous l'effet du moyen de sollicitation.

5. Appareil selon l'une quelconque des revendications 2 à 4, dans lequel le corps est doté de premières formations de carne (36, 37) adaptées à coopérer avec les organes distributeurs de manière que les mâchoires soient déplacées jusqu'à une position fermée durant au moins une partie du déplacement longitudinal avant des mâchoires vers la station distributrice et soient rétractées jusqu'à une position ouverte durant le mouvement de retour des mâchoires relativement au corps, la position fermée des mâchoires correspondant à la capacité de l'organe distributeur respectif à être fonctionnellement engagé avec une capsule au sein de la portion cylindrique et la position ouverte correspondant à la rétraction de l'organe distributeur hors de son engagement fonctionnel avec les capsules.

6. Appareil selon l'une quelconque des revendications précédentes, comprenant en outre un bouchon d'extrémité (15) généralement tubulaire dans lequel le corps s'étend longitudinallement, le bouchon d'extrémité comprenant un premier moyen de préhension (33) adapté à serrer une portion avant (31) d'une capsule (22) à la station distributrice, le corps comprenant un second moyen de préhension (28) adapté à serrer une portion arrière (30) d'une capsule à la station distributrice, le bouchon d'extrémité étant mobile relativement au corps en réponse au déplacement de l'organe d'actionnement de manière que les premier et second moyens de préhension soient mobiles l'un par rapport à l'autre pour effectuer la séparation des premières et seconde portions et donc constituer le moyen d'ouverture de capsules.
7. Appareil selon la revendication 6, comprenant un
moyen de verrouillage (24, 25, 26, 27) adapté à
opérer entre le corps et le bouchon d'extrémité pour
retenir le bouchon d'extrémité dans une position
fixe relativement au corps durant une première
phase de déplacement de l'organe d'actionnement
relativement au corps et libérer le bouchon d'extré-
mité du corps afin que le bouchon se déplace en
même temps que l'organe d'actionnement durant
une deuxième phase de déplacement de l'organe
d'actionnement relativement au corps.

8. Appareil selon la revendication 7, dans lequel le
moyen de verrouillage comprend au moins un
organe de verrouillage (24, 25) relié au bouchon
d'extrémité et adapté à coopérer avec un évi-
dement respectif formé dans le corps afin d'empêcher
un mouvement relatif entre le bouchon d'extrémité
et le corps, et dans lequel l'organe d'actionnement
comprend des deuxième formations de came (47,
48) adaptées à coopérer avec les organes de ver-
rouillage respectifs (24, 25) pour commander leur
fonctionnement selon la position de l'organe
d'actionnement relativement au corps.

9. Appareil selon l'une quelconque des revendica-
tions 6 à 8, dans lequel le bouchon d'extrémité définit un
passage recevant la portion avant d'une capsule et
le premier moyen de préhension comprend un joint
torique (33) situé dans le passage.

10. Appareil selon la revendication 9, dans lequel le
passage communiquant avec une ouverture d'éjec-
tion (18) définie par le bouchon d'extrémité et via
laquelle les capsules épuisées sont éjectées à l'uti-
lisation.

11. Appareil selon l'une quelconque des revendica-
tions 6 à 10, dans lequel le second moyen de préhension
comprend une douille (28) de diamètre variable,
 reliée au corps et définissant une ouverture dans
laquelle une capsule est reçue à la station distribu-
trice, le bouchon d'extrémité étant doté d'une
troisième formation de came (35) adaptée à coopé-
rer avec la douille de manière à réduire l'ouverture
en réponse au déplacement du bouchon d'extré-
mité relativement au corps afin de serrer la portion
arrière d'une capsule.

12. Appareil selon l'une quelconque des revendica-
tions précédentes, comprenant un moyen (51) pour créer
une turbulence dans le flux d'air dans la chambre distributrice durant l'inhalation.

13. Appareil selon l'une quelconque des revendica-
tions précédentes, dans lequel le corps comprend une
embouchure (2) définissant la sortie, l'embouchure
étant reliée à un tube (9) définissant la chambre de
stockage, l'embouchure et le tube étant reliés de

manière amovible à une portion principale du corps
pour accéder à la chambre de stockage.