Cooling structure for electronic circuit package
Kühlvorrichtung für Bauteile mit elektronischen Schaltungen
Structure de refroidissement pour dispositif à circuit électronique

Designated Contracting States:
CH DE FR GB LI NL

Priority:
10.02.1992 JP 23052/92
24.06.1992 JP 165768/92

Date of publication of application:
15.09.1993 Bulletin 1993/37

Proprietor: NEC CORPORATION
Tokyo (JP)

Inventor: Yoshikawa, Minoru,
c/o NEC Corporation
Tokyo (JP)

Representative: Moir, Michael Christopher et al
Mathys & Squire
100 Gray’s Inn Road
London WC1X 8AL (GB)

References cited:
US-A- 4 558 395

EP-A- 144 579

Description

Background of the Invention:

Field of the Invention:

This invention relates to a cooling structure adapted for an electronic circuit package such as an integrated circuit package, and more particularly to a cooling structure which is used to perform forced cooling of an electronic circuit package using coolant.

Description of the Related Art:

The immersion jet cooling method is one way of cooling an integrated circuit chip which is mounted on a circuit board such as a printed circuit board and generates a high level of heat. In the immersion jet cooling method, the chip is cooled by jetting coolant from a nozzle directly to an integrated circuit chip immersed in electrical insulating liquid or to a heat sink adhered to the heat radiating face of the integrated circuit chip.

In the accompanying drawings

Fig. 1 is a perspective view showing a known integrated circuit chip to which a heat sink is adhered; Fig. 2 is a sectional view illustrating an application of the immersion jet cooling method to the integrated circuit chip shown in Fig. 1.

Fig. 1 shows an integrated circuit chip 201 to which a heat sink 221 is adhered. A plurality of fins 210 are formed on the heat sink 221 which extend vertically upwardly. Here, the pitch of the fins 210 is fixed. The surface of the fins 210 is finished with a smooth face or a rather rough face. The heat sink 221 is adhered to the heat radiating face of the integrated circuit chip 201 by means of a heat conducting bonding member 202. The heat conducting bonding member 202 may be, for example, solder or a resin bonding agent having a high heat conductivity.

The application of the immersion jet cooling method to an integrated circuit chip 201 to which a heat sink 221 is adhered in this manner is performed in the following manner. As shown in Fig. 2, one or a plurality of integrated circuit chips 201 are disposed on a circuit board 206. A pipe 205 is provided in an opposing relationship to the circuit board 206. Coolant circulates in the inside of the pipe 205, and nozzles 209 for jetting coolant there-through are provided on the face of the pipe 205 opposing the circuit board 206. The nozzles 209 are disposed at locations corresponding to the integrated circuit chips 201.

An upper end portion of the heat sink 221, that is, an end portion of the heat sink 221 adjacent the pipe 205 is open between adjacent fins 210. Consequently, coolant jetted from the nozzles 209 passes the gaps between the fins 210 and reaches the interior of the gaps in such a manner that it collides with the portions of the heat sinks 221 corresponding to the central portions of the integrated circuit chips 201. The coolant then flows out from the side portions of the fins 210 or the upper ends of the heat sinks 221. An electrically insulating liquid having a low boiling point is normally used as the coolant. Here, the liquid having a low boiling point represents a liquid having a boiling point lower than the surface temperature of the electronic circuit package during operation. Since a liquid having a low boiling point is used as the coolant, part of the coolant that has come in contact with the fins 210 or heat sinks 221 will boil and evaporate, and cooling is performed efficiently by the heat of vaporization.

In the arrangement shown in Figs. 1 and 2, since the fins 210 are provided, coolant jetted from the nozzles 209 flows as indicated by the arrow marks in Fig. 2 and can remove, at the positions corresponding to the central portions of the integrated circuit chips 201, air bubbles produced on the surfaces of the fins 210 as a result of boiling. However, at peripheral portions of the integrated circuit chips 201, the flow of coolant is obstructed by the fins 210 provided at the central positions, and the cooling efficiency or the cooling rate cannot be enhanced compared with the central portions. Consequently, the surface temperature of each integrated circuit chip 201 will vary between the central portion and peripheral portion of the chip, and a sufficient cooling effect will not always be obtained as a whole.

The necessary amount of coolant increases in proportion to the power dissipation of the integrated circuit chip. Therefore, when the amount of heat generation per unit area increases with a circuit board on which an integrated circuit chip is mounted, the capacity of the coolant supply apparatus and/or the size of the pipe system for coolant must be increased, and the amount of coolant itself must also be increased.

U.S. Patent No. 4,590,538 to Cray discloses a technique by which a plurality of stacks of circuit modules are arranged in a generally radial pattern to form a columnar aggregate and the aggregate is accommodated in a container to cool the circuit modules by means of coolant. According to the method by Cray, coolant is supplied along the center axis of the column so as to form flows of coolant in radial directions which perform forced cooling of the circuit modules.

When an electronic circuit module is cooled using any of the methods described above, the circuit board and the integrated circuit chip or chips and the heat sink on the circuit board are all immersed in coolant.

Consequently, the cooling efficiency is not high. And when the circuit board or the integrated circuit chip or chips must be exchanged, the disassembling and assembling operations are complicated.

pressure" discloses a cooling device containing radial fins, inner and outer axial fins and a metal bellows. The axial fins protrude from an annular tube attached to the base of the bellows, the annular tube having radially spaced through-holes disposed along its axial length. The device enables coolant to be supplied within close proximity to electronic chips, yet not transfer the coolant pressure as an excessive load on the chip.

Summary of the Invention:

It is an object of the present invention to provide a cooling structure which is superior in cooling efficiency and cooling ability and can cool the entire electronic circuit package uniformly.

In one aspect the invention provides a cooling structure for forced cooling of an electronic component comprising a primary heat transfer surface to which in operation heat generated in the electronic component passes, a fin projecting relative to said surface to form a secondary heat transfer surface, and means for directing a flow of coolant to abstract heat from the primary heat transfer surface, the fin being provided with holes to permit the coolant to pass through the fin; said fin comprising a tubular fin member;

characterised in that means are provided to force said coolant to pass only through said holes; said holes being distributed over the surface of the tubular fin member so as to provide stable nucleation sites for evaporation of the coolant.

The primary heat transfer surface may be provided on a member adapted to be affixed to the electronic component.

Preferably the coolant is directed to impinge on the primary heat transfer surface and/or to have a swirl velocity component.

In a preferred embodiment of the present invention there is provided a cooling structure for cooling an electronic circuit package using coolant which comprises: a tubular fin member made of a material having high heat conductivity and having a plurality of through-holes of small diameter formed therein; a flat plate member made of a material having high heat conductivity and having a pair of surfaces, one of which is joined to one end of the tubular fin member to close one end of the fin member, the other surface of which is capable of being affixed to the electronic circuit package; a lid member attached to the other end of the tubular fin member; and a pipe member extending through the lid member so that one end thereof is located adjacent the flat plate member, the coolant being supplied through the pipe member by way of the other end of the pipe member, wherein said holes provide stable nucleation sites for evaporation of said coolant.

In a further preferred embodiment of the present invention there is provided a cooling structure for cooling an electronic circuit package using coolant which comprises: a tubular fin member made of material having high heat conductivity and a plurality of through-holes of small diameter formed therein; a flat plate member made of a material having high heat conductivity and having a pair of surfaces, one of which is joined to one end of the tubular fin member to close one end of the tubular fin member and the other surface is capable of being affixed to the electronic circuit package; a lid member attached to the other end of the tubular fin member and having an opening therein; a coolant supply member provided to supply the coolant and constructed so as to allow the coolant to pass freely through the inside thereof, and a nozzle member mounted on the coolant supply member and inserted into the opening for jetting the coolant into the inside of the tubular fin member, wherein said holes provide a stable nucleation site for evaporation of said coolant.

In a second aspect, the present invention provides a method of cooling an electric component, heat generated in said component during operation thereof passing to a primary heat transfer surface, a fin projecting relative to said primary heat transfer surface forming a secondary heat transfer surface, holes being provided in said fin, said fin comprising a tubular fin member, said method comprising flowing coolant to abstract heat from the heat transfer surfaces, characterised in that said holes are distributed over the surface of the tubular fin member the coolant is forced to pass only through said holes, and to boil at stable nucleation sites formed by said holes.

The above and other objects, features and advantages of the present invention will be apparent from the following description referring to the accompanying drawings which illustrate examples of preferred embodiments of the present invention.

Brief Description of the Drawings

The invention will now be described merely by way of example with reference to the remainder of the accompanying drawings, wherein:

Fig. 3 is a perspective view in section, of a cooling structure of a first embodiment of the present invention;
Fig. 4 is a sectional view showing an example of use of the cooling structure shown in Fig. 3;
Fig. 5 is a perspective view, partly in section, of a cooling structure of a second embodiment of the present invention;
Fig. 6 is a sectional view of a cooling structure of a third embodiment of the present invention;
Fig. 7 is a sectional view of a cooling structure of a fourth embodiment of the present invention;
Fig. 8 is a perspective view illustrating the assembly of the cooling structure shown in Fig. 7;
Fig. 9 is a sectional view showing an example of use of the cooling structure shown in Fig. 7; and
Fig. 10 is a sectional view of a cooling structure of
a fifth embodiment of the present invention.

Detailed Description of the Preferred Embodiments:

The first embodiment of the present invention is described with reference to Figs. 3 and 4. A heat sink 22 is constituted from a substantially rectangular flat plate 3 made of a material having high heat conductivity such as copper or aluminum, a tubular fin 4 made of a material having high heat conductivity, an upper lid 7, and a nozzle 6 extending through the upper lid 7. One end of the tubular fin 4 is secured to a surface of the flat plate 3, and the upper lid 7 is mounted at the other end of the tubular fin 4. A large number of through-holes 5 of small diameter are formed uniformly over the entire area of the tubular fin 4.

An integrated circuit chip 1 is adhered face-down to the other surface of the flat plate 3 by way of a bonding member 2. The bonding member 2 may be, for example, solder, a glassy sealing agent, or a resin bonding agent. A resin bonding agent may contain a suitable filler therein in order to improve heat conductivity.

The nozzle 6 is mounted on the upper lid 7 so that the output end portion of the nozzle may be directed toward the flat plate 3. The input side of the nozzle 6 is connected to a connection pipe 9 by way of a hose 8. The connection pipe 9 is provided to supply coolant to the nozzle 6 therethrough. The hose 8 is formed from a pipe made of a material having high flexibility and high resiliency such as a rubber piping.

The method of cooling integrated circuit chips 1 using heat sinks 22 will next be described with reference to Fig. 4.

A plurality of integrated circuit chips 1 are disposed on a circuit board 20. Wiring patterns are naturally formed on the circuit board 20. Electric connecting portions between the circuit board 20 and the integrated circuit chips 1 are contact portions 23 provided by solder joints or pin coupling. A heat sink 22 is provided for each integrated circuit chip 1.

A coolant supply member 21 for supplying coolant to the heat sinks 22 therethrough is provided. The inside of the supply member 21 is hollow so that coolant may freely pass therethrough. Connection pipes 9 provided for each individual heat sink 22 are all connected to the coolant supply member 21.

A liquid of low boiling point which is chemically stable and electrically insulating such as hydrocarbon halogenide or fluorocarbon, for example "Fluonrite" produced by 3M Company, is employed as the coolant. Coolant supplied into the inside of the coolant supply member 21 advances in the direction indicated by the arrows in Fig. 4 and is supplied into each of the heat sinks 22 by way of the corresponding connection pipes 9 and hoses 8. The coolant is jettisoned from the nozzle 6 of each heat sink 22 toward the flat plate 3. As a result, the coolant conducts heat away from the integrated circuit chip 1 and flows out to the outside of the heat sinks 22 from the through-holes 5 in the side walls of the tubular fin 4. Here, since the tubular fins 4 have a cylindrical profile, the coolant can contact the entire heat conducting surface of the tubular fin 4.

Since the coolant has a low boiling point and conducts heat away by its own evaporation, in cooling of integrated circuit chip 1 using heat sink 22, the degree to which the coolant contacting the tubular fin 4 boils and conducts heat away from the tubular fin 4 significantly affects the cooling efficiency of the entire system. This type of cooling is based on nucleate boiling. When the temperature of a tubular fin 4 exceeds a particular temperature (burn-out point), which varies depending upon the type of coolant, the form of boiling changes from nucleate boiling to film boiling. In the film boiling region, a vapor film occurs between the tubular fin 4 and the coolant which causes a remarkable reduction in the amount of heat which is conducted away from the tubular fin 4 in the form of heat of vaporization. In order to prevent the occurrence of film boiling, it is necessary to quickly remove small air bubbles produced at the initial stage of boiling from the heat conducting surface of the tubular fin 4. To this end, it is effective to provide a large number of stable bubble generating points. In the heat sink 22 of the present embodiment, since through-holes 5 on the surface of the tubular fin 4 serve as the stable bubbling points, a large number of stable bubble generating points are involved.

Meanwhile, since the upper lid 7 exists at the top of the tubular fin 4, coolant colliding with the flat plate 3 does not flow out from the top of the tubular fin 4 but is forced out through the through-holes 5. Small bubbles generated at the through-holes 5 as described above are quickly discharged from the heat sink 22 together with the bubbles. Accordingly, the growth of bubbles is suppressed and the change from nucleate boiling to film boiling is prevented. Further, since coolant is forced through the through-holes 5, the overall heat conducting area of the heat sink 22 is substantially increased.

Since the connection between each connection pipe 9 connected to the supply member 21 and the nozzle 6 of the corresponding heat sink 22 is established by the hose 8, the nozzle 6 can be disposed corresponding to a central portion of the integrated circuit chip 1 irrespective of the arrangement or the magnitude of the integrated circuit chips 1 on the circuit board 20. Consequently, when a plurality of integrated circuit chips is involved, a certain degree of freedom is provided in the attachment of the cooling apparatus to the integrated circuit chips. The influence of errors in placing the integrated circuit chips is decreased and the assembling operation can be simplified. Also, the stress produced by thermal expansion of the integrated circuit chips by heat generation can be moderated.

While the first embodiment is described above, various modifications may be made to the form and the shape of the nozzles. Fig. 5 shows the construction of a heat sink according to a second embodiment of the
present invention. In Fig. 5, equivalent elements are denoted by the same reference numerals used in Figs. 3 and 4.

In the present heat sink 24, a spiral groove 12 is formed on the inner surface of the nozzle 11. Consequently, when coolant passes through the nozzle 11, a whirling movement is imparted to the coolant. The coolant collides with the flat plate 3 while whirling spirally. The effect of the whirling movement is added to the effect of contact between the tubular fin 4 and the coolant, and the efficiency of heat transmission from the tubular fin 4 to the coolant is further promoted.

Fig. 6 shows the construction of a heat sink of a third embodiment of the present invention. In Fig. 6, equivalent elements are denoted by the same reference numerals used in Figs. 3 and 4.

In the present heat sink 25, a bent tube is employed as the nozzle 14. The output port of the nozzle 14 adjacent to the heat sink 25 is directed obliquely with respect to the inner wall of the tubular fin 4. Accordingly, coolant jetted from the nozzle 14 collides with the flat plate 3 while whirling along the inner face of the tubular fin 4. As a result, the efficiency of heat transmission from the tubular fin 4 to the coolant is further promoted, similarly to the second embodiment.

Next, a fourth embodiment of the present invention will be described with reference to Figs. 7, 8 and 9. The heat sink 50 is constituted from a circular flat plate 53 made of a material having high heat conductivity such as copper or aluminum, a tubular fin 54 similarly made of a material having high heat conductivity, and an upper lid 66 having an opening 63 at a central portion thereof. One end of the fin 54 is secured to one of the surfaces of the flat plate 53, and the upper lid 66 is attached to the other end of the tubular fin 54. A large number of through-holes 55 of small diameter are formed uniformly over the entire area of the tubular fin 54.

An integrated circuit chip 51 is adhered face-down to the other surface of the flat plate 53 by way of a bonding member 52. In particular, the heat radiating surface of the integrated circuit chip 51 is directed toward the flat plate 53. The bonding member 52 may be, for example, solder, a glassy sealing agent or a resin bonding agent. A resin bonding agent may contain a suitable filler to improve heat conductivity. The integrated circuit chip 51 is mounted on the circuit board 70 by way of contact members 71 formed from solder joints or pin joints. Wiring patterns (not shown) are formed on the circuit board 70.

A cold plate 62 made of a material having high heat conductivity is provided in an opposing relationship to the circuit board 70. The cold plate 62 is provided to supply coolant to the heat sink 50 and to retrieve coolant flowing out from the heat sink 50. Passages 69 through which the coolant circulates are formed in the inside of the cold plate 62. Inlet ports 57 and outlet ports 58 are formed on the surface of the cold plate 62 adjacent the circuit board 70 and communicating with the passages 69. A nozzle 56 is connected to each of inlet port 57 and extends to the inside of the heat sink 50 through the opening 63 in the upper lid 66. The end of the nozzle 56 is arranged opposite the flat plate 53.

Cylindrical walls 61 are mounted on the cold plate 62 to surround each tubular fin 54. A thin leaf spring 59 is mounted at the end of the wall 61, and the wall 61 and flat plate 53 are thereby joined by the thin leaf spring 59. Each thin leaf spring 59 is in the shape of a disk with a circular opening. The diameter of the circular opening is smaller than the diameter of the flat plate 53, and the diameter of the thin leaf spring 59 is larger than the inner diameter of the cylindrical wall 61. Accordingly, a cooling bath 60 is formed which is substantially closed by the body of the cold plate 62, the walls 61, the thin leaf spring 59 and the flat plate 53. An outlet port 58 is disposed in the inside of cooling bath 60. The entrance and the exit of cooling bath 60 are provided by the inlet port 57 and outlet port 58, respectively.

In the present embodiment, one cold plate is normally used to cool a plurality of integrated circuit chips 51, and a series of interconnected heat sinks 50 is provided for a number of different integrated circuit chips. To this end, the passage 69 which communicates with one of the inlet ports 57 communicates with a cooling bath on the upstream side. Similarly, the passage 69 which communicates with the outlet port 58 communicates with the downstream inlet port to a cooling bath on the downstream side.

The details of the flat plate 53, including the thin leaf spring 59 and the tubular fin 54 are shown in Fig. 8. The thin leaf spring 59 is in the form of a disk-shaped ring as described above, and the section of the ring has an intermediate curved portion between the inner side and the outer side of the ring. The inner periphery of the ring contacts the flat plate 53 to which the tubular fin 54 is secured, and the outer periphery of the ring contacts the cylindrical wall 61.

The circulation of coolant in the present embodiment will next be described with reference to Fig. 9. A liquid such as fluorocarbon which has a low boiling point and is chemically stable and electrically insulating, is employed as the coolant, similarly to the embodiments described above. In Fig. 9, it is shown that a plurality of integrated circuit chips 51 are linearly disposed on circuit board 70 and a heat sink 50 is provided for each of the integrated circuit chips 51. Cooling baths 60 corresponding to each integrated circuit chips 51 are connected in series with regard to the flow of the coolant.

Coolant advances in the direction indicated by the arrows in Fig. 9. The coolant flows from the inlet port 57 through the nozzle 56 and is jetted into the heat sink 50 corresponding to the integrated circuit chip 51 positioned on the far right of Fig. 9. The jetted coolant collides with the flat plate 53 and then flows out through the through-holes 55 formed in the tubular fin 54 into the space on the outer side of the heat sink 50 inside the cooling bath 60. The coolant then passes through the
outlet port 58 and passes by way of the passage 69 to the inlet port of the next cooling bath corresponding to the adjacent integrated circuit chip 51 (the second integrated circuit chip from the right in Fig. 9). The coolant flows through the cooling bath corresponding to the second integrated circuit chip 51 and flows to the inlet port corresponding to the next adjacent, that is, the third, integrated circuit chip 51 from the right in Fig. 9. Thereafter, the coolant successively flows through the cooling baths on the downstream side.

In the present embodiment, since the upper lid 66 is mounted on the tubular fin 54 and the nozzle 56 is inserted through the opening 63 formed in the upper lid 66, coolant jetted from the nozzle 56 flows out after colliding with the flat plate 53 to the outside space of the heat sink 50 through the large number of through-holes 55 of small diameter formed in the tubular fin 54. Accordingly, the transition from nucleate boiling to film boiling is suppressed and the integrated circuit chip 51 can be cooled efficiently, similarly to the embodiments described above.

Since the thin leaf spring 59 is a flexible member having a curved portion, that is, a convex portion or a concave portion, provided at a central portion of the band forming the ring, when mounting to a circuit board 70, any difference in the height and the inclination of integrated circuit chips 51 can be absorbed. This makes it possible to adhere the entire heat radiating surface of the integrated circuit chip 51 to the flat plate 53 with certainty. The thin leaf spring 59 also serves to moderate stress caused by thermal expansion of the integrated circuit chip 51 due to generation of heat.

In the present embodiment, the flat plate 53 and wall 61 are joined by the thin leaf spring 59, and coolant is localized in the cooling bath 60. Neither the integrated circuit chips 51 nor the circuit board 70 comes in contact with the coolant, and accordingly, maintenance procedures are simplified. If the connection between the thin leaf spring 59 and the flat plate 53 or the connection between the thin leaf spring 59 and the wall 61 is broken, the portion which is filled with insulating coolant (a portion of the cooling bath) and the integrated circuit chip can be easily separated. Further, the connection between the cooling bath portion and the integrated circuit chip can be readily reestablished by applying pressure to cause contact through the thin leaf spring 59. According to assembling or disassembling when mounting an integrated circuit chip is simplified, and replacement of a circuit board or an integrated circuit chip can be performed readily.

Since the cooling bath 60 is surrounded by a cooled cylindrical wall 61, bubbles produced as a result of contact between the coolant and the tubular fin 54 can be cooled readily, and the bubbles in the coolant can be liquefied and rapidly eliminated. As a result, the heat exchanger rate is increased and the cooling efficiency is raised. Further, the increase in pressure caused by production of bubbles can be suppressed.

A fifth embodiment of the present invention will next be described with reference to Fig. 10. The present embodiment employs a bellows 64 in place of the thin leaf spring and the cylindrical wall of the fourth embodiment. In Fig. 10, equivalent elements are denoted by the same reference numerals used in Fig. 7.

One end of the bellows 64 is connected to the cold plate 62 while the other end connects the flat plate 53. The outlet port 58 is disposed on the inner side of the bellows 64. As a result, the cooling bath 60a is formed from the cold plate 62, bellows 64 and flat plate 53. Coolant flows in a similar manner to the fourth embodiment.

In the present invention, the shape of the tubular fin is not limited to a cylindrical shape and may otherwise be a polygonal shape such as a hexagon or an octagon. Further, the present invention is not limited to applications for cooling integrated circuit chips but can be applied to electronic circuit modules of any form such as, for example, power transistors, power diodes or resistor arrays. Thus the term "electronic component" or "electronic circuit package" each is used in the specification and claims to include any electronic component, module or package which requires cooling.

It is to be understood that variations and modifications of the cooling structure disclosed herein will be evident to those skilled in the art. It is intended that all such modifications and variations be included as are within the scope of the appended claims.

Claims

1. A cooling structure for forced cooling of an electronic component (1,51) comprising a primary heat transfer surface (3,53) to which in operation heat generated in the electronic component passes, a fin (4,54) projecting relative to said surface to form a secondary heat transfer surface, and means for directing a flow of coolant to abstract heat from the primary heat transfer surface, the fin (4,54) being provided with holes (5,55) to permit the coolant to pass through the fin, said fin (4,54) comprising a tubular fin member (5,54), characterised in that means are provided to force said coolant to pass only through said holes (5,55); said holes (5,55) being distributed over the surface of the tubular fin member (4,54) so as to provide stable nucleation sites for evaporation of the coolant.

2. A cooling structure as claimed in Claim 1, wherein said tubular fin member (4,54) has a cylindrical profile.

3. A cooling structure as claimed in Claim 1 or 2 wherein the primary heat transfer surface (3,53) is provided on a member (2,52) adapted to be affixed to the electronic component (1,51).
4. A cooling structure as claimed in any preceding claim wherein the coolant is directed to impinge on the primary heat transfer surface (3,53) and/or to have a swirl velocity component.

5. A cooling structure as claimed in any preceding claim, wherein:

- said tubular fin member (4,54) is made of a material having high heat conductivity, one end of said fin member (4,54) being closed by a lid member (7,66);
- said primary heat transfer surface comprises a flat plate member (3,53) made of material having high heat conductivity and having a pair of surfaces, one of which is joined to the other end of said tubular fin member (4,54) distant from said lid member (7,66) to close said other end of said fin member, and the other surface of said flat plate member is capable of being affixed to the electronic component (1,51); and
- said coolant is supplied via a conduit through said lid (7,66).

6. A cooling structure as claimed in Claim 5, wherein said electronic component (1,51) is fixed to said flat plate member (3,53) by way of bonding member (2,52) made of a material having high heat conductivity.

7. A cooling structure according to Claim 5 or 6, wherein one end portion of said conduit is directed towards said flat plate member (3,53).

8. A cooling structure as claimed in Claims 5 to 7 wherein the conduit comprises a nozzle (6,11;14;56) to direct a jet of coolant into the inside of the tubular fin member (4,54).

9. A cooling structure as claimed in any of Claims 5 to 8 wherein a spiral groove (12) is formed on the inner face of at least said end portion of said conduit.

10. A cooling structure as claimed in any of Claims 5 to 9 wherein said one end portion of said conduit is directed obliquely with respect to said flat plate member (3).

11. A cooling structure as claimed in any of Claims 5 to 10, further comprising a coolant supply member (21;62) provided to supply the coolant to at least one said electronic component and constructed to allow the coolant to circulate in the inside thereof, and wherein the other end portion of said conduit is connected to said coolant supply member.

12. A cooling structure as claimed in Claim 11, wherein said conduit for each package is connected to said coolant supply member by way of a respective hose member (5).

13. A cooling structure as claimed in Claim 11, further comprising:

- a peripheral wall member (61) mounted on said coolant supply member (62) and surrounding said fin member (54); and
- a resilient member (59) provided at an end portion of said peripheral wall member (61) for substantially closing the gap between the end portion of said peripheral wall member (61) and said flat plate member (53);
- said coolant supply member (62) having a recovery passage (69) formed therein for recovering the coolant overflowing into the inside of said peripheral wall member (61).

14. A cooling structure as claimed in Claim 13, wherein a single coolant supply member is provided for a plurality of electronic components (51), and the recovery passage corresponding to one of the electronic components (51) communicates with the conduit corresponding to an adjacent one of the electronic components (51).

15. A cooling structure as claimed in Claim 11, further comprising:

- a bellows member (64) mounted on said coolant supply member (62) and surrounding said fin member (54), an end portion of said bellows member being secured to said flat plate member (53) so as to substantially close the spacing around said fin member (54);
- said coolant supply member (62) having a recovery passage (69) formed therein for recovering the coolant overflowing into the inside of said bellows member.

16. A cooling structure as claimed in any preceding claim wherein the coolant is an electrically insulating liquid having a low boiling point.

17. A method of cooling an electric component (1,51), heat generated in said component during operation thereof passing to a primary heat transfer surface (3,53), a fin (4,54) projecting relative to said primary heat transfer surface forming a secondary heat transfer surface, holes (5,55) being provided in said fin (4,54), said fin comprising a tubular fin member (5,54), said method comprising flowing coolant to abstract heat from the heat transfer surfaces (3,53), characterised in that said holes are distributed over the surface of the tubular fin member (4,54) the coolant is forced to pass only trough said holes (5,55), and to boil at stable nucleation sites formed by
Patentansprüche

1. Kühlvorrichtung zum Zwangskühlen eines elektronischen Bauteils (1:51), die eine primäre Wärmeübertragungsoberfläche (3:53), zu der während des Betriebs in dem elektronischen Bauteil erzeugte Wärme gelangt, eine aus dieser Oberfläche hervorragendem Rippe (4:54), die eine sekundäre Wärmeübertragungsfläche bildet, und Mittel zum Richten eines Stroms von Kühlmedium zum Abführen von Wärme von der primären Wärmeübertragungsfläche aufweist, wobei die Rippe (4:54) mit Öffnungen (5:55) versehen ist, um dem Kühlmedium zu erlauben, durch die Rippe zu strömen, und die Rippe (4:54) ein röhrenförmiges Rippenelement (4:54) aufweist, dadurch gekennzeichnet, daß Mittel vor gesehen sind, um das Kühlmedium zu zwingen, nur durch die Öffnungen (5:55) zu strömen, wobei die Öffnungen (5:55) über die Oberfläche des röhrenförmigen Rippenelements (4:54) verteilt sind, um stabile Kernbildungsstellen zum Verdampfen des Kühlmediums zu schaffen.

2. Kühlvorrichtung nach Anspruch 1, in der das röhrenförmige Rippenelement (4:54) ein zylindrisches Profil aufweist.

3. Kühlvorrichtung nach Anspruch 1 oder 2, in der die primäre Wärmeübertragungsfläche (3:53) an einem Element (2:52) vorgesehen ist, das zum Befestigen an dem elektronischen Bauteil (1:51) aus gelegt ist.

5. Kühlvorrichtung nach einem oder mehreren der vor hergehenden Ansprüche, in der das röhrenförmige Rippenelement (4:54) aus einem Material mit hoher Wärmeleitfähigkeit besteht, wobei ein Ende des röhrenförmigen Rippenelements (4:54) durch ein Deckelelement (7:66) verschlossen ist;

wobei die primäre Wärmeübertragungsfläche eines flachen Plattenelement (3:53), das aus einem Material mit hoher Wärmeleitfähigkeit besteht und ein Paar von Oberflächen aufweist, von denen eine mit dem anderen, von dem Deckelelement (7:66) entfernten Ende des röhrenförmigen Rippenelements (4:54) verbunden ist, um dieses andere Ende des röhrenförmigen Rippenelements zu verschießen, und die andere Oberfläche des flachen Plattenelements geeignet ist, um an dem elektronischen Bauteil (1:51) befestigt zu werden;

wobei das Kühlmedium über eine Leitung durch den Deckel (7:66) zugeführt wird.

10. Kühlvorrichtung nach einem der Ansprüche 5 bis 9, in der der Endabschnitt der Leitung schräg in Bezug auf das flache Plattenelement (3) gerichtet ist.

11. Kühlvorrichtung nach einem der Ansprüche 5 bis 10, die ferner ein Kühlmediumsversorgungsselement (21,62) aufweist, das zum Zuführen des Kühlmediums an wenigstens eines der elektronischen Bauteile vorgesehen ist und so aufgebaut ist, um dem Kühlmedium ein Zirkulieren in seinem Inneren zu erlauben, und wobei der andere Endabschnitt der Leitung mit dem Kühlmediumsversorgungsselement verbunden ist.

13. Kühlvorrichtung nach Anspruch 11, die ferner aufweist:

 ein äußeres Wandelement (61), das an dem Kühlmediumsversorgungsselement (62) angeordnet ist und das Rippen element (54) umgibt; und ein elastisches Element (59), das an einem
Endabschnitt des äußeren Wandelementes (61) vorgesehen ist, um den Zwischenraum zwischen dem Endabschnitt des äußeren Wandelementes (61) und dem flachen Plattenelement (53) im wesentlichen zu schließen; wobei das Kühlmediumversorgungselement (62) einen Rückgewinnungsdurchlaß (69) aufweist, der darin zum Rückgewinnen des Kühlmediums ausgebildet ist, das in das Innere des äußeren Wandelementes (61) übergelaufen ist.

15. Kühlvorrichtung nach Anspruch 11, die ferner aufweist; ein Balgelement (64), das an dem Kühlmediumversorgungselement (62) angeordnet ist und das Rippenelement (54) umgibt, wobei ein Endabschnitt des Balgelements an dem flachen Plattenelement (53) befestigt ist, um den Freiraum um das Rippenelement (54) im wesentlichen zu verschließen; wobei das Kühlmediumversorgungselement (62) einen Rückgewinnungsdurchlaß (69) aufweist, der darin zum Rückgewinnen des Kühlmediums ausgebildet ist, das in das Innere des Balgelements übergelaufen ist.

17. Verfahren zum Kühlen eines elektrischen Bauteils (1; 51), wobei Wärme in dem Bauteil während des Betriebs erzeugt wird und auf eine primäre Wärmeübertragungs Oberfläche (3; 53) gelangt, und wobei aus dieser primären Wärmeübertragungs Oberfläche eine Rippe herausragt (4; 54), die eine sekundäre Wärmeübertragungs Oberfläche bildet, wobei Öffnungen (5; 55) in der Rippe (4; 54) vorgesehen sind, und die Rippe ein röhenförmiges Rippenelement (4; 54) aufweist, wobei das Verfahren ein Fließen von Kühlmedium zum Abziehen von Wärme von den Wärmeübertragungs Oberflächen (3; 53) umfaßt, dadurch gekennzeichnet, daß die Öffnungen über die Oberfläche des röhrenförmigen Rippenelementes (4; 54) verteilt sind und das Kühlmedium gezwungen wird, nur durch diese Öffnungen (5; 55) zu fließen und an stabilen Kernbildungsstellen zu sieden, die durch die Öffnungen gebildet sind.

Revendications

1. Structure de refroidissement pour le refroidissement forcé d’un composant électronique (1; 51) comprenant une surface de transfert de chaleur primaire (3; 53) sur laquelle, en fonctionnement, pas- se de la chaleur générée dans le composant électronique, une ailette (4; 54) en saillie par rapport à ladite surface afin de former une surface de trans- fert de chaleur secondaire, et des moyens destinés à diriger un flux de fluide de refroidissement afin d’élimer la chaleur en provenance de la surface de transfert de chaleur primaire, l’ailette (4; 54) comportant des orifices (5; 55) destinés à permettre le passage du fluide de refroidissement au travers de l’ailette, ladite ailette (4; 54) comprenant un élé- ment tubulaire d’ailette (4; 54), caractérisée en ce que des moyens sont fournis afin de forcer le passage dudit fluide de refroi- dissement uniquement au travers desdits orifices (5; 55), lesdits orifices (5; 55) étant répartis sur la surface de l’élément tubulaire d’ailette (4; 54) de manière à procurer des emplacements de nucléa- tion permanents destinés à l’évaporation du fluide de refroidissement.

2. Structure de refroidissement selon la revendication 1, dans laquelle ledit élément tubulaire d’ailette (4; 54) a une configuration cylindrique.

3. Structure de refroidissement selon la revendication 1 ou la revendication 2, dans laquelle la surface de transfert de chaleur primaire (3; 53) est disposée sur un élément (2; 52) adapté pour être fixé sur le composant électronique (1; 51).

4. Structure de refroidissement selon l’une quelcon- que des revendications précédentes, dans laquelle le fluide de refroidissement est dirigé de manière à heurter la surface de transfert de chaleur primaire (3; 53) et / ou à avoir une composante de vitesse en tourbillon.

5. Structure de refroidissement selon l’une quelcon- que des revendications précédentes, dans laquelle:

ledit élément tubulaire d’ailette (4; 54) se com- pose d’un matériau ayant une conductivité de chaleur élevée, une extrémité dudit élément tubulaire d’ailette (4; 54) étant fermée par un élé- ment de couvercle (7; 86);
ladite surface de transfert de chaleur primaire comprend un élément de plaque plan (3; 53) se composant d’un matériau à conductivité de chaleur élevée et comportant une paire de sur- faces, dont l’une est reliée à l’autre extrémité dudit élément tubulaire d’ailette (4; 54) séparée
dudit élément de couvercle (7; 66) afin de fermer ladite autre extrémité dudit élément d'ailette, et dont l'autre surface dudit élément de plaque plan peut être fixée sur le composant électronique (1; 51); et ledit fluide de refroidissement est fourni par l'intermédiaire d'un conduit passant au travers dudit couvercle (7; 66).

6. Structure de refroidissement selon la revendication 5, dans laquelle ledit composant électronique (1; 51) est fixé sur ledit élément de plaque plan (3; 53) au moyen d'un élément de liaison (2; 52) se composant d'un matériau ayant une conductivité de chaleur élevée.

7. Structure de refroidissement selon la revendication 5 ou la revendication 6, dans laquelle une première partie d'extrémité dudit conduit est dirigée vers ledit élément de plaque plan (3; 53).

8. Structure de refroidissement selon les revendications 5 à 7, dans laquelle le conduit comprend une buse (6; 11; 14; 56) destinée à diriger un jet de fluide de refroidissement à l'intérieur de l'élément tubulaire d'ailette (4; 54).

9. Structure de refroidissement selon l'une quelconque des revendications 5 à 8, dans laquelle une gorge en spirale (12) est formée sur la face interne d'un moindre ladite partie d'extrémité dudit conduit.

10. Structure de refroidissement selon l'une quelconque des revendications 5 à 9, dans laquelle ladite première partie d'extrémité dudit conduit est dirigée de manière oblique par rapport audit élément de plaque plan (3).

11. Structure de refroidissement selon l'une quelconque des revendications 5 à 10, comprenant en outre un élément d'alimentation en fluide de refroidissement (21; 62) disposé de manière à fournir le fluide de refroidissement au moins audit composant électronique et fabriqué de manière à permettre la circulation du fluide de refroidissement à l'intérieur de celui-ci, et dans laquelle l'autre partie d'extrémité dudit conduit est reliée audit élément d'alimentation en fluide de refroidissement.

12. Structure de refroidissement selon la revendication 11, dans laquelle ledit conduit pour chaque dispositif est relié audit élément d'alimentation en fluide de refroidissement au moyen d'un élément de tuyau respectif (8).

13. Structure de refroidissement selon la revendication 11, comprenant en outre : un élément de paroi périphérique (61) monté sur ledit élément d'alimentation en fluide de refroidissement (62) et entourant ledit élément d'ailette (54); et un élément élastique (59) disposé sur une partie d'extrémité dudit élément de paroi périphérique (61) afin de fermer essentiellement l'espace situé entre la partie d'extrémité dudit élément de paroi périphérique (61) et ledit élément de plaque plan (53); ledit élément d'alimentation en fluide de refroidissement (62) comportant un passage de récupération (69) formé dans celui-ci afin de récupérer l'excédent de débit de fluide de refroidissement s'écoulant à l'intérieur dudit élément de paroi périphérique (61).

14. Structure de refroidissement selon la revendication 13, dans laquelle un élément d'alimentation en fluide de refroidissement unique est fourni pour une pluralité de composants électroniques (51), et dans laquelle le passage de récupération correspondant à l'un des composants électroniques (51) est en communication avec le conduit correspondant à l'un des composants électroniques adjacents (51).

15. Structure de refroidissement selon la revendication 11, comprenant en outre : un élément à soufflet (64) monté sur ledit élément d'alimentation en fluide de refroidissement (62) et entourant ledit élément d'ailette (54), une partie d'extrémité dudit élément à soufflet étant fixée sur ledit élément de plaque plan (53) de manière à fermer essentiellement l'espace entourant ledit élément d'ailette (54); ledit élément d'alimentation en fluide de refroidissement (62) comportant un passage de récupération (69) formé dans celui-ci afin de récupérer l'excédent de débit de fluide de refroidissement s'écoulant à l'intérieur dudit élément à soufflet.

16. Structure de refroidissement selon l'une quelconque des revendications précédentes, dans laquelle le fluide de refroidissement est un fluide électriquement isolant ayant un bas point d'ébullition.

17. Procédé de refroidissement d'un composant électronique (1; 51), la chaleur générée au cours du fonctionnement de celui-ci passant sur une surface de transfert de chaleur primaire (3; 53), une ailette (4; 54) en saillie par rapport à ladite surface de transfert de chaleur primaire formant une surface de transfert de chaleur secondaire, des orifices (5; 55) étant aménagés dans ladite ailette (4; 54), ladite ailette comprenant un élément tubulaire d'ailette (4; 54), ledit procédé comprenant un écoullement du fluide...
de refroidissement destiné à éliminer la chaleur en provenance des surfaces de transfert de chaleur (3; 53), caractérisé en ce que lesdits orifices sont répartis sur la surface de l'élément tubulaire d'ailette (4; 54), le fluide de refroidissement est forcé pour passer uniquement au travers desdits orifices (5; 55), et de venir à ébullition sur des emplacements de nucléation permanents formés par lesdits orifices.
Fig. 8