EUROPEAN PATENT SPECIFICATION

(54) Snow and ice melting system and a heating unit for use therein
 System zum Schmelzen von Schnee und Eis und Heizelement dafür
 Système de fusion de la neige et de la glace et unité de chauffage pour celui-ci

(84) Designated Contracting States:
 AT BE CH DE DK FR GB LI LU NL SE

(43) Date of publication of application:
 08.09.1993 Bulletin 1993/36

(73) Proprietor: TAISEI HOME ENGINEERING
 KABUSHIKI KAISHA
 Chuo-ku, Tokyo (JP)

(72) Inventors:
 • Watanabe, Koji
 Tsuzhizaki-minato, Akita (JP)

• Nagai, Yoshinori
 Ichikawa, Chiba (JP)

(74) Representative: Paget, Hugh Charles Edward et al
 MEWBURN ELLIS
 York House
 23 Kingsway
 London WC2B 6HP (GB)

(56) References cited:

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The present invention relates to an ice and snow melting system for melting ice or snow on exposed surfaces liable to receive snow or ice. In particular, the system is useful for vehicle carrying surfaces such as roads where it can help prevent accidents involving vehicles and aircraft travelling on roads or runways due to slipping caused by snow by removing said snow. The system involves embedding a heating unit incorporating a surface heating element beneath the surface of the ground to melt the snow.

There are numerous problems due to freezing and accumulation of snow on road surfaces in areas having cold climates, and one example of one of these problems is the removal of snow from railroad crossings. The number of railroad crossings may be unexpectedly high, numbering as many as sixty within a single territorial jurisdiction in cities. Although more than a hundred snow removal personnel are deployed for the removal of snow from these railroad crossings each time there is a significant snowfall, difficulties have recently been encountered in assembling enough personnel to perform this work.

At present, railroad crossings equipped with ice and snow melting equipment using heating systems powered by electric power have not come into common use. The reason for this is primarily based on apprehensions concerning problems with electrical connection systems caused by vibrations and so on when a train passes over the crossing, as well as the detrimental effects on the heating unit due to load pressure at the time heavily loaded freight cars or roadway vehicles pass over the crossing.

In addition, the use of these types of heating systems has also not proliferated in the case of removal of snow from runways at airports and removal of snow from ordinary roads due to problems similar to those described above being encountered.

Furthermore, although the shortcoming in terms of the strength of surface heating elements of the prior art was in the joint between the surface portion and the electrodes, Yoshinori Nagai, one of the inventors of the present invention, succeeded in improving on this shortcoming and applied for patent of such in the form of UM Application 1-146306 (Laid open No. 3-84584) dated December 29, 1989.

Belgium Patent No. 704645 discloses a process for manufacturing heated sections of road. The process utilises flexible heating elements in the form of strips, and these are connected together in a water type manner and embedded within the road construction below a surface layer of tarmac.

An object of the present invention is to provide an ice and snow melting system, in which the heating element is less open to damage by vehicles travelling on roads or aircraft taking off and landing on runways, and which does not affect the service life of the road.

The invention therefore provides a snow melting system for melting ice and snow on roads or exposed surfaces liable to receive snow or ice. This snow melting system is useful in relation to any civil engineering structure. The system includes a heating unit which is embedded below the surface of the road or exposed surface and which comprises a surface heating element enclosed in a tar-based moisture-proof sheet material.

In the present invention, the heating unit itself is also provided and it comprises a surface heating element positioned between metal plates above and below, and adapted to be embedded beneath a surface. Preferably the surface heating element is of lamellar construction. For example the surface heating element may be a cloth base coated with an electrically conductive material. A further layer of vinyl sheet is also laminated to the surface of the conductive layer. Preferably, the cloth base is cotton with other fabrics and has a size of around 4 square metres. The electrodes of the surface heating element are preferably fine metal wires e.g. soft iron, which are embedded at opposite edges of the cloth base.

Preferably, the heating unit which comprises the surface heating element involves the surface heating element positioned or sandwiched between aluminum plates above and below, although other metals are also useful. Metal plates such as those of copper or iron may be used in place of aluminum, and different metal plates may be used for the upper and lower surfaces to prevent electrolytic corrosion. When aluminum is used as the metal, the thickness of the plates is preferably in a range of 0.1 to 5 mm.

In a preferred embodiment, the electrically conductive coating material comprises a solution of a resin such as urethane vinyl chloride, the solution containing dissolved semiconductor substances such as carbon or metal oxide.

According to the invention, the top and bottom of said heating element is wrapped or enclosed in a tar-based moisture-proof sheet material which may be adhered around it.

In a preferred use of the invention, the foundation for embedding the above-mentioned heating unit beneath the surface of the ground is first sufficiently steam rolled e.g. by a steam roller so that there are no irregularities in the asphalt beneath the ground as well as in the concrete base layer. Then, primer is applied, the heating unit is installed at the prescribed location and wiring connections are made.

When wiring work is completed, an additional coating of primer is applied to the upper surface of the heating unit. This is then covered with fine granular asphalt and concrete which preferably has a high degree of thermal conductivity as the surface material. A blend of fine granules of blast furnace slag used in iron manufacturing and asphalt is optimum for the asphalt used in the present invention.

When the surface heating element is of a cloth and
coating type, those factors which are cause for the greatest apprehension when embedding the heating element beneath the surface of the ground are whether or not said heating element will be withstand load pressure, as well as the risk of the crushed stones blended into the asphalt and concrete eating into the surface heating element. As such, in order to protect the surface heating element as well as to attach a ground wire, aluminum plates are installed above and below the surface heating element. Moreover, with respect to the action of the aluminum plates, the upper aluminum plate gradually transfers the heat radiated from the heating element to the tar-based moisture-proof sheet by temporarily accumulating said heat, and then transferring said heat to the highly thermal conductive fine granular asphalt that comprises the surface material in order to raise the temperature of the ground surface. On the other hand, the lower aluminum plate demonstrates effects which suppress the transfer of heat radiated from the heating element.

Thus, thermal efficiency is extremely favourable allowing a saving of roughly 40% less electrical power to maintain the surface temperature at a constant level than in the case of a heating element in which electric heating cords simply run through said heating element in zig-zag fashion. In addition, in contrast to the surface temperature one and a half hours after starting operation being -3.0 degrees Celsius in the case of a cord-type heating element, the surface temperature in the case of implementing the heating element of the present invention in the manner described above demonstrated a temperature of +0.6 degrees Celsius. In addition, in contrast to the surface temperature after 7 hours being +0.3 degrees Celsius in the case of a cord-type heating element, a temperature of +8.0 degrees Celsius was attained in the case of the present invention.

An embodiment of the invention will now be described, by way of example only, and with reference to the following drawings;

Fig. 1 is an overhead view of a railroad crossing at which a surface heating element is embedded.

Fig. 2 is a side view of the cross-section taken along line A-A.

Fig. 3 is a schematic drawing indicating a portion of a cross-section of the heating unit.

Fig. 4 is a cross-sectional side view of the foundation in which the heating unit is embedded.

The following is a description of a non-limitative embodiment of the present invention using an example wherein the present invention is applied at a railroad crossing.

Fig. 3 is a schematic drawing which indicates a portion of the cross-section of heating unit 4. The actual heating unit is a thin object free of any lamellar space. In Figure 3, the surface heating element is indicated by the reference numeral 1. The surface heating element is a piece of cloth, having an area of about 4 square metres. The cloth is a mixture of cotton and other materials. At two opposite edges of the cloth, fine metal wires of soft iron are embedded in a 20 mm wide zone to act as electrodes. An electrically conductive coating material is then coated onto both surfaces of the cloth base. The conductive coating is a solution of a resin such as urethane vinyl chloride in which semi-conductor substances such as carbon or metal oxide are dissolved. After coating with the conductive material, the cloth base is further laminated with a vinyl sheet. When electricity is applied to the electrodes of this surface heating element, the semi-conductor substances contained in the conductive coating material generate heat. The heating element 1 is positioned between aluminum plates 2 which are adhered above and below the heating element. A tar-based moisture-proof sheet material 3 is adhered around the heating element and plates to envelope them.

During the enveloping of the heating element and plates, cab-tyre cables which carry electricity to the electrode wires are also enveloped by the moisture-proof sheet material. The heating unit is therefore sealed within the moisture-proof material.

The thickness of the aluminum (or other metal) plates differs according to the type of surface material on the road. For example if the surface material is fine particulate asphalt then an aluminum sheet of thickness 0.1 mm-0.3 mm is sufficient. If the surface material is ordinary concrete, then an aluminum plate of thickness 1 mm-1.5 mm may be used. When an aluminum sheet of thickness 0.1 mm-0.3 mm is used, the heating element may be rolled up.

Figure 2 is a cross-sectional side view of the foundation in which heating unit 4 is embedded. Although the cobblestone layer 7 is covered over the bottom using a procedure similar to routine construction procedures, the asphalt base 6 on top of said cobblestone layer 7 is steam rolled more carefully than in the case of routine construction procedures because it is critically important that the surface be flat and completely free of irregularities in comparison to routine construction procedures. Moreover, primer is coated onto said asphalt base 6 after which the heating unit 4 is installed at the prescribed location followed by wiring. Wiring work is performed in accordance with routine electrical wiring procedures, with wiring performed from said heating unit 4 to a control box using cab-tyre cables and conduit. The control box is equipped with devices including an automatic operating unit activated by a snowfall sensor, and safety devices including a thermostat. The ground wire is taken off from aluminum plates 2. Following wiring work, an additional coating of primer is applied on the upper surface of heating unit 4 followed by the spreading of fine granular asphalt having a high degree of thermal conductivity to a thickness of 50-60 mm on top of said primer coating to function as surface material 5. Steam rolling, pressing and so on using a compactor or roller, etc. are then performed in accordance with conventional construction procedures.
With respect to the installation of the present invention, as the roadway portion is of a structure nearly identical to that of ordinary road paving, being comprised of asphalt and concrete without using foam heating insulating materials having a low level of strength, there is no reduction in the strength of the road paving. Consequently, although aluminum plates are used as heat insulating materials beneath the heating unit, the action of those plates as heat insulating materials is not great. Instead, it was possible to obtain a higher degree of thermal efficiency in comparison to using foam heat insulating materials by using a material having a higher degree of thermal conductivity than ordinary paving material for the surface material. In addition, the present invention also offers the advantage of suffering fewer malfunctions as a result of the surface heating element being positioned between metal plates on both sides.

Thus, roadways and runways embedded with the surface heating element of the present invention are continuously kept free of snow and ice, thus nearly completely eliminating accidents caused by snow, including slipping and leaving of the roadway of vehicles crossing said roadways, thereby allowing the securing of safety and accuracy of drivers.

Moreover, it goes without saying that the present invention is not limited to use in only roadways and runways, but is also a system that can be widely applied in building roofs, athletic grounds and other locations at which removal of snow is required as defined by the appended claims.

Claims

1. A snow melting system for melting ice and snow on roads or exposed surfaces liable to accumulate snow or ice, said snow melting system including a heating unit (4) adapted to be embedded beneath the surface of said road or exposed surface, said heating unit comprising a surface heating element (1), characterised in that said surface heating element is positioned between metal plates (2) above and below, and is enclosed in a tar-based moisture-proof sheet material (3).

2. A snow melting system comprising the snow melting system according to claim 1 in which a heating unit is embedded below the surface between the rails at a railroad crossing as well as outside said rails below the surface material of the road extending from said railroad crossing.

3. A snow melting system comprising the snow melting system according to claim 1 in which at least one heating unit is embedded in the taxiways or runways at an airport.

4. A snow melting system according to any of claims 1-3 wherein the surface material between the heating element and the surface of the road or exposed surface comprises a material having a high degree of thermal conductivity.

5. A heating unit (4) for melting ice and snow on roads and similar exposed surfaces liable to accumulate snow or ice, and adapted to be embedded below the surface material of said surfaces, the heating unit comprising a surface heating element (1), characterised in that the heating element is positioned between metal plates above and below and wherein the heating element and metal plates are enclosed in a tar-based moisture-proof sheet material (3).

6. A heating unit according to claim 5 wherein the heating element comprises a cloth base coated on both sides with an electrically conductive material and laminated with a vinyl sheet.

7. A heating unit according to claim 5 or 6 wherein the metal plates wholly or partly comprise aluminum.

Patentansprüche

1. Schneeschmelzsystem zum Schmelzen von Eis und Schnee auf Straßen oder exponierten Oberflächen, auf denen sich Schnee oder Eis ansammelt, wobei das Schneeschmelzsystem eine Heizeinheit (4) umfaßt, die ausgebildet ist, unterhalb der Oberfläche der Straße oder exponierten Oberfläche eingebettet zu werden, wobei die Heizeinheit ein Oberflächenheizelement (1) umfaßt, dadurch gekennzeichnet, daß das Oberflächenheizelement zwischen Metallplatten (2) darüber und darunter positioniert und in einem feuchtigkeitsbeständigen Bahnmaterial (3) auf Teerbasis eingeschlossen ist.

2. Schneeschmelzsystem, umfassend das Schneeschmelzsystem nach Anspruch 1, worin eine Heizeinheit unterhalb der Oberfläche zwischen den Schienen eines Eisenbahnübergangs sowie außerhalb der Schienen unter dem Oberflächenmaterial der Straße eingebettet ist, die vom Eisenbahnübergang weggeführt.

5. Heizeinheit (4) zum Schmelzen von Eis und Schnee auf Straßen und ähnlichen exponierten Oberflächen, auf denen sich Schnee oder Eis ansammeln kann, die ausgebildet ist, unterhalb des Oberflächenmaterials der Flächen eingebettet zu werden, wobei die Heizeinheit ein Oberflächenheizelement (1) umfaßt, dadurch gekennzeichnet, daß das Heizelement zwischen Metallplatten darüber und darunter positioniert ist, worin das Heizelement und die Metallplatten in einem feuchtigkeitbeständigen Bahnmaterial (3) auf Teerbasis eingeschlossen sind.

6. Heizeinheit nach Anspruch 5, worin das Heizelement eine Stoffbasis umfaßt, die auf beiden Seiten mit einem elektrisch leitenden Material beschichtet und mit einer Vinylfolie laminiert ist.

7. Heizeinheit nach Anspruch 5 oder 6, worin die Metalplatten zur Gänze oder teilweise Aluminium umfassen bzw. enthalten bzw. teilweise oder ganz aus Aluminium bestehen.

Revendications

1. Système de fusion de la neige pour faire fondre la glace et la neige sur des routes ou des surfaces exposées sur lesquelles la neige ou la glace a tendance à s'accumuler, ledit système de fusion de neige incluant une unité de chauffage (4) apte à être noyée en dessous de la surface de ladite route ou surface exposée, ladite unité de chauffage comportant un élément de chauffage de surface (1), caractérisé en ce que ledit élément de chauffage de surface est positionné entre des plaques métalliques (2) au-dessus et en dessous et est enveloppé dans un matériau en feuille (3) à base de goudron et résistant à l'humidité.

2. Système de fusion de neige comprenant le système de fusion de neige selon la revendication 1, dans lequel une unité de chauffage est noyée en dessous de la surface entre les rails à un croisement de chemin de fer ainsi qu'à l'extérieur desdits rails en dessous du matériau de surface de la route s'étendant depuis ledit croisement de chemin de fer.

3. Système de fusion de neige comprenant le système de fusion de neige selon la revendication 1, où au moins une unité de chauffage est noyée dans les voies pour les taxis ou les pistes d'envol ou d'atterrissage dans un aéroport.

4. Système de fusion de neige selon l'une des revendications 1-3, où le matériau de surface entre l'élément de chauffage et la surface de la route ou surface exposée comprend un matériau d'un degré élevé de conductivité thermique.

5. Unité de chauffage (4) pour faire fondre la glace et la neige sur des routes et des surfaces similaires exposées sur lesquelles la neige et la glace peuvent s'accumuler, et apte à être noyée en dessous du matériau de surface desdites surfaces, l'unité de chauffage comprenant un élément de chauffage de surface (1), caractérisée en ce que l'élément de chauffage est positionné entre des plaques métalliques au-dessus et en dessous, et où l'élément de chauffage et les plaques métalliques sont enfermées dans un matériau en feuille (3) à base de goudron, résistant à l'humidité.

6. Unité de chauffage selon la revendication 5, où l'élément de chauffage comprend une base de tissu revêtue des deux côtés d'un matériau électriquement conducteur et sur lequel est laminée une feuille de vinyle.

7. Unité de chauffage selon la revendication 5 ou 6, où les plaques métalliques sont constituées entièrement ou partiellement d'aluminium.