EUROPEAN PATENT SPECIFICATION

(54) 8-(1-Aminocycloalkyl)-1,3-dialkylxanthine derivatives as antagonists adenosine receptors

8-(1-Aminocycloalkyl)-1,3-Dialkylnxanthinderivate als Antagonisten von Adenosinrezeptoren

Dérivés de 8-(1-aminocycloalkyl)-1,3-dialkylnxanthine comme antagonistes de récepteurs d'adénosine

(45) Date of publication and mention of the grant of the patent: 25.11.1998 Bulletin 1998/48

(51) Int.Cl.: C07D 473/08, C07D 473/06, A61K 31/52

(21) Application number: 93100723.1

(22) Date of filing: 19.01.1993

(44) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(30) Priority: 24.01.1992 IT MI920132

(43) Date of publication of application: 28.07.1993 Bulletin 1993/30

(73) Proprietor: BIOMEDICA FOSCAMA INDUSTRIA
CHIMICO-FARMACEUTICA S.P.A.
I-00131 Roma (IT)

(72) Inventors:
• Brufani, Mario
  Castel Gandolfo (Roma) (IT)
• Cecarelli, Stefano
  Frosinone (IT)
• De Vellis, Patrizia
  Frosinone (IT)
• Giannetti, Patrizia
  Frosinone (IT)
• Paesano, Agnese
  Frosinone (IT)
• Scuri, Romolo
  IT-PIACENZA (IT)
• Zanarella, Sergio
  Mentana (Roma) (IT)

(74) Representative: La Ciura, Salvatore
Via Francesco Sforza, 3
20122 Milano (IT)

(56) References cited:

• LIFE SCI., vol.39, no.8, 1986, page 743 - 750,
  UKENA,D. ET AL. "
• ADENOSINE AND ADENOSINE RECEPTORS,
  vol., no., 1990, CLIFTON,NJ. page 57 - 103,
  TRIVEDI,B.K. ET AL. "

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to 8-(1-aminocycloalkyl)-1,3-dialkyloxanthine derivatives and their salts, that are active as selective antagonists of adenosine receptors, a process for their preparation, as well as pharmaceutical compositions containing them as active ingredients, which are therapeutically useful as antidepressant, nootropic and psychostimulant agents.

It is known that theophylline (1,3-dimethylxanthine) is capable of antagonizing the effects of adenosine by interacting with the receptors thereof, and that mainly to said properties its stimulating effects onto the central nervous system are to be ascribed. The lack of selectivity between the receptor subtypes A1 and A2, together with the relatively low affinity for said receptors, has imposed a severe limitation to the therapeutical use of this substance as an agent capable of enhancing the cognitive capacity, alertness and memory in man, because of the presence of pharmacologically relevant effects also onto the heart, kidney and smooth muscle action.

U.S. Patent No. 2,879,271 describes derivatives of mono and di-methyl xanthines having aminomethyl of α-aminoethyl (including primary, secondary, tertiary and quaternary amines) side chains in position 8, said derivatives being ascribed to favourably affect the circulatory system.

U.S. Patent No. 4,772,607 covers 1,3-dialkyloxanthine derivatives having unsubstituted cycloalkyl or different aryl groups in position 8, said derivatives being claimed to be adenosine receptor antagonists with activity as CNS stimulant cognition activators, antifibrillatory agents and bronchodilators.

Document WO 92/00297 refers to a broad class of novel xanthine derivatives with a number of different substituents in position 8, among which are mentioned nitrogen-containing heterocyclic groups, oxy-substituted cycloalkyl and bicycloalkyl groups. No mention is made in this document of 8-(1-aminocycloalkyl) substituent. These derivatives are adenosine antagonists and are claimed to be of interest for the symptomatic therapy of degenerative disorders of the CNS.

A computer-assisted molecular modeling analysis of structural requisites of 8-substituents in 1,3-dipropyloxanthines is found in Eur. J. Pharmacol. 1991, 206, 315-323: a strict volume dependence for the affinity of 8-cycloalkyl-1,3-dipropyloxanthines on adenosine A1 receptor was established.

In "Adenosine and Adenosine Receptors" (Ed. Williams, M.); Humana: Clifton, NJ, 1990, Chapter 3, pp. 57-103 there is a survey of structure-activity relationships of both agonists and antagonists of A1 and A2 adenosine receptors.

In European Patent Application n. 203,721 1,3-dialkyl-8-aryloxanthine derivatives useful in the therapy of cardio-circulatory and intestinal apparatus conditions are described; document DE 3 843 117 relates to 1,3-dialkyl-8-cycloalkylxanthines therapeutically useful in the degenerative conditions that are typical of aging. With the present invention novel xanthine derivatives have been found, which selectively antagonize the adenosine A1 receptors and are surprisingly active onto the central nervous system as antidepressants, nootropics and psychostimulants at the same time; moreover they have low side-effects, which can not be ascribed to the adenosine A2-dependant receptors previously described.

The present invention relates therefore to a compound of formula (I):

\[
\text{R}_1\text{N} - \text{H} - \text{R}_2
\]

wherein

R1 and R2 stand for the same or different linear or branched (C1-C6)alkyl, linear or branched (C3-C4)alkenyl, linear or branched (C3-C4)alkynyl groups;

R3 is hydrogen; -COR4 in which R4 stands for a (C1-C6) alkyl, which is non-substituted or substituted with at least one group chosen from carboxyl and (C1-C6)alkyloxy-carbonyl, phenyl, which is non-substituted or substituted with at least one group chosen from (C1-C4)alkoxy and hydroxy, (C1-C4)alkoxy, (C1-C4)alkylamine, -SO2R5 in which R5 is linear or branched (C1-C6)alkyl, phenyl, which is non-substituted or substituted with at least one (C1-C3) alkyl group;

n is from 1 to 2; and its salts.
In the present invention the compounds of formula (I) in which R1 and R2 are the same linear or branched (C1-C4) alkyl group, R3 is hydrogen and n is 1 are preferred. Especially preferred is a compound of formula (I) in which R1 and R2 are n-propyl, R3 is hydrogen and n is 1.

The compounds of formula (I) of the present invention can exist in a number of tautomeric forms, which forms, individually or in admixture, are all included in the above-mentioned formula (I), even though only one tautomeric form is represented for convenience reasons. As the salts of the compounds of formula (I), there are included the acid addition salts that can be prepared in situ during the final isolation and the purification or by means of the separate reaction of the free base with the organic or inorganic acid, suitably chosen, for example, from hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric, sulphuric, tartaric, acetic, citric, malic, lactic, fumaric, benzoic, glycolic, gluconic, succinic and p-toluene sulfonic acid. In the present invention also the base addition salts are included; they can be prepared as above thereby obtaining, e.g., ammonium, alkali metal and earth-alkali metal salts, such as the sodium, potassium and calcium salts, or salts formed with organic bases, such as di- or trialkylamines or alkanolamines, e.g. triethanolamine.

A further object of the present invention is the process for the preparation of the compounds of the general formula (I). The synthesis is carried out according to a scheme comprising the condensation of the compound of formula (II)

\[
\begin{align*}
\text{R}_1 & \quad \text{R}_2 \\
\text{N} & \quad \text{N}
\end{align*}
\]

(II)

wherein R1 and R2 have the above-mentioned meanings, with a 1-aminocycloalkanecarboxylic acid derivative of formula (III)

\[
\begin{align*}
\text{C} & \quad \text{R}_7 \\
\text{N} & \quad \text{R}_6
\end{align*}
\]

(III)

in which n is from 1 to 2, R6 is a suitable protecting group for the amine function, especially trifluoroacetyl, and R7 is OH, OCCOF3, Cl.

Where R7 is OH, the reaction is carried out in the presence of a suitable condensing agent, such as a dialkyl carbodiimide or a dicycloalkyl carbodiimide, especially disopropyl carbodiimide.

The condensation reaction gives rise to the formation of the compound of formula (IV)

\[
\begin{align*}
\text{R}_4 & \quad \text{R}_2 \\
\text{N} & \quad \text{N}
\end{align*}
\]

(IV)

in which the substituents have the meanings described above. Said compound, after isolation and, if necessary,
purification, is subjected to a cyclization reaction in the presence of a dehydrating agent, such as POCI_{3}, in a suitable organic solvent, or under hydrolytic conditions, for example with 10% NaOH at the reflux temperature of the solution, thereby obtaining the compound of formula (V)

\[ \text{(V)} \]

which can be subsequently deprotected to afford the compound of formula (I) in which R_{3} is hydrogen.

In a particularly preferred embodiment of the invention, said compound of formula (I) in which R_{3} is hydrogen can result directly from the hydrolytic cyclization reaction with concurrent deprotection of the exocyclic amine function. This occurs e.g. when R_{6} is trifluoroacetyl.

The compounds of the present invention with carboxyamide or sulfonamide functions in the position 1 of the cycloalkyl ring can be prepared according to procedures well known to a skilled man by reacting the compound of formula (I) in which R_{3} is hydrogen with a suitably activated derivative of acid R_{4}CO_{2}H, where R_{4} is alkyl optionally substituted by a suitably protected or masked terminal carboxyl group, or a phenyl optionally substituted by one or more alkoxy groups or by one or more hydroxy groups; or with a suitable derivative of acid R_{5}SO_{3}H in which R_{5} has the same meaning as described above. The formation of the compounds of the present invention with a carbamic or urethane function in the position 1 of the cycloalkyl ring can also be achieved by means of known procedures starting from the compound of formula (I) in which R_{3} is H, by reacting it with (C_{1}-C_{4})alkyl chloroformate or (C_{1}-C_{4})alkyl isocyanate, respectively.

The preparation of the compounds of formula (II), where they are not commercially available, can be carried out with methods described in literature (J.Org.Chem.16, 1879, (1951) and J Am Chem Soc. 76, 2798 (1954)).

For the preparation of the compounds of formula (III), suitable protection reactions of the primary amine function will be on the contrary resort to, said protection reactions being known to a person skilled in the art, starting from 1-aminocycloalkanecarboxylic acid; in a preferred embodiment of the present invention, said protection can be carried out by operating a trifluoroacetylation by means of trifluoroacetic anhydride.

As shown hereinafter in Examples 13 to 17, the compounds of formula (I) and their salts are selective antagonists of the adenosine A_{1} receptors, act onto the central nervous system as antidepressant, nootropa and psychostimulants at the same time and show low side effects ascribable to the A_{2} receptors. The compounds of formula (I) and their pharmaceutically acceptable salts of the present invention can therefore be advantageously used as the active ingredient for the preparation of therapeutically useful medicaments as antidepressants, nootropa and psychostimulants. Further possible indications are the degenerative conditions, such as senile dementia, Alzheimer's disease, cerebral organic syndrome, Parkinson's disease, traumatic damages to the central nervous system, post-neurological deficits, respiratory depression, neonatal cerebral damage.

Besides being employed as drugs acting onto the central nervous system, the compounds of present invention could also be used for the treatment of cardiac and respiratory disorders.

For said therapeutic uses, the compounds of the present invention or their pharmaceutically acceptable salts can be administered by the oral, topical, parenteral or rectal route in formulations containing them as the active ingredients at a therapeutically effective dosage with conventional, non-toxic pharmaceutical excipients. The term "parenteral", as used herein, includes subcutaneous, intravenous and intramuscular injections.

If the compounds of the present invention or pharmaceutically acceptable salts thereof, are in the form of a pharmaceutical composition, as in a preferred embodiment of the invention, the precise formulation employed will obviously depend on the chosen route of administration.

The pharmaceutical compositions suitable for the oral administration can be, e.g., tablets, aqueous or oily suspensions, dispersible powders or granules, hard or soft capsules, syrups or elixirs. The compositions for oral use can contain one or more sweetening, colouring, flavouring and preserving agents that are suited to provide elegant and palatable pharmaceutical compositions.

The formulations for oral use comprise tablets in which the active ingredient is mixed with non-toxic, pharmaceutically acceptable excipients. Said excipients can be inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating or disintegrating agents, such as wheat starch or alginic
acid; binding agents such as starch or gelatins; lubricants, such as magnesium stearate, stearic acid or talcum.

The tablets can be non-coated or coated by means of the techniques conventionally known to a person skilled in the art, to the purpose of delaying the disintegration and absorption in the gastro-intestinal tract, thereby achieving a retard action with protracted liberation of the active ingredient.

The aqueous suspensions generally contain the active ingredients in admixture with suitable excipients. The excipients can be suspending agents, such as sodium carboxymethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, sodium alginate, polyvinylpyrrolidone, dispersing and wetting agents. They can also contain one or more preservatives, such as ethyl or n-propyl p-hydroxybenzoate, one or more coloring agents; one or more flavouring agents, one or more sweetening agents.

The oily suspensions can also be formulated by suspending the active ingredient into a vegetal or mineral oil; they can contain sweetening and flavouring agents to make the preparation palatable.

The dispersible powders and granules that are suited for the preparation of an aqueous suspension by adding water contain the active ingredient in admixture with a dispersing or wetting agent, a suspending agent and one or more preserving agents.

The pharmaceutical composition of the present invention can also be in the form of a water-oil emulsion. The oil phase can consist of a vegetal or mineral oil. The emulsifying agents can be natural gums, such as acacia, or natural phosphatides, e.g. lecithins or ester compounds of natural or synthetic fatty acids. The syrups and elixirs can be formulated with sweetening agents, such as glycerol, sorbitol or sucrose.

The pharmaceutical compositions can be in the form of sterile injectable water or oil suspensions. The suspensions can be formulated according to the known techniques by using known dispersing or wetting agents and suspending agents. The sterile injectable preparation can be sterile injectable solutions or suspensions in a solvent or diluent which is non-toxic and suitable for the parenteral use.

The compounds of the present invention or salts thereof can also be rectally administered in the form of suppositories. These compositions can be prepared by blending the active ingredient with a suitable, non irritant excipient which is solid at room temperature but liquid at the rectal temperature; consequently it will melt in rectum and free the drug. Suitable excipients for this purpose are the polyethylene glycols and cocoa butter.

The therapeutically or prophylactically effective amount of a compound of the present invention, or salt thereof, depends on a number of factors including, e.g., the age and weight of the patient, the precise condition to be treated and its gravity, and the route of administration. However, an effective amount of the compound of the present invention for the treatment of troubles in the sphere of learning and memory will generally be within the range of 0.05 - 50 mg/kg of body weight per day, more frequently within the range of 0.5 - 5 mg/kg per day.

The examples that follow are to better demonstrate the present invention and they should not be taken as limiting anyway the scope of the present invention.

**EXAMPLE 1**

**Preparation of 8-(1-aminocyclopentyl)-1,3-dipropyloxanthine**

A mixture of 11.4 g of 1-trifluoracetylamino cyclopentanecarboxylic acid and 10.4 g of 5,6-diamino-1,3-dipropyluracil in 120 ml of methanol was treated with 8.7 ml of diisopropylcarbodiimide (DIPC). After 2 hours stirring at room temperature and 1h at 4°C, the formed precipitate is filtered under vacuum, washed and dried, thereby obtaining 15.1 g of 6-amino-1,3-dipropyl-5-(1-trifluoracetylamino cyclopentanecarboxamido)uracil m.p. 203-4°C.

Said compound is then refluxed in 280 ml of 10% aqueous NaOH for 4 hours. After cooling down and neutralization (pH=6), the formed precipitate is filtered under vacuum, washed with water and dried, thereby obtaining 10.5 g of product which is finally purify by crystallization from ethanol.

m.p. (DSC) = 195.8°C (onset); IR (KBr): 3314 (vNH), 1698, 1650 cm-1(vC=O); 1H-NMR (CDCl3): δ5.7 (3H, sb), 4.2-3.8 (4H,m), 2.5-1.5 (12H,m), 1.0 (6H,t); UV (EtOH): λ max = 275nm.

**Elementary analysis for C16H25N5O2 (M.W. 319.41):**

<table>
<thead>
<tr>
<th></th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc.</td>
<td>60.16</td>
<td>7.89</td>
<td>21.92</td>
</tr>
<tr>
<td>Found</td>
<td>59.97</td>
<td>8.09</td>
<td>22.48</td>
</tr>
</tbody>
</table>
EXAMPLE 2

Preparation of 8-(1-aminocyclopentyl)-1,3-dimethylxanthine.

Starting from 1,3-dimethyl-5,6-diaminouracil and following a procedure analogous to example 1, the title compound was prepared.
m.p. = 288-90°C; IR (KBr): 1700, 1661 (vC=O), 1628 cm⁻¹ (δNH); 1H-NMR (CD3OD): δ3.7 (3H, s), 3.6 (3H, s), 2.2-1.7 (8H, m); UV (EtOH): λmax = 275 nm.

<table>
<thead>
<tr>
<th></th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc.</td>
<td>54.74</td>
<td>6.51</td>
<td>26.60</td>
</tr>
<tr>
<td>Found</td>
<td>54.99</td>
<td>6.80</td>
<td>26.35</td>
</tr>
</tbody>
</table>

EXAMPLE 3

Preparation of 8-(1-aminocyclopentyl)-1,3-diallylxanthine.

Starting from 1,3-diallyl-5,6-diaminouracil and following a procedure analogous to example 1, the title compound was prepared.
m.p. = 186-80°C; IR (KBr): 1697, 1658 cm⁻¹ (vC=O); 1H-NMR (CDCl3): δ6.0-5.6 (2H, m), 5.2-5.0 (4H, m), 4.5 (4H, d), 2.2-1.7 (8H, m); UV (EtOH): λmax = 279 nm.

<table>
<thead>
<tr>
<th></th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc.</td>
<td>60.93</td>
<td>6.71</td>
<td>22.21</td>
</tr>
<tr>
<td>Found</td>
<td>60.69</td>
<td>6.89</td>
<td>22.45</td>
</tr>
</tbody>
</table>

EXAMPLE 4

Preparation of 8-(1-aminocyclohexyl)-1,3-dipropylxanthine.

Starting from 1-trifluoroacetylamino cyclohexanecarboxylic acid and following a procedure analogous to example 1, the title compound was prepared.
m.p. = 172-3°C; IR(KBr): 3319 (vNH), 1699, 1657 (vC=O), 1612 cm⁻¹ (δNH); 1H-NMR(CDCl3): δ5.2 (2H, ab), 4.2-3.6 (4H, m), 2.2-1.5 (14H, m), 0.95 (6H, t); UV(EtOH): λmax = 278 nm.

<table>
<thead>
<tr>
<th></th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc.</td>
<td>61.24</td>
<td>8.16</td>
<td>21.00</td>
</tr>
<tr>
<td>Found</td>
<td>61.08</td>
<td>8.38</td>
<td>20.89</td>
</tr>
</tbody>
</table>

EXAMPLE 5

Preparation of 8-(1-acetylaminocyclopentyl)-1,3-dipropylxanthine.

To a suspension of 0.86g of 8-(1-aminocyclopentyl)-1,3-dipropylxanthine in 8ml of anhydrous tetrahydrofuran 0.3 ml of pyridine and 0.4 ml of acetyl chloride are added. The mixture is stirred for 2 hours at room temperature, followed by the addition of 1N HCl and extraction with ethyl acetate. The organic phase is washed with water, dried and evaporated to obtain 0.8 g of a raw product, which is eventually crystallized from isopropyl acetate.
m.p. (DSC) 132.2°C (onset); IR (KBr): 1699, 1661, 1638 cm⁻¹ (vC=O); 1H-NMR (CDCl3): δ6.4 (1H, s), 4.2-3.8 (4H, m), 2.7-2.3 (4H, m), 2.2-1.5 (11H, m), 1.9 (6H, t); UV (EtOH): λmax max = 276 nm.
**EP 0 552 712 B1**

**EXAMPLE 6**

Preparation of 8-(1-benzoylaminocyclopentyl)-1,3-dipropylxanthine.

To a suspension of 4.3g of 8-(1-aminocyclopentyl)-1,3-dipropylxanthine in 40ml of anhydrous tetrahydrofuran 1.3 ml of pyridine and 1.9 ml of benzoyl chloride are added. The mixture is stirred for 2 hours at room temperature, followed by the addition of 1N HCl and extraction with ethyl acetate. The organic phase is washed with water, dried and evaporated to obtain 5.2 g of a raw product, which is eventually crystallized from isopropyl acetate.

m.p. (DSC)=199,2°C(onset); IR (KBrs): 3349 (vNH), 1697, 1656 cm⁻¹ (vC=O); 1H-NMR (CDCl₃): 87.6-7.6 (2H, m), 7.5-7.2 (3H, m), 6.6 (1H, s), 4.2-3.8 (4H, m), 2.7-2.3 (5H, m), 2.2-1.5 (8H, m), 1.9 (8H, t); UV(EOH): λmax=277 nm.

**EXAMPLE 7**

Preparation of 1,3-dipropyl-8-(1-(3,4,5-trimethoxybenzoylamino)cyclopentyl)xanthine.

Starting from 3,4,5-trimethoxybenzoyl chloride and following a procedure analogous to example 6, the title compound was prepared.

m.p. (DSC) = 98.7°C (onset); IR (KBrs): 1704, 1663,1624 cm⁻¹ (vC=O); 1H-NMR(CDCl₃/CD3OD): 87.2 (2H, s), 4.2-3.8 (4H, m), 3.9 (6H, s), 3.8 (3H, s), 2.7-2.3 (4H, m), 2.2-1.5 (8H, m), 1.9 (6H, t); UV(EOH): λmax = 273 nm.

**EXAMPLE 8**

Preparation of 1,3-dipropyl-8-(1-methanesulfonylaminocyclopentyl)xanthine.

To a suspension of 4.2g of 8-(1-aminocyclopentyl)-1,3-dipropylxanthine in 40ml of anhydrous tetrahydrofuran 1.7 ml of pyridine and 1.7 ml of methanesulfonyl chloride are added. The mixture is stirred for 4 hours at room temperature, followed by the addition of 1N HCl and extraction with ethyl acetate. The organic phase is washed with water, dried and evaporated to obtain 2.3 g of raw product, which is finally purified by chromatography on SiO₂ and crystallized from ethanol-water. m.p. (DSC) = 144.1°C (onset); IR (KBrs):1697, 1659 (vC=O), 1155 cm⁻¹ (vₙ SO₂); 1H-NMR (CDCl₃): 86.3 (1H, s), 4.2-3.8 (4H, m), 2.8 (3H, s), 2.5-2.2 (4H, m), 2.2-1.5 (8H, m), 1.0 (6H, t); UV (EOH): λmax = 277 nm.

---

<table>
<thead>
<tr>
<th></th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc.</td>
<td>59.81</td>
<td>7.53</td>
<td>19.38</td>
</tr>
<tr>
<td>Found</td>
<td>59.67</td>
<td>7.38</td>
<td>19.31</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th></th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc.</td>
<td>65.23</td>
<td>6.90</td>
<td>16.54</td>
</tr>
<tr>
<td>Found</td>
<td>65.27</td>
<td>7.07</td>
<td>16.77</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th></th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc.</td>
<td>60.80</td>
<td>6.87</td>
<td>13.64</td>
</tr>
<tr>
<td>Found</td>
<td>60.49</td>
<td>7.02</td>
<td>13.40</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th></th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc.</td>
<td>51.37</td>
<td>6.85</td>
<td>17.62</td>
</tr>
<tr>
<td>Found</td>
<td>51.34</td>
<td>7.02</td>
<td>18.01</td>
</tr>
</tbody>
</table>

---
EXAMPLE 9

Preparation of 1,3-dipropyl-8-(1-p-toluenesulphonylamino cyclopentyl)xanthine.

To a suspension of 200mg of 8-(1-aminocyclopentyl)-1,3-dipropylxanthine in 1.5ml of dimethylformamide 0.18 ml of pyridine and 190 mg of p-toluene sulphonyl chloride are added. The mixture is stirred for 2 hours at room temperature, followed by the addition of 1N HCl. The precipitate thereby obtained is filtered under vacuum, washed and dried, thereby obtaining 45 mg of a product.

m.p. = 208-211°C; IR (KBr): 1701, 1649 (νC=O), 1162 cm⁻¹ (νS=O); 1H-NMR (CDCl₃): δ 7.5 (2H, d), 7.0 (2H, d), 6.5 (1H, s), 4.0 (4H, t), 2.5-2.1 (4H, m), 2.2 (3H, s), 2.1-1.5 (8H, m), 1.0 (6H, t); UV (EtOH): λmax = 277 nm.

<table>
<thead>
<tr>
<th></th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc.</td>
<td>58.33</td>
<td>6.60</td>
<td>14.79</td>
</tr>
<tr>
<td>Found</td>
<td>57.98</td>
<td>6.50</td>
<td>14.46</td>
</tr>
</tbody>
</table>

EXAMPLE 10

Preparation of 1,3-dipropyl-8-(1-N-ethoxy carbonylamino cyclopentyl)xanthine.

To a suspension of 4.5g of 8-(1-aminocyclopentyl)-1,3-dipropylxanthine in 45ml of anhydrous tetrahydrofuran 1.83 ml of pyridine and 1.97 ml of ethyl chloroformate are added. The mixture is stirred for 2 hours at room temperature, followed by the addition of 1N HCl and extraction with ethyl acetate. The organic phase is washed with water, dried and evaporated to obtain 4.2 g of raw product, which is finally crystallized from ethanol/water. m.p. (DSC) = 158.4°C (onset); IR(KBr): 1712, 1665, 1634 cm⁻¹ (νC=O); 1H-NMR(CDCl₃): δ 5.4 (1H, s), 4.3-3.8 (6H, m), 2.5-2.1 (4H, m), 2.1-1.5 (8H, m), 1.3-0.8 (9H, m), UV(EtOH): λmax = 277 nm.

<table>
<thead>
<tr>
<th></th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc.</td>
<td>58.90</td>
<td>7.47</td>
<td>17.89</td>
</tr>
<tr>
<td>Found</td>
<td>58.55</td>
<td>7.64</td>
<td>18.04</td>
</tr>
</tbody>
</table>

EXAMPLE 11

Preparation of 1,3-dipropyl-8-(1-N-propylureido cyclopentyl)xanthine.

A suspension of 100 mg of 8-(1-aminocyclopentyl)-1,3-dipropylxanthine in 10 ml of anhydrous tetrahydrofuran was treated with 0.05 ml of n-propyl isocyanate. The mixture is stirred for 18 hours at room temperature, followed by evaporation under vacuum, thereby obtaining 124 mg of product.

m.p. = 198-200°C; IR(KBr): 1706, 1655, 1635 cm⁻¹ (νC=O); 1H-NMR(CDCl₃/CD3OD): δ 3.9 (4H, t), 3.0 (2H, t), 2.4-2.1 (4H, m), 2.1-1.4 (10H, m), 1.0 (6H, t); UV (EtOH): λmax = 277 nm.

<table>
<thead>
<tr>
<th></th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc.</td>
<td>59.38</td>
<td>7.97</td>
<td>20.78</td>
</tr>
<tr>
<td>Found</td>
<td>59.15</td>
<td>8.09</td>
<td>20.59</td>
</tr>
</tbody>
</table>

EXAMPLE 12

Preparation of 1,3-dipropyl-8-(1-emimalonamido cyclopentyl)xanthine.

To a suspension of 4.5 g of 8-(1-aminocyclopentyl)-1,3-dipropylxanthine in 45 ml of anhydrous tetrahydrofuran, 1.4 ml of pyridine are added and, after cooling to 5°C, 2.26 ml of ethyl malonyl chloride are dropwise added. The mixture is stirred at room temperature for 2 hours, followed by concentration under vacuum, addition of 1N HCl and...
EP 0 552 712 B1

extraction with ethyl acetate. The organic phase is washed with water, dried and evaporated, thereby obtaining 6.5 g of raw product which is purified by column chromatography (SiO2). 2.6 g of mono amionamide mono ethyl ester are obtained, which is finally saponified by treatment with tetrahydrofuran (26 ml) and NaOH 1N (30 ml) at room temperature for 1 hour.

The reaction mixture is concentrated under vacuum and made acidic with 2N HCl. thereby obtaining the precipitation of the product which is filtered under vacuum, washed with water and dried. 2.33 g of a white solid are obtained, which is finally recrystallized from ethanol/water m.p. (DSC) = 195.6°C (onset); IR (KBr): 1731, 1704, 1665, 1633 cm
1
1 (νC=O); 1H-NMR (CDCl3): δ4,0(4H, t), 3,6(2H, s), 2,5-2,1(4H, m), 2,1-1,5(8H, m), 0,9 (6H,t), UV (EtOH)λmax = 277
nm.

<p>| Elementary analysis for C19H27N505 (M.W. 405.455): |</p>
<table>
<thead>
<tr>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc</td>
<td>56.28</td>
<td>6.71</td>
</tr>
<tr>
<td>Found</td>
<td>56.48</td>
<td>6.58</td>
</tr>
</tbody>
</table>

EXAMPLE 13

Binding to the adenosine receptors.

The receptor binding tests were carried out on preparations of sinaptosomal membranes from rat brain.

Binding to the A1 receptors has been carried out as follows:

200 µg of membrane proteins were incubated for 1h at 25°C with the test substance and 0.3 nM (3H)-DPCPX in 400 µl of 50 mM tris-HCl pH = 7.4. The non-specific binding was determined with 20 µM R-PIA. The binding to the A2 receptors was carried out by incubating 200 µg of membrane proteins for 1h at 25°C with the test substance, 4 nM (3H)-NECA and 50 nM CPA. The non-specific binding was determined with 200 µM CPA.

The incubations were blocked by centrifugal methods and the separation of the bound from free material was carried out, followed by determination of the contained radioactivity by liquid scintillation. The dose-inhibition curves were obtained by assaying the receptor displacement at 14 different concentrations of the test substance (all the tests are carried out in triplicate). The tested substances were dissolved into dimethylsulfoxide and diluted in 50 mM Tris-HCl, buffer pH = 7.4. The IC50 values were determined by means of non-linear regression curves and transformed into Ki values according to the Cheng-Prusoff equation.

| TABLE 1 |
| Affinity to the adenosine receptors |
| SUBSTANCE | Ki,A1(nM) | Ki,A2(nM) | SELECTIVITY (A2/A1) |
| COMPOUND EX.1 | 26 | 54615 | 2100 |
| COMPOUND EX.6 | 115 | | |
| COMPOUND EX.8 | 166 | | |
| COMPOUND EX.10 | 108 | | |
| COMPOUND EX.12 | 6992 | | |

EXAMPLE 14

Antidepressant activity: "Behavioral despair" test.

The test described in R.D.Porsolt et al., Arch.Int.Pharmacodyn. 229, 327 (1977), which allows the antidepressant activity of a drug to be evaluated on an animal placed in an unusual, stress-causing environment, such as the water environment, was carried out. White male CD 1 (Charles River) mice weighing 25-35 g were used.

1 h before the immersion in water, the animal is administered the test compound by the intraperitoneal (i.p.) route. The period the animal stay in water is 6": from the 2nd to the 6th minute, the time lengths during which the animal remains motionless is measured (motionlessness is the symptom through which depression is revealed). Table II shows the results obtained with some compounds of the invention, as percent variation of the motionlessness period length of the treated animals relative to the control group. As the reference substances the xanthines theophylline and caffeine, the nootropically acting drug oxiracetam and the tricyclic antidepressant desipramine were included.
TABLE II

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>DOSE (mg/kg)</th>
<th>% VARIATION OF MOTIONLESSNESS TIME LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPOUND EX.1</td>
<td>10</td>
<td>- 28.33</td>
</tr>
<tr>
<td>COMPOUND EX.1</td>
<td>20</td>
<td>- 42.93</td>
</tr>
<tr>
<td>COMPOUND EX.6</td>
<td>10</td>
<td>- 24.22</td>
</tr>
<tr>
<td>THEOPHYLLINE</td>
<td>18.7 (os)</td>
<td>- 48.88</td>
</tr>
<tr>
<td>CAFFEINE</td>
<td>25 (os)</td>
<td>- 30.34</td>
</tr>
<tr>
<td>OXIRACETAM</td>
<td>500</td>
<td>- 29.07</td>
</tr>
<tr>
<td>DESIPRAMINE</td>
<td>15</td>
<td>- 24.50</td>
</tr>
</tbody>
</table>

EXAMPLE 15

Antidepressant activity: antagonism to reserpine

There was performed the test described in M.Bourin et al., Arzneim.-Forsch./Drug Res. 33(II), 1173 (1983), that allows antidepressant activity of a drug to be assayed as a function of the antagonism it exerts to hypothermia induced by reserpine. Male white CD 1 (Charles River) mice weighing 23-35 g were used.

Before every test, the basal rectal temperature of every mouse is registered. The test substances are administered by the intraperitoneal (i.p.) route 4 hours after the intraperitoneal administration of reserpine (2.5 mg/kg). The rectal temperature is measured again at t=0 and 30', 60', 90' and 120' after administration of the drug. Table III is the record of the maximum temperature variations relative to t=0 obtained on the animals treated with the compound of example 1, desipramine, nortriptyline, theophylline and caffeine.

TABLE III

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>DOSE (mg/kg)</th>
<th>Δ TEMPERATURE (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPOUND EX.1</td>
<td>10</td>
<td>+ 0.26</td>
</tr>
<tr>
<td>COMPOUND EX.1</td>
<td>20</td>
<td>+ 0.71</td>
</tr>
<tr>
<td>DESIPRAMINE</td>
<td>16</td>
<td>+ 1.39</td>
</tr>
<tr>
<td>NORTRIPTYLINE</td>
<td>10</td>
<td>+ 2.34</td>
</tr>
<tr>
<td>THEOPHYLLINE</td>
<td>20</td>
<td>+ 0.81</td>
</tr>
<tr>
<td>CAFFEINE</td>
<td>20</td>
<td>+ 1.63</td>
</tr>
</tbody>
</table>

EXAMPLE 16

Nootropic activity: "Passive avoidance" test

The test described in R.Verloes et al., Psychopharmacology 95, 226, (1988), which allows the antiamnesia effects of new drugs to be evaluated as a function of their ability of antagonizing amnesia induced by scopolamine, was performed. White male CD 1 (Charles River) mice weighing 25-35 g were used.

The animal is introduced for a first time into a cage comprising a lighted sector and a dark sector which are connected by a door. After opening the door, the mouse from the lighted sector enters the dark one, where it receives a 70V electric shock lasting 5 sec (acquisition trial). 24 hours later, the test is repeated in the same conditions (retention trial), the lack of passage to the dark sector within the first 3' from opening-door being registered. A second group of animals is administered scopolamine intraperitoneally at the dosis of 2 mg/kg 30' before the acquisition trial. The substances to be tested are administered, also by the intraperitoneal route, to a third group 1 hour before acquisition trial and 30' before the scopolamine administration. Table IV shows the antiamnesic activity of the compound of example 1 and some reference substances expressed as the percentage of animals that do not trespass the door within the first 3' in the group treated with scopolamine + test compound.

TABLE IV

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>DOSE</th>
<th>ANTIAMNESIC ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPOUND EX.1</td>
<td>10</td>
<td>80 %</td>
</tr>
<tr>
<td>CAFFEINE</td>
<td>10</td>
<td>60 %</td>
</tr>
</tbody>
</table>
TABLE IV (continued)

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>DOSE</th>
<th>ANTIAMNESIC ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEOPHYLLINE</td>
<td>20</td>
<td>30 %</td>
</tr>
<tr>
<td>8-PHENYLTHIOEPHYLLINE</td>
<td>10</td>
<td>40 %</td>
</tr>
<tr>
<td>DESIPRAMINE</td>
<td>45</td>
<td>30 %</td>
</tr>
<tr>
<td>OXIRACETAM</td>
<td>1000 (os)</td>
<td>40 %</td>
</tr>
</tbody>
</table>

EXAMPLE 17

Locomotor activity: *Activity cage* test.

This test allows the spontaneous locomotor activity of the animal to be studied. Male Wistar (Charles River) rats weighing 150-250 g were used.

30' before being admitted to the activity cage, the animals are treated intraperitoneally with the test substance. The printer connected to the system records the number of movements performed by the rats within the first 5' from the moment they enter the cage. Table V shows the ED50 values relative to the % increase of spontaneous motion activity of the treated animal relative to the control group.

TABLE V

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>DE50 (mg/kg)</th>
<th>95% CONFIDENCE LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPOUND EX.1</td>
<td>0.492</td>
<td>0.480 - 0.504</td>
</tr>
<tr>
<td>CAFFEINE</td>
<td>4.333</td>
<td>4.024 - 4.643</td>
</tr>
<tr>
<td>8-PHENYLTHEOPHYLLINE</td>
<td>6.011</td>
<td>4.197 - 7.825</td>
</tr>
<tr>
<td>THEOPHYLLINE</td>
<td>~ 3.75</td>
<td></td>
</tr>
</tbody>
</table>

Claims

1. A compound of formula (I)

    \[
    \text{(I)}
    \]

characterized in that

R1 and R2 stand for the same or different linear or branched (C1-C6)alkyl, linear or branched (C3-C4)alkenyl, linear or branched (C3-C4)alkynyl groups;
R3 is hydrogen, -COR4 in which R4 stands for a (C1-C6) alkyl, which is non-substituted or substituted with at least one group chosen from carboxyl and (C1-C6)alkyloxycarbonyl, phenyl, which is non-substituted or substituted with at least one group chosen from (C1-C4)alkoxy and hydroxy, (C1-C4)alkoxy, (C1-C4)alkylamine; -SO2R5 in which R5 is linear or branched (C1-C6)alkyl, phenyl, which is non-substituted or substituted with at least one (C1-C3)alkyl group; n is from 1 to 2; and its salts.

2. A compound as claimed in claim 1, characterized in that R1 and R2 are the same linear or branched (C1-C4)alkyl group, R3 is hydrogen and n is 1.
3. A compound as claimed in claim 1, characterized in that R1 and R2 are n-propyl, R3 is hydrogen and n is 1.

4. A process for the preparation of the compounds according to claims 1 to 3, characterized in that a compound of formula (II)

\[
\text{(II)}
\]

in which R1 and R2 are as defined in claim 1, is reacted with a compound of formula (III)

\[
\text{(III)}
\]

in which R6 is a protecting group of the amine function, R7 is hydroxy, trifluoroacetoxy or chlorine, n is from 1 to 2, optionally in the presence of a condensing agent chosen from dialkylcarbodiimide and dicycloalkylcarbodiimide, in an inert organic solvent, to obtain a compound of formula (IV):

\[
\text{(IV)}
\]

in which R1, R2 and n are as claimed in claim 1 and R6 is as defined above; the compound (IV) is reacted, in the presence of a suitable dehydrating agent such as POCl₃ in a suited organic solvent or in an aqueous alkaline medium, at a temperature of between room temperature and reflux temperature of the solution, optionally deprotected and optionally reacted with a suitable compound chosen from R₄CO₂H in which R₄ is as defined in claim 1, R₅SO₃H in which R₅ is as defined in claim 1, their activated derivatives, and (C₁-C₄)alkyl isocyanate, in an inert organic solvent, optionally in the presence of a base such as pyridine or triethylamine as a catalyst, and optionally in the presence of a suitable condensing agent.

5. A process as claimed in claim 4, characterized in that R6 is a protecting group for the amine function, such as trifluoroacetyl.

6. A process as claimed in claims 4 and 5 for the preparation of the compounds of formula (I) in which R1, R2 and n are as defined in claim 1 and R3 is COR₄, R₄ being (C₁-C₆)alkyl substituted by at least one group chosen from carboxy and (C₁-C₆)alkyloxyaryl, characterized in that the compound (I) in which R₃ is hydrogen is reacted with a suitable activated dicarboxylic acid derivative chosen from the related cyclic anhydride and the monochloride monoester, optionally followed by hydrolyzing in an alkaline medium.
EP 0 552 712 B1

7. A process as claimed in claims 4 and 5 for the preparation of the compounds of formula (I) in which R1, R2 and n are as defined in claim 1 and R3 is COR4, R4 being a (C1-C4)-alkoxy group, characterized in that the compound of formula (I) in which R3 is hydrogen is reacted with the suited (C1-C4)alkylchloroformate in an organic solvent, such as tetrahydrofurane, possibly in the presence of a base, such as pyridine or triethylamine, as a catalyst.

8. A process as claimed in claims 4 and 5 for the preparation of the compounds of formula (I) in which R1, R2 and n are as defined in claim 1 and R3 is COR4, R4 being a (C1-C4) alkylamine group, characterized in that the compound of formula (I) in which R3 is hydrogen is reacted with the suited (C1-C4)alkyl-isocyanate in an organic solvent such as tetrahydrofurane.

9. Pharmaceutical compositions, characterized in that they contain at least one compound according to claim 1 as an active ingredient in an effective amount together with one or more conventional, non-toxic excipients.

10. Use of the pharmaceutical compositions according to claim 9 as antidepressant, nootropic and psychostimulant drugs in therapeutical applications.

Patentansprüche

1. Verbindung der Formel (I)

\[
\begin{align*}
 & \text{dadurch gekennzeichnet, daß} \\
 & \text{R1 und R2 für die gleichen oder verschiedenen, linearen oder verzweigten (C1-C6)-Alkyl-, linearen oder verzweigten (C3-C4)-Alkenyl-, linearen oder verzweigten (C3-C4)-Alkinyllgruppen stehen; R3 Wasserstoff, CO}R4, \text{ worin R4 für eine (C1-C6)-Alkylgruppe, die nichtsubstituiert oder mit mindestens einer} \\
 & \text{Gruppe, ausgewählt aus Carboxyl und (C1-C6)-Alkoxy-carbonyl, substituiert ist, eine Phenylgruppe, die nicht} \\
 & \text{substituiert oder mit mindestens einer Gruppe, ausgewählt aus (C1-C4)-Alkoxy und Hydroxy, substituiert ist,} \\
 & \text{(C1-C4)-Alkoxy, (C1-C4)-Alkylamin steht; -SO2R5, worin R5 eine lineare oder verzweigte (C1-C6)-Alkylgruppe,} \\
 & \text{eine Phenylgruppe, die nichtsubstituiert oder mit mindestens einer Gruppe (C1-C3)-Alkyl substituiert ist,} \\
 & \text{darstellt; n 1 bis 2 ist und deren Salze.}
\end{align*}
\]

2. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß R1 und R2 die gleiche lineare oder verzweigte (C1-C4)-Alkylgruppe darstellen, R3 Wasserstoff darstellt und n 1 ist.

3. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß R1 und R2 n-Propyl darstellen, R3 Wasserstoff darstellt und n 1 ist.

4. Verfahren zur Herstellung von Verbindungen nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß eine Verbindung der Formel (II)
worin R1 und R2 wie in Anspruch 1 definiert sind, mit einer Verbindung der Formel (III):

worin R6 eine Schutzgruppe der Aminfunktion darstellt, R7 Hydroxy, Trifluoracetoxyl oder Chlor darstellt, n 1 bis 2 ist, gegebenenfalls in Anwesenheit eines Kondensationsmittels, ausgewählt aus Dialkylcarbodiimid und Dicycloalkylcarbodiimid, in einem inerten organischen Lösungsmittel unter Gewinnung einer Verbindung der Formel (IV):

worin R1, R2 und n wie in Anspruch 1 definiert sind und R6 wie vorstehend definiert ist, die Verbindung (IV) in Anwesenheit eines geeigneten Dehydratisierungsmittels, wie POCI3, in einem geeigneten organischen Lösungsmittel oder in einem wässrigen alkalischen Medium bei einer Temperatur zwischen Raumtemperatur und der Rückflußtemperatur der Lösung umgesetzt wird, gegebenenfalls von Schutzgruppen befreit wird und gegebenenfalls mit einer geeigneten Verbindung, ausgewählt aus R4CO2H, worin R4 wie in Anspruch 1 definiert ist, R5SO3H, worin R5 wie in Anspruch 1 definiert ist, deren aktivierten Derivaten und C(1-C4)-Alkylisocyanat in einem inerten organischen Lösungsmittel, gegebenenfalls in Anwesenheit einer Base, wie Pyridin oder Triethylamin, als Katalysator, und gegebenenfalls in Anwesenheit eines geeigneten Kondensationsmittels, umgesetzt wird.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß R6 eine Schutzgruppe für die Aminfunktion, wie Trifluoracetyl, darstellt.

6. Verfahren nach Ansprüchen 4 und 5 zur Herstellung von Verbindungen der Formel (I), worin R1, R2 und n wie in Anspruch 1 definiert sind und R3 COR4 darstellt, wobei R4 (C1-C6)-Alkyl, substituiert mit mindestens einer Gruppe, ausgewählt aus Carboxy und (C1-C6)-Alkoxy-carbonyl, ist, dadurch gekennzeichnet, daß die Verbindung (I), worin R3 Wasserstoff darstellt, mit einem geeignet aktivierten Dicarbonsäuredervat, ausgewählt aus dem entsprechenden cyclischen Anhydrid und dem Monochloridmonoester, gegebenenfalls gefolgt von Hydrolyseren in einem alkalischen Medium, umgesetzt wird.

7. Verfahren nach Ansprüchen 4 und 5 zur Herstellung von Verbindungen der Formel (I), worin R1, R2 und n wie in
Anspruch 1 definiert sind, und R₃COR₄ darstellt, wobei R₄ eine (C₁-C₄)-Alkoxygruppe darstellt, dadurch gekennzeichnet, daß die Verbindung der Formel (I), worin R₃ Wasserstoff darstellt, mit dem geeigneten Chlorameisensäure-(C₁-C₄)-alkylierung in einem organischen Lösungsmittel, wie Tetrahydrofuran, gegebenenfalls in Anwesenheit einer Base, wie Pyridin oder Triethylamin, als Katalysator umgesetzt wird.

8. Verfahren nach Ansprüchen 4 und 5 zur Herstellung von Verbindungen der Formel (I), worin R₁, R₂ und n wie in Anspruch 1 definiert sind und R₃COR₄ darstellt, wobei R₄ eine (C₁-C₄)-Alkyliamingleitung in einem organischen Lösungsmittel, wie Tetrahydrofuran, umgesetzt wird.


Revendications

1. Composé de formule (I)

![Chemical Structure](image)

caractérisé en ce que

R₁ et R₂, qui sont identiques ou différents, désignent des groupes alkyle en C₁-C₆ linéaires ou ramifiés, alcényle en C₃-C₄ linéaires ou ramifiés; alcyne en C₃-C₄ linéaires ou ramifiés;

R₃ est un atome d'hydrogène; un groupe -COR₄, dans lequel R₄ représente un groupe alkyle en C₁-C₆, qui est non substitué ou substitué par au moins un groupe choisi parmi les groupes carboxyle et alkyl(en C₁-C₆) oxycarbonyle, un groupe phényle, qui est non substitué ou substitué par au moins un groupe choisi parmi les groupes alcoxy en C₁-C₄ et hydroxy, un groupe alcoxy en C₁-C₄, un groupe alkyamine en C₁-C₄, un groupe -SO₂R₆, dans lequel R₆ est un groupe alkyle en C₁-C₆ linéaire ou ramifié, un groupe phényle, qui est non substitué ou substitué par au moins un groupe alkyle en C₁-C₃; n a une valeur de 1 ou 2; et ses sels.

2. Composé selon la revendication 1, caractérisé en ce que R₁ et R₂ représentent le même groupe alkyle en C₁-C₄ linéaire ou ramifié, R₃ est un atome d'hydrogène et n est égal à 1.

3. Composé selon la revendication 1, caractérisé en ce que R₁ et R₂ sont des groupes n-propyle, R₃ est un atome d'hydrogène et n est égal à 1.

4. Procédé pour la préparation de composés selon les revendications 1 à 3, caractérisé en ce que l'on fait réagir un composé de formule (II)
dans laquelle $R_1$ et $R_2$ sont tels que définis dans la revendication 1, avec un composé de formule (III)

dans laquelle $R_6$ est un groupe protecteur de la fonction amine, $R_7$ est un groupe hydroxy, trifluoroacétoxy ou un chloré, $n$ a une valeur de 1 à 2, le cas échéant en présence d'un agent de condensation choisi parmi un dialkylicarbodiimide et un dicycloalkylicarbodiimide, dans un solvant organique inerte, pour obtenir un composé de formule (IV):

dans laquelle $R_1$, $R_2$ et $n$ sont tels que définis dans la revendication 1 et $R_6$ est tel que défini ci-dessus; le composé (IV) est mis à réagir, en présence d'un agent déshydratant convenable tel que POCl$_3$, dans un solvant organique approprié ou dans un milieu aqueux alcalin, à une température comprise entre la température ambiante et la température de reflux de la solution, éventuellement déprotégé et éventuellement mis à réagir avec un composé convenable choisi parmi R$_4$CO$_2$H, où $R_4$ est tel que défini dans la revendication 1, R$_5$SO$_3$H, où $R_5$ est tel que défini dans la revendication 1, leurs dérivés activés et un isocyanate d'alkyle en C$_1$-C$_4$, dans un solvant organique inerte, éventuellement en présence d'une base telle que la pyridine ou la triéthylamine comme catalyseur, et éventuellement en présence d'un agent de condensation convenable.

5. Procédé selon la revendication 4, caractérisé en ce que $R_6$ est un groupe protecteur pour la fonction amine, tel que trifluoroacétylé.

6. Procédé selon les revendications 4 et 5 pour la préparation des composés de formule (I) dans laquelle $R_1$, $R_2$ et $n$ sont tels que définis dans la revendication 1 et $R_3$ est COR$_4$, $R_4$ étant un groupe alkyle en C$_1$-C$_4$, substitué par au moins un groupe choisi parmi un groupe carboxyl et un groupe alkyl(en C$_1$-C$_4$)oxycarboxyle, caractérisé en ce que le composé (I) dans lequel $R_8$ est un atome d'hydrogène est mis à réagir avec un dérivé d'acide dicarboxylique activé convenable choisi parmi l'anhydride cyclique apparenté et le monoéster de monochlorure, puis éventuellement hydrolysé dans un milieu alcalin.

7. Procédé selon les revendications 4 et 5 pour la préparation des composés de formule (I) dans laquelle $R_1$, $R_2$ et $n$ sont tels que définis dans la revendication 1 et $R_3$ est COR$_4$, $R_4$ étant un groupe alcoxy en C$_1$-C$_4$, caractérisé
en ce que le composé de formule (I) dans laquelle R₂ est un atome d'hydrogène est mis à réagir avec le chloroformiate d'alkyle en C₁-C₄ approprié dans un solvant organique, tel que le tétrahydrofuranne, éventuellement en présence d'une base, telle que la pyridine ou la triéthylamine, comme catalyseur.

8. Procédé selon les revendications 4 et 5 pour la préparation des composés de formule (I) dans laquelle R₁, R₂ et n sont tels que définis dans la revendication 1 et R₃ est COR₂. R₂ étant un groupe alkylamine en C₁-C₄, caractérisé en ce que le composé de formule (I) dans laquelle R₃ est un atome d'hydrogène est mis à réagir avec l'isocyanate d'alkyle en C₁-C₄ dans un solvant organique tel que le tétrahydrofuranne.

9. Compositions pharmaceutiques, caractérisées en ce qu'elles contiennent au moins un composé selon la revendication 1 comme principe actif, en une quantité efficace, avec un ou plusieurs excipients non toxiques classiques.

10. Utilisation des compositions pharmaceutiques selon la revendication 9 comme médicaments antidépresseurs, neurotropes ou psychostimulants dans des applications thérapeutiques.