Einrichtung zum Begasen einer Flüssigkeit.

Priorität: 20.12.91 CH 3798/91
Veröffentlichungstag der Anmeldung: 30.06.93 Patentblatt 93/26
Bekanntmachung des Hinweises auf die Patenterteilung: 23.08.95 Patentblatt 95/34
Benannte Vertragsstaaten: AT CH DE FR IT LI NL

Patentinhaber: HUBER & SUHNER AG KABEL-, KAUSTCHUK-, KUNSTSTOFF-WERKE
Tumbelenstrasse 20
CH-8330 Pfäffikon ZH (CH)

Erfinder: Volkmar, Herbert
Ober-Balm
CH-8331 Aeskon (CH)
Erfinder: Müller, Konrad
Junkernweg 2
CH-8610 Uster (CH)

Vertreter: Hepp, Dieter et al
Hepp, Wenger & Ryffel AG,
Marktgasse 18
CH-9500 Wila (CH)

Beschreibung

Die Erfindung bezieht sich auf eine Einrichtung zum feinblasigen Begassen einer Flüssigkeit mit einer Stützplatte, die wenigstens eine Gasaustrittsöffnung aufweist, mit einer mit einem Randbereich der Stützplatte dicht verbundenen, mit feinen Gasdurchtrittssporen versehenen Belüftermembrane und mit rückschlagventilartig wirkenden Mitteln zum Verschlussen der Gasaustrittsöffnung.


Diese Aufgabe wird erfülltgemäß in erster Linie gemäss Kennzeichen der Patentansprüche gelöst.

Der biegse Randabschnitt der Ventilmembrane kann ähnlich einer Rückschlagklappe die Gasaustrittsöffnung(en) unabhängig von der porösen Belüftermembrane zuverlässig dicht verschliesen, sobald der Druck nach der Gasaustrittsöffnung höher ist, als der Druck in der Gasaustrittsöffnung.

Der biegse Randabschnitt der Ventilmembrane kann sich in vorteilhafter Weise im wesentlichen um den ganzen Umfang der Ventilmembrane erstrecken und die Mündungen mehrerer verteilte angeordnete Gasaustrittsöffnungen überdecken, die eine gleichmässige Verteilung des zugeführten Gases im Raum zwischen der Stützplatte und der porösen Belüftermembrane bewirken können. Dabei kann die Ventilmembrane etwa kreisrund sein und die Gasaustrittsöffnungen können auf einem Kreis verteilt angeordnet sein. Aus herstellungs-technischen Gründen wird dann die Stützplatte vorteilhaft zweiteilig ausgeführt.


Ersichtlicherweise lässt sich der Hohlraum technisch besonders einfach verwirklichen, wenn
wenigstens ein Abstützelement vorgesehen ist, welches das flüssige Aufliegen der Belüftungs membrane auf dem Grundkörper im Bereich des Hohlraums verhindert.

Ersichtlicherweise lässt sich der Hohlraum auch dadurch bilden, dass die Gasaustrittsöffnung mit der Ventilmembrane im Grundkörper versenkt angeordnet wird. Besonders vorteilhaft ist es aber, wenn der Hohlraum durch wenigstens ein Abstüt- zelement und den Membrantragkörper gebildet wird, wobei die Belüftungsmembranen dadurch einmal im Zentrum der Ventilmembrane und ausserdem etwa ringförmig um die Gasaustrittsöffnung herum abgestützt wird.

Als Abstützelement lässt sich besonders vorteilhaft ein etwa ringförmig angeordneter Vorsprung des Grundkörpers ausbilden, der als Zusatzfunktion die Abdichtung zwischen Belüftungsmembrane und Grundkörper übernehmen kann. Alternativ sind auch andere Formen von Abstützelementen, wie z.B. stempelartige Erhöhungen oder Federeinlagen, etc., verwendbar.

Bevorzugte Ausführungsbeispiele der erfindungsgemässen Einrichtung werden nachstehend anhand der Zeichnungen näher erläutert. In diesen zeigen:

Figur 1 einen schematischen Vertikalschnitt durch eine Bagasungseinrichtung im Betriebszustand, in welchem einem Gaszufuhrstruten Gas unter Druck zugeführt ist,

Figur 2 einen gleichen Vertikalschnitt wie Fig. 1 im Zustand ohne Druckgaszu- fuhr,

Figur 3 in grösserem Massstab einen Vertikalschnitt durch einen Membrantrag- körper und eine auf diesem angeordnete Ventilmembrane der Einrich- tung,

Figur 4 eine Draufsicht auf den Membrantragkörper allein, ohne die Ventilmembrane,

Figur 5 einen schematischen Vertikalschnitt durch eine abgewandelte Bega- sungseinrichtung, wobei im linken Abschnitt der Betriebszustand und im rechten Abschnitt der Ruhezustand dargestellt ist,

Figur 6 eine Draufsicht auf den Grundkörper gemäss Fig. 5, und

Figur 7 einen Ausschnitt durch einen Vertikalschnitt einer weiter abgewandelten Bagasungseinrichtung im Ruhezustand.

Die dargestellte Einrichtung zum Bagasen einer Flüssigkeit besitzt eine Stützplatte, die im Ausführungsbeispiel zweiteilig ist und aus einem Grundkörper 1 und einem auf diesem befestigten Membrantragkörper 2 besteht. Ueber der Stützplatte 1, 2 ist eine Belüftungsmembrane 3 aus biegsamem, gummielastischem Material angeordnet, deren Rand mit dem Rand des Grundkörpers 1 dicht verbunden ist, beispielsweise mittels eines Spann- rings 4. Der Grundkörper 1 und die Belüftungsmembrane 3 können in Draufsicht im wesentlichen kreisrund sein.

In den Raum 5 zwischen der Stützplatte 1, 2 und der Belüftungsmembrane 3 wird im Betrieb ein Gas unter Druck eingeführt, das dann durch in der Belüftungsmembrane 3 vorhandene feine Gasdurch- trittsporen (nicht dargestellt) in Form von feinen Gasblasen in eine über der Belüftungsmembrane 3 stehende Flüssigkeit, z.B. Abwasser, austritt. Durch den Gasdruck im Raum 5 wird die Belüftungsmembrane 3 wie in Fig. 1 gezeigt kalottenförmig aufge- wölbt.

Für die Zufuhr des Gases ist an den Grundkörper 1 ein Gaszufuhrrutzen 6 angefertigt, der über Gaszuführungsoffnungen 7 mit einem zwischen dem Grundkörper 1 und dem Membrantragkörper 2 vorhandenen, im vorliegenden Fall ringförmigen Gas- verteilerraum 8 in Verbindung steht. Von dem Gas- verteilerraum 8 gehen mehrere Gasaustrittsöffnungen 9, die im vorliegenden Fall wie in Fig. 4 gezeigt die Form von Schlitzen haben, welche in etwa gleich- bleibendem Abstand vom kreisrunden Umfang des Membrantragkörpers 2 verlaufen.


Wenn die Gaszufuhr abgeschaltet wird, oder wenn der Druck des zugeführten Gases aus irgendwelchen Gründen niedriger ist als der Druck der über der porösen Belüftungsmembrane 3 stehenden Flüssigkeit, dann drückt die Flüssigkeit die Belü- ftungsmembrane 3 wie in Fig. 2 gezeigt nach unten auf die Stützplatte 1, 2. Die Belüftungsmembrane 3 drückt ihrerseits den biegsamen Randabschnitt 11.1 der Ventilmembrane 11 auf die Mündungen der Gasaustrittsöffnungen 9, wodurch diese dicht verschlossen werden.
Der wie eine Rückschlagklappe wirkende biegensame Randabschnitt 11.1 der Ventilmembran 11 verschließt die Mündungen der Gasaustrittsöffnungen 9 aber auch dann, wenn die poröse Belüftermembrane 3 gerissen ist und die Flüssigkeit direkt mit einem Druck auf den Randabschnitt 11.1 drückt, der höher ist als der Druck des zugeführten Gases.

Die auf einem Kreis verteilt angeordneten Gasaustrittsöffnungen 9 und zusätzlich der das zugeführte Gas radial nach aussen umlenkende Randabschnitt 11.1 der in ihrer Mitte auf dem Membrantraktorkörper 2 befestigten Ventilmembrane 11 bewirken eine gleichmässige Verteilung des zugeführten Gases im Raum 5 zwischen der Stützplatte 1, 2 und der porösen Belüftermembrane 3.

Gemäss Fig. 5 und 6 weist die dargestellte Einrichtung zum Begassen einer Flüssigkeit einen Grundkörper 1 auf, der mit einer im Zentrum angeordneten Gaszufuhroffnung 7 versehen ist, welche mittels eines Gaszufuhrustrates 6 verschlossen wird. Die Gaszufuhroffnung 7 ist durch eine dünne Ventilmembrane 11 verschlossen. Die Ventilmembrane 11 wird durch einen Membrantraktorkörper 2 in Form eines im Zentrum der Ventilmembrane 11 angeordneten Holzens getragen. Der Grundkörper 1 wird durch die Belüftermembrane 3 abgedeckt, welche in einem Kreising-Abschnitt P mit feinen Poren zum Begassen der darübergelagerten Flüssigkeit versehen ist. Im Bereich U ist die Belüftermembrane 3 dagegen dicht.


Sinkt dagegen der Innendruck ab, weil z.B. die Gaszufuhr ausgeschaltet wird, wird die Belüftermembrane 3 gemäss Darstellung in der rechten Hälfte von Fig. 5 flach auf die Grundplatte 1 gedrückt. Dort liegt sie im Bereich P der Poren an, so dass bei einer Beschädigung der Belüftermembrane 3 zunächst Wassereinbruch verhindert oder zumindest erschwert wird. Die Belüftermembrane 3 liegt ausserdem, wie dargestellt, auf einer ringförmigen Dichtkante 20 auf, so dass sich zwischen der Ventilmembrane 11 und der Belüftermembrane 3 ein Hohlraum 21 ergibt. Sobald die Gaszufuhr wieder eingeschaltet wird, erhöht sich der Luftdruck im gesamten Bereich des Hohlraums, wodurch eine nach oben gerichtete Abhebekraft auf die Belüftermembrane 3 ausgeübt wird.

Wie aus Fig. 5 ersichtlich wird, ist die Dichtkante 20 etwa lippenförmig derart geformt, dass eine ringförmige Abdichtung zum Bereich U der Belüftermembrane 3 erfolgt, wenn diese gegen den Grundkörper 1 gepresst wird. Auf diese Weise wird Wassereintritt in den Hohlraum 21 erschwert oder verhindert, wenn die Belüftermembrane 3 im Bereich P größere Beschädigungen aufweist.

Selbst wenn die Dichtwirkung zwischen die Dichtkante 20 und der Belüftermembrane 3 ungehindert sei, dichtet in einem solchen Fall zusätzlich die Ventilmembrane 11 den Zufuhrraum 6, bezw. die Gaszufuhroffnung 7 zuverlässig ab.

Während beim Ausführungsbeispiel gemäss Fig. 5 und 6 die Belüftermembrane 3 im Bereich des Hohlraums 21 sowohl auf einem als Dichtkante 20 ausgebildeten Abstützelement als auch auf dem Membrantraktorkörper 2 aufliegt, wird beim Ausführungsbeispiel gemäss Fig. 7 die Belüftermembrane 3 lediglich durch zwei etwa ringförmige, als Wulste 20a, 20b ausgebildete Abstützelemente getragen. Dies ist deshalb möglich, weil eine der Ventilmembrane in einer Vertiefung 22 im Grundkörper 1 angeordnet ist, und andererseits die Belüftermembrane ausreichend biegsteif ist, damit der Hohlraum 21 auch ohne zusätzliche Abstützung durch den Membrantraktorkörper 2 erhalten bleibt.

 Patentansprüche

1. Einrichtung zum feinblasigen Begassen einer Flüssigkeit, mit einer Stützplatte (1, 2), die ein Gaszufuhrustrat (9) aufweist, mit einer in einem Randbereich der Stützplatte (1, 2) dicht verbundenen, mit einem Membrantraktorsporen versehenen Belüftermembrane (3) und mit rückschlagventilartig wirkenden Mitteln (11) zum Verschliessen der Gasaustrittsöffnung (9), dadurch gekennzeichnet, dass die Mittel zum Verschliessen der Gasaustrittsöffnung (9) eine Ventilmembrane (11) enthalten, deren Randabschnitt (11.1) die Mündung der Gasaustrittsöffnung(en) (9) in Schiess-Stellung abdeckt.

2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Stützplatte (1, 2) einen Grundkörper (1) und einen auf dem Grundkörper befestigten Membrantraktorkörper (2) besitzt, der die Ventilmembrane (11) trägt, wobei der Grundkörper (1) eine Gaszufuhroffnung (7) enthält und zwischen dem Grundkörper (1) und dem Membrantraktorkörper (2) ein Gasverteilerraum (8) enthalten ist, von welchem die Gasaustrittsöffnung bzw. -öffnungen (9) ausgehen.

3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der Membrantraktorkörper (2) mehrere Gasaustrittsöffnungen (9) in Form von Schlitzlid enthält, die in etwa gleichbleibendem
Abstand vom Umfang des Membrantragkörpers (2) verlaufen.

4. Einrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Membrantragkörper (2) einen im wesentlichen kreisrunden Umfang besitzt.

5. Einrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Ventilmembrane (11) auf dem Grundkörper (1) angeordnet ist.

6. Einrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Ventilmembrane (11) einen gegen die Gaszuführöffnung (7) gerichteten, gebogenen Randabschnitt aufweist.

7. Einrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass eine Anordnung (20; 20a; 20b; 2) zum Erzeugen eines Hohlrums (21) zwischen Grundkörper (1) und Bellüftermembrane (3) vorgesehen ist, welcher Hohlräum erhalten bleibt, wenn die Bellüftermembrane durch den Flüssigkeitsdruck der umgebenden Flüssigkeit auf den Grundkörper (1) gedrückt wird, und dass die Gasaustrittsöffnung (7) mit dem Hohlräum (21) in Verbindung steht.

8. Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Hohlräum (21) über der Gasaustrittsöffnung (7) gebildet wird.

9. Einrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Hohlräum durch wenigstens ein Abstütlelement (20; 20a; 20b; 2) gebildet wird.

10. Einrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der Hohlräum durch das oder die Abstütlelement(e) (20, 20a, 20b) und dem Membrantragkörper (2) gebildet wird.

11. Einrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Gasaustrittsöffnung (7) von wenigstens einem, vom Grundkörper (1) im unperforierten Bereich U der Bellüftermembrane (3) abstehenden Dichtkante (20, 20a, 20b) umgeben ist, der einerseits die Bellüftermembrane (3) abstützt und einen Hohlräum (21) über der Gasaustrittsöffnung (7) bildet, wenn der Aussendruck der Flüssigkeit größer ist, als der Innendruck unter der Bellüftermembrane und der andererseits mit der Bellüftermembrane (3) eine Abdichtung zum Hohlräum (21) bildet.

Claims

1. Device for the fine aeration of a liquid, with a support plate (1, 2) which possesses at least one gas outlet opening (9), with an aeration membrane (3) which is closely connected with an edge area of the support plate (1, 2) and provided with fine pores for the passing of gas, and with means (11) taking effect as a type of nonreturn valve for closure of the gas outlet opening (9), characterized in that the said means contain a valve membrane (11) for closing the gas outlet opening, the edge section (11.1) of said valve membrane covering the aperture of the gas outlet opening(s) (9) in the closed position.

2. Device according to claim 1, characterized in that the support plate (1, 2) possesses a base body (1) and a membrane support body (2) affixed to said base body, said membrane support body supporting the valve membrane (11), said base body (1) containing a gas feed opening (7), and a gas distribution chamber (8) being contained between the base body (1) and the membrane support body (2), and that gas outlet opening(s) (9) extend from said gas distribution chamber.

3. Device according to claim 2, characterized in that the membrane support body (2) contains a plurality of gas outlet openings (9) in the form of slots which run at an approximately constant distance from the circumference of the membrane support body (2).

4. Device according to claim 2 or 3, characterized in that the membrane support body (2) possesses a circumference that is essentially circular.

5. Device according to one of the claims 2 to 4, characterized in that the valve membrane (11) is arranged on the base body (1).

6. Device according to one of the preceding claims, characterized in that the valve membrane (11) possesses a bowed edge section which is directed towards the gas feed opening (7).

7. Device according to one of the preceding claims, characterized in that an arrangement (20; 20a; 20b; 2) is provided for creating a hollow chamber (21) between the base body (1) and the aeration membrane (3), said hollow chamber being maintained when the aeration membrane is pressed onto the base body (1).
by the pressure of the surrounding liquid, and that the gas outlet opening (7) is connected to the hollow chamber (21).

8. Device according to claim 7, characterized in that the hollow chamber (21) is formed above the gas outlet opening (7).

9. Device according to claim 8, characterized in that the hollow chamber is formed by at least one support element (20; 20a; 20b; 2).

10. Device according to claim 9, characterized in that the hollow chamber is formed by the support element or elements (20, 20a, 20b) and by the membrane support body (2).

11. Device according to one of the preceding claims, characterized in that the gas outlet opening (7) is surrounded by at least one sealing edge (20, 20a, 20b) protruding from the base body (1) in the non-perforated area U of the aeration membrane (3), said sealing area on the one hand supporting the aeration membrane (3) and forming a hollow chamber (21) above the gas outlet opening (7) when the external pressure of the liquid is greater than the internal pressure below the aeration membrane, and on the other hand, with the aeration membrane (3), forming a seal for the hollow chamber (21).

Revendications

1. Dispositif pour la gazéification par petites bulles d’un liquide, comportant une plaque d’appui (1, 2) pourvue d’au moins une ouverture de sortie de gaz (9), une membrane formant aérateur (3) reliée de façon étanche à une zone du bord de la plaque d’appui (1, 2) et pourvue de fins pores de passage de gaz, et des moyens (11) agissant à la manière de clapets anti-retour pour obtenir l’ouverture de sortie de gaz (9), caractérisé en ce que les moyens pour obtenir l’ouverture de sortie de gaz (9) contiennent une membrane formant souppae (11) dont la bordure (11.1) couvre l’orifice de l’ouverture ou des ouvertures de sortie de gaz (9) en position fermée.

2. Dispositif selon la revendication 1, caractérisé en ce que la plaque d’appui (1, 2) comprend un corps de base (1) et un corps de support de membrane (2), fixé sur celui-ci, qui porte la membrane formant souppae (11), étant précisé que le corps de base (1) contient une ouverture d’aménée de gaz (7) et le corps de base (1) et le corps de support de membrane

(2) définissent entre eux un espace distributeur de gaz (8) d’où partent l’ouverture ou les ouvertures de sortie de gaz (9).

3. Dispositif selon la revendication 2, caractérisé en ce que le corps de support de membrane (2) contient plusieurs ouvertures de sortie de gaz (9) en forme de fentes qui s’étendent à une distance à peu près constante de la circonférence du corps de support de membrane (2).

4. Dispositif selon la revendication 2 ou 3, caractérisé en ce que le corps de support de membrane (2) a une circonférence sensiblement circulaire.

5. Dispositif selon l’une des revendications 2 à 4, caractérisé en ce que la membrane formant souppae (11) est disposée sur le corps de base (1).

6. Dispositif selon l’une des revendications précédentes, caractérisé en ce que la membrane formant souppae (11) comporte une bordure courbe dirigée vers l’ouverture d’aménée de gaz (7).

7. Dispositif selon l’une des revendications précédentes, caractérisé en ce qu’il est prévu un dispositif (20 ; 20a ; 20b ; 2) pour former une cavité (21) entre le corps de base (1) et la membrane formant aérateur (3), laquelle cavité est conservée lorsque la membrane formant aérateur est pressée sur le corps de base (1) par la pression du liquide environnant, et en ce que l’ouverture de sortie de gaz (7) communique avec la cavité (21).

8. Dispositif selon la revendication 7, caractérisé en ce que la cavité (21) est formée au-dessus de l’ouverture de sortie de gaz (7).

9. Dispositif selon la revendication 8, caractérisé en ce que la cavité est formée par au moins un élément d’appui (20 ; 20a ; 20b ; 2).

10. Dispositif selon la revendication 9, caractérisé en ce que la cavité est formée par l’élément ou les éléments d’appui (20, 20a, 20b) et le corps de support de membrane (2).

11. Dispositif selon l’une des revendications précédentes, caractérisé en ce que l’ouverture de sortie de gaz (7) est entourée par au moins un bord d’étanchéité (20, 20a, 20b) qui part du corps de base (1), dans la zone non perforée U de la membrane formant aérateur (3), et qui,
d'une part, supporte la membrane formant aérateur (3) et forme une cavité (21) au-dessus de l'ouverture de sortie de gaz (7) lorsque la pression externe du liquide est supérieure à la pression interne régnant sous la membrane formant aérateur, et qui forme d'autre part avec la membrane formant aérateur (3) un joint d'étanchéité pour la cavité (21).