EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 08.03.95 Bulletin 95/10
Int. Cl.⁶: G01J 3/28

Application number: 92121578.6
Date of filing: 18.12.92

Spectroanalyzer.

Priority: 18.12.91 JP 335062/91
Date of publication of application: 23.06.93 Bulletin 93/25
Publication of the grant of the patent: 08.03.95 Bulletin 95/10
Designated Contracting States: BE DE FR GB

References cited:
WO-A-90/02324
US-A-4 726 676
PATENT ABSTRACTS OF JAPAN vol. 014, no. 405 (P-1100), 31 August 1990 & JP-A-2156136

Proprietor: SUMITOMO ELECTRIC INDUSTRIES, LIMITED
5-33, Kitahama 4-chome Chuo-ku
Osaka 541 (JP)
Proprietor: DORYOKURO KAKUNENRYO
KAIHATSU JIGYODAN
9-13, Akasaka 1-chome
Minato-ku Tokyo 107 (JP)

Inventor: Ishiguro, Yoichi, c/o Yokohama Works of Sumitomo Elec. Ind., Ltd., 1, Taya-cho, Sakae-ku
Yokohama-shi, Kanagawa (JP)
Inventor: Aikawa, Haruhiko, c/o Yokohama Works of Sumitomo Elec. Ind., Ltd., 1, Taya-cho, Sakae-ku
Yokohama-shi, Kanagawa (JP)
Inventor: Watanabe, Minori, c/o Yokohama Works of Sumitomo Elec. Ind., Ltd., 1, Taya-cho, Sakae-ku
Yokohama-shi, Kanagawa (JP)
Inventor: Ichige, Yoshiaki, c/o Doryokuro Kakunenryo
Kaihatsu Jigyodan Tokai Works, 4-33 Muramatsu
Tokai-mura, Naka-gun, Ibaraki-ken (JP)
Inventor: Okamoto, Fumitsu, c/o Doryokuro Kakunenryo
Kaihatsu Jigyodan Tokai Works, 4-33 Muramatsu
Tokai-mura, Naka-gun, Ibaraki-ken (JP)

Representative: Lehner, Werner, Dipl.-Ing. et al
Hoffmann, Elte & Partner, Patentanwälte,
Postfach 81 04 20
D-81904 München (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to an apparatus for spectroanalysis by using a light transmitted from an object under test through an optical fiber placed in a radiation environment.

Related Background Art

An optical fiber has a property that when it is irradiated with a radiation, a transmissibility thereof is gradually lost and eventually it reaches a level which does not enable spectroanalysis. In JP-A-63-309707, it has been proposed to prolong a life of the spectroanalyzer by utilizing a so-called photo-bleaching effect in which a radiation induction loss is recovered by a strong light. Fig. 1 shows an example of the spectroanalyzer which utilizes the photo-bleaching effect.

As shown in Fig. 1, the prior art spectroanalyzer comprises a sample cell 1 which is an object to be tested, micro-lenses 2 and 6, an optical fiber 5, a photo-bleach light source 14 and a spectrometer 16.

A light (measurement light) emitted from the sample cell 1 is condensed by a micro-lens 2 and directed to the spectrometer 16 through the optical fiber 5, the micro-lens 6 and a wave combiner 9. Since a portion of the optical fiber 5 which is inside a shield wall 4, that is, which is exposed to the sample cell 1 is in a radiation environment, a transmissibility thereof gradually falls if the optical fiber 5 is left as it is and finally the spectroanalysis is disabled. A structural defect of a molecule level occurs in the optical fiber by the irradiation of the radiation and the light is absorbed thereby so that a light transmission loss of the optical fiber increases and the transmissibility is deteriorated. By irradiating a photo-bleach light to the optical fiber 5 by using the photo-bleach light source 14 and the wave combiner 9, the structural defect of the molecule level is extinguished and the progress of the deterioration of the transmissibility is delayed.

However, even by the irradiation of the photo-bleach light, the transmissibility is still deteriorated gradually, and the light transmission loss increases and the light intensity passed through the optical fiber 5 decreases. Accordingly, the spectroanalyzer is not sufficient when reproducibility is required.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a spectroanalyzer which permits accurate measurement without being totally affected by a light transmission loss of an optical fiber in spite of a problem due to the deterioration of the transmissibility.

In order to achieve the above object, the spectroanalyzer of the present invention comprises a monitoring light supply means for directing a monitoring light for the optical fiber loss to an optical fiber under radiation, semitransparent reflection means for reflecting a portion of the monitoring light directed to the optical fiber back to the input end, and spectroanalyzing means including means for separating the monitoring light from a measurement light.

By detecting change in the intensity of the monitoring light, a status of deterioration of the optical fiber by the radiation is detected and the measurement light is corrected based on the detection output. By modulating the monitoring light, the monitoring light may be discriminated from the measurement light during the signal processing by the spectroanalyzing means even if the monitoring light is directed to the spectroanalyzing means together with the measurement light.

The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not to be considered as limiting the present invention.

Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the scope of the invention as claimed will become apparent to those skilled in the art from this detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a configuration of a prior art spectroanalyzer; and
Fig. 2 shows a configuration of one embodiment of a spectroanalyzer of the present invention for luminescence spectroanalyzing a radiative material.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In Fig. 2, a sample cell 1 which is an object to be tested is disposed in an area surrounded by a radiation shielding wall 4 because a luminescence material therein has a radiative capability. One end 5a of an optical fiber 5 faces the sample cell 1, and a micro-lens 2 and a half-mirror 3 are arranged between the sample cell 1 and the one end 5a of the optical fiber 5. A measurement light emitted from the sample cell 1 is directed to the one end 5a of the optical fiber 5 through the lens 2 and the half-mirror 3. The half-mirror 3 is used as semitransparent reflection means
for reflecting a portion of a monitoring light (to be described later) emitted from the one end 5a of the optical fiber 5 back to the end 5a.

The optical fiber 5 extends to an exterior of the shielding wall 4 through a through-hole 17 formed in the shielding wall 4. The portion of the optical fiber 5 which is inside of the shielding wall 4, that is, which is exposed to the sample cell 1 is irradiated with the radiation from the sample cell 1 and is under a radiation environment. A micro-lens 6, a wave combiner 7, a filter 8, a wave combiner 9, a photo-bleach light source 14, a white light source 15 and spectroanalyzing means 18 are provided externally of the shielding wall 4 in which the other end 5b of the optical fiber 5 is located. In Fig. 2, there is shown a clearance between the shielding wall 4 and the optical fiber 5 in the through-hold 17. In actual, the clearance is filled with a radiation sealing material to prevent the radiation from leaking externally of the shielding wall 4.

The white light source 15 irradiates a modulated white light as a fiber loss monitoring light, which is directed to the end 5b of the optical fiber 5 through the wave combiners 9 and 7 and the micro-lens 6. The wave combiner 9 is a half-mirror which transmits therethrough the monitoring light from the white light source 15 and reflects a photo-bleach light from a photo-bleach light source 14 and directs both lights to the end 5b of the optical fiber 5. The wave combiner 7 is a half-mirror which transmits therethrough the light from the wave combiner 9 and directs it to the micro-lens 6, and reflects the light from the micro-lens 6 toward a filter 8 which selectively blocks the photo-bleach light of the light from the wave combiner 7. The spectroanalyzing means 18 comprises a spectrometer 10, a photo-multiplier 11, signal processing means 12 and a recorder 13. The photo-multiplier 11 is used as photovoltaic conversion means which converts the light spectrometered by the spectrometer 10 into an electrical signal and amplifies it. The signal processing means 12 separates the electrical signal output by the photo-multiplier 11 to a monitoring light signal component and a measurement light signal component, calculates the light intensities thereof, and normalizes the measurement light signal component by using the monitoring light signal component. The normalization is defined as a correction process of eliminating an affect by the deterioration of the optical fiber by the radiation from the measurement light signal component.

The photo-bleach light source 14 irradiates a photo-bleach light for recovering a damage of the optical fiber 5 by the radiation. The photo-bleach light is directed to the optical fiber 5 through the wave combiners 9 and 7 and the micro-lens 6, extinguishes the structural defect of the molecule level of the optical fiber 5 created by the radiation, and recovers the transmissibility of the optical fiber 5. A portion of the photo-bleach light directed to the optical fiber 5 is reflected by the half-mirror 3 back to the end 5b. A filter 8 provided in front of the spectrometer 10 functions to prevent such reflected-back photo-bleach light from being directed to the spectrometer 10. The photo-bleach light source 14 is preferably one which emits a strong light in an ultraviolet area around 200 ~500 nm wavelength such as xenon lamp, heavy hydrogen lamp, mercury lamp, helium cadmium laser or YAG laser triple wave.

An operation of the present embodiment is now explained.

The measurement light is condensed by the micro-lens 2, directed to the end 5a of the optical fiber 5 through the half-mirror 3, directed to the optical fiber 5, and is emitted from the other end 5b of the optical fiber 5, and is directed to the spectrometer 10 through the micro-lens 6, the wave combiner 7 and the filter 8. The measurement light directed to the spectrometer 10 is photoelectrically converted by the photo-multiplier 11 which serves as the photovoltaic converter, and the converted signal is supplied to the signal processing means 12. The micro-lenses 2 and 6 are provided to enhance the photosensitivity of the apparatus.

A modulated white light is emitted from the white light source 15. The white light emitted from the white light source 15 passes through the wave combiners 9 and 7, the micro-lens 6 and the optical fiber 5 and a portion thereof is reflected by the half-mirror 3. The reflected white light then passes through the optical fiber 5 and the micro-lens 6, and is directed to the spectrometer 10 through the wave combiner 7 and the filter 8. The white light directed to the spectrometer 10 is photoelectrically converted by the photo-multiplier 11 and the converted signal is supplied to the signal processing means 12. Accordingly, the white light as the monitoring light and the light from the sample cell 1 as the measurement light are applied to the signal processing means 12, which can separate the monitoring light from the measurement light because the monitoring light is modulated. Thus, the powers of those lights can be separately detected. The power of the measurement light is gradually weakened by the effect of the deterioration of the transmissibility of the optical fiber 5 and the power of the white light is weakened as well. By dividing the power of the measurement light by the power of the white light, the power of the measurement light is corrected to eliminate the effect of the deterioration of the transmissibility. Those powers are recorded by the recorder 13.

The photo-bleach light source 14 emits the photo-bleach light. The photo-bleach light is directed to the wave combiner 9 which serves as a photo-coupler, and thence it is directed to the optical fiber 5 through the wave combiner 7 and the micro-lens 6 to recover the optical fiber 5. Even if the photo-bleach light is reflected by the half-mirror 3 back to the optical fiber 5, the photo-bleach light is prevented from being
directed to the spectrometer 10 because the filter 8 which blocks the wavelength of the photo-bleach light is arranged in front of the spectrometer 10.

In the present embodiment, the filter 8 is arranged in front of the spectrometer 10 in order to permit the irradiation of the photo-bleach light during the measurement, but the filter 8 is not necessary where the photo-bleach light is irradiated only during non-measurement.

In accordance with the present invention, the measurement light can be accurately measured in spite of the deterioration of the transmissibility of the optical fiber, by dividing the power of the spectrometered light which is affected by the deterioration of the transmissibility of the optical fiber, by the modulated white light power. By adding the photo-bleach light supply means, the deterioration of the optical fiber can be suppressed and the spectranaalyzer having high accuracy and long life is provided.

Claims

1. A spectranaalyzer including an optical fiber (5) having one end thereof (5a) arranged to receive a measurement light from an object (1) to be tested and disposed in a radiation environment and spectranaalyzing means (18) for spectrometering a light emitted from the other end (5b) of the optical fiber (5), said spectranaalyzer characterized by:

 monitoring light supply means (15) for emitting an optical fiber loss monitoring light to said other end (5b) of the optical fiber (5); and

 semitransparent reflection means (3) arranged between said object (1) and said one end (5a) of the optical fiber for reflecting the monitoring light emitted from said one end (5a) of the optical fiber (5) back to the optical fiber (5); said spectranaalyzing means (18) receiving the monitoring light reflected by said semitransparent reflection means (3) and emitted from said other end (5b) of the optical fiber (5) through the optical fiber (5), as well as the measurement light and including means for separating (12) a monitoring light signal component from a measurement light signal component.

2. A spectranaalyzer according to Claim 1, wherein the monitoring light emitted from said monitoring light supply means is a modulated white light.

3. A spectranaalyzer according to Claim 2, wherein said spectranaalyzing means (18) includes a spectrometer (10) for spectrometering the light emitted from said other end (5b) of the optical fiber (5), photoelectric conversion means (11) for converting the light spectrometered by said spectrometer (10) to an electrical signal, and signal processing means (12) for separating the electrical signal produced by said photoelectric conversion means (11) to the monitoring light signal component and the measurement light signal component.

4. A spectranaalyzer according to Claim 3, wherein said signal processing means (12) includes means for normalizing the measurement light signal component by the monitoring light signal component.

5. A spectranaalyzer according to any one of Claims 1 to 4 further comprising light supply means (14) for irradiating a photo-bleach light to recover deterioration of the optical fiber (5) by the radiation.

6. A spectranaalyzer according to Claim 5 further comprising a filter (8) arranged in front of a photosensing part of said spectranaalyzing means (18) for preventing the photo-bleach light emitted from said other end (5b) of the optical fiber (5) from being transmitted therethrough.

7. A spectranaalyzer according to Claim 6 wherein said photo-bleach light is an ultraviolet light having wavelength of 200–500 nm.

Patentansprüche

1. Spektranaalysator mit einer Faseroptik (5), deren eines Ende (5a) so angeordnet ist, daß es Meßlicht von einem zu untersuchenden Gegenstand (1) empfängt, und in einer Strahlungsumgebung angeordnet ist, und mit einer Spektranaalyseeinrichtung (18) zur spektrometrischen Untersuchung von Licht, welches von dem anderen Ende (5b) der Faseroptik (5) ausgesandt wird, gekennzeichnet durch:

 eine Überwachungslichtversorgungseinrichtung (15) zum Aussenden von Faseroptikverlust-Überwachungslicht auf das andere Ende (5b) der Faseroptik (5); und

 eine halbdurchlässige Reflexionseinrichtung (3), die zwischen dem Gegenstand (1) und dem einen Ende (5a) der Faseroptik angeordnet ist, um das von dem einen Ende (5a) der Faseroptik (5) ausgesandte Überwachungslicht zurück zur Faseroptik (5) zu reflektieren; wobei die Spektranaalyseeinrichtung (18) das Überwachungslicht, welches von der halbdurchlässigen Reflexionseinrichtung (3) reflektiert und von dem anderen Ende (5b) der Faseroptik (5) ausgesandt wird, durch die Faseroptik (5) empfängt, ebenso wie das Meßlicht, und eine Einrich-
tung zum Trennen (12) einer Überwachungslicht-
signalkomponente von einer Meßlichtsignalkom-
ponente aufweist.

2. Spektralanalysator nach Anspruch 1, bei wel-
chem das Überwachungslicht, welches von der
Überwachungslichtversorgungseinrichtung aus-
gesandt wird, moduliertes weißes Licht ist.

3. Spektralanalysator nach Anspruch 2, bei wel-
chem die Spektralanalyseseinrichtung (18) ein
Spektrometer (10) zum spektrometrischen Un-
tersuchen des Lichtes aufweist, welches von dem
anderen Ende (5b) der Faseroptik (5) aus-
gesandt wird, eine fotoelektrische Wandlerein-
richtung (11) zum Umwandeln des Lichtes, wel-
ches durch das Spektrometer (10) spektrome-
trisch untersucht wurde, in ein elektrisches Si-
gnal, sowie eine Signalverarbeitungseinrichtung
(12) zum Trennen des elektrischen Signals, wel-
ches von der fotoelektrischen Wandlerereinrich-
tung (11) erzeugt wird, in die Überwachungslicht-
signalkomponente und die Meßlichtsignalkom-
ponente.

4. Spektralanalysator nach Anspruch 3, bei wel-
chem die Signalbearbeitungseinrichtung (12) ei-
ne Einrichtung zum Normieren der Meßlichtsi-
gnalkomponente durch die Überwachungslichtsi-
gnalkomponente aufweist.

5. Spektralanalysator nach einem der Ansprüche 1
bis 4, bei welchem weiterhin eine Foto-Bleich-
lichtversorgungseinrichtung (14) vorgesehen ist,
urn ein Foto-Bleichlicht aufzustreichen, um eine
Verschlechterung der Faseroptik (5) durch die
Strahlung auszugleichen.

6. Spektralanalysator nach Anspruch 5, bei wel-
chem weiterhin ein Filter (8) vorgesehen ist, wel-
ches vor einem Lichtmeßteil der Spektralanalys-
atoreinrichtung (18) angeordnet ist, um zu ver-
hindern, daß das von dem anderen Ende (5b) der
Faseroptik (5) ausgesandte Foto-Bleichlicht
durch diese hindurchgelanden wird.

7. Spektralanalysator nach Anspruch 6, bei wel-
chem das Foto-Bleichlicht Ultraviolettlicht mit ei-
nen Wellenlänge von 200 bis 500 nm ist.

Revendications

1. Analyseur spectral incluant une fibre optique (5)
possédant une extrémité (5a) agencée pour rece-
voir une lumière de mesure provenant d'un objet
(1) devant être testé et disposée dans un environ-
nement de rayonnement et un moyen d'analyse
spectrale (18) afin de soumettre à une analyse
spectrométrique une lumière émise à partir de
l'autre extrémité (5b) de la fibre optique (5), ledit
analyseur spectral étant caractérisé par :
- un moyen d'application de lumière de sur-
veillance (15) afin d'émettre une lumière de sur-
veillance de perte de fibre optique sur ladite autre
extrémité (5b) de la fibre optique (5) ; et
- un moyen de renvoi semi-transparent (3)
agencé entre ledit objet (1) et ladite une extrémité
(5a) de la fibre optique afin de renvoyer la lumière de
surveillance émise à partir de ladite une extrémité
(5a) de la fibre optique (5) en retour sur la fi-
bre optique (5) ;
- ledit moyen d'analyse spectrale (18) rece-
vant la lumière de surveillance renvoyée par ledit
moyen de renvoi semi-transparent et émise à
partir de l'autre dite extrémité (5b) de la fibre op-
tique (5) au travers de la fibre optique (5) ainsi
que la lumière de mesure et incluant un moyen
(12) pour séparer une composante de signal de
lumière de surveillance d'une composante de si-
gnal de lumière de mesure.

2. Analyseur spectral selon la revendication 1, dans
lequel la lumière de surveillance émise à partir
dudit moyen d'application de lumière de surveil-
ance est une lumière blanche modulée.

3. Analyseur spectral selon la revendication 2, dans
lequel ledit moyen d'analyse spectrale (18) inclut
un spectromètre (10) afin de réaliser une analyse
spectrométrique de la lumière émise à partir de
ladite autre extrémité (5b) de la fibre optique (5),
un moyen de transformation photo-électrique
(11) afin de transformer la lumière soumise à une
analyse spectrale par ledit spectromètre (10) en
un signal électrique et un moyen de traitement de
signal (12) afin de séparer le signal électrique
produit par ledit moyen de conversion photo-élec-
trique (11) en la composante de signal de lumière
de surveillance et en la composante de signal de
lumière de mesure.

4. Analyseur spectral selon la revendication 3, dans
lequel ledit moyen de traitement de signal (12) in-
clut un moyen afin de normaliser la composante
de signal de lumière de mesure par la composan-
te de signal de lumière de surveillance.

5. Analyseur spectral selon l'une quelconque des
revendications 1 à 4, comprenant un moyen d'ap-
lication de lumière de photo-désactivation (14)
afin d'irradier une lumière de photo-désactivation
pour pallier à la détérioration de la fibre optique
(5) par le rayonnement.

6. Analyseur spectral selon la revendication 5,
comprrenant en outre un filtre (8) agencé en face d’une partie photo-détectrice dudit moyen d’ana-
lyse spectrale (18) afin d’empêcher la lumière de photo-désactivation émise à partir de ladite autre
extrémité (5b) de la fibre optique (5) d’être trans-
mise au travers de celle-ci.

7. Analyseur spectral selon la revendication 6, dans lequel ladite lumière de photo-désactivation est une lumière ultraviolette possédant une longueur d’onde de 200 à 500 nm.