EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 16.07.1997 Bulletin 1997/29

Application number: 92310280.0

Date of filing: 11.11.1992

Spatially varying multiple electrode acoustic wave filter
Räumlich sich änderndes akustisches Wellenfilter mit Mehrfachelektroden
Filtre à ondes acoustiques, variable dans l’espace avec des électrodes multiples

Designated Contracting States: DE GB IT

Priority: 18.11.1991 US 793925

Date of publication of application: 26.05.1993 Bulletin 1993/21

Proprietor: MOTOROLA, INC.
Schaumburg, IL 60196 (US)

Inventor: Allen, Donald Eugene Gilbert, Arizona 85234 (US)

Representative: Hudson, Peter David et al
Motorola,
European Intellectual Property,
Midpoint,
Alencon Link
Basingstoke, Hampshire RG21 1PL (GB)

References cited:
EP-A- 0 401 737

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of the Invention

The present invention concerns an improved means and method for surface acoustic wave filters and apparatus using such filters.

Background of the Invention

Modern portable radios and other electronic equipment require filters of very compact form and good electrical properties. Surface acoustic wave (SAW) filters are especially desirable for such purposes.

SAW filters are known in the prior art. For example, an article by Merion Lewis entitled, "Saw Filters Employing Interdigitated Interdigital Transducers, IDT", Ultrasonics Symposium, 1982, pages 12-17, describes SAW filters using interdigital transducers of interdigital electrodes on piezoelectric materials, each transducer having the same number of electrode fingers. Further, U. S. Patent 4,492,940 to Hikita describes an acoustic surface wave bandpass filter using a linear array of alternate I/O transducers arranged in sequence, each having multiple interdigital electrode fingers, where the number of fingers in the input transducers and the number of fingers in the output transducers decreases from the center to the end of the array. Additionally, U. S. Patent 4,649,357 to Nagai et al., describes a surface acoustic wave filter using a linear array of alternate I/O transducers arranged in sequence, each having multiple interdigital electrode fingers, where the distances (along the array) between the centerlines of adjacent transducers differ by an integral multiple (0, ±1, ±2, etc.) of wavelengths, and U. S. Patent 4,931,755 to Sakamoto et al., describes use of an auxiliary capacitive transducer or other shunt capacitance to adjust the filter cut-off above the pass-band.

Despite the considerable effort by many researchers, numerous problems remain in connection with SAW filters, as for example, setting the optimum input/output (I/O) impedance levels, optimizing the spectral response, reducing internal reflections within the filter, and simplifying the fabrication process. These features of SAW filters affect their utility and performance in electronic apparatus. Hence, there continues to be an ongoing need for improved filters and filter applications.

As used herein the abbreviation SAW is intended to stand for "surface acoustic wave". As used herein the word "filter", singular or plural, is intended to include any element having a frequency dependent transfer function, and the words "SAW filter", singular or plural, are intended to refer to elements employing surface acoustic waves and having a frequency dependent transfer function.

EP-A-0 401 737 (HITACHI) describes a SAW bandpass filter including a plurality of interdigital transducers. The transducers are different in number of electrode fingers and in average value of inter-finger distance from each other and distances between adjacent pairs of transducers are different. At least one of the outermost transducers has a minimum number of electrode fingers and a maximum average value of inter-finger distance, compared with those of other transducers.

Summary of the Invention

In accordance with the present invention there is provided an acoustic wave filter comprising a sequence of T electro-acoustic transducers, wherein T is the number of electro acoustic transducers, each electro-acoustic transducer having multiple interdigital electrode fingers and a predetermined centerline equidistant between outermost interdigital electrode fingers, the sequence of electro-acoustic transducers arranged in a direction of acoustic wave propagation and comprising a plurality of input and a plurality of output transducers, wherein a centerline-to-centerline distance \(D_1 \) of a first adjacent pair of an input transducer and an output transducer and centerline-to-centerline distances of other adjacent pairs of an input transducer and an output transducer of \(D_2 \) to \(D_{T-1} \), at least one of distances \(D_2 \) to \(D_{T-1} \) differs from distance \(D_1 \) by a non-integral number of acoustic wavelengths, the acoustic wave filter being characterised in that: the sequence of input and output transducers is symmetrical about a centerline and wherein beginning at either end of the sequence, the number of fingers in a first input transducer is larger than the number of fingers in an input transducer located nearest the centerline.

Brief Description of the Drawings

FIG. 1 is a highly simplified schematic drawing of the transducer arrangement of a first SAW filter according to the prior art;

FIG. 2 is a highly simplified schematic drawing of the transducer arrangement of another SAW filter according to the prior art;

FIG. 3 is a highly simplified schematic drawing of the transducer arrangement of a SAW filter according to an
embody the present invention;

FIGS. 4 and 5 are plan views illustrating transducers such as are used in the present invention, having odd and even numbers of electrode fingers, respectively, and showing the locations of the centerlines thereof;

FIG. 6 is a plan view illustrating multiple transducers such as are used in the present invention, arranged in a sequential array and illustrating the relationships between adjacent transducers, the centerlines thereof and the direction of propagation of the acoustic wave; and

FIG. 7 shows a simplified schematic diagram of a radio employing multiple filters, as for example, one or more SAW filters according to the present invention.

Detailed Description of a Preferred Embodiment

FIG. 1 is a highly simplified schematic drawing of the transducer arrangement of SAW filter 20 according to the prior art as described, for example, by Nagai, supra. Filter 20 comprises input terminal 21 connected to a plurality of input transducers 22 and output terminal 23 connected to a plurality of output transducers 24. Each transducer 22, 24 is composed of a number of interdigital metal fingers coupled respectively to input 21 and output 23 and to ground 26. Input transducers 22 and output transducers 24 are themselves interdigital. Thus, filter array 20 is formed by a sequence of alternating input 22 and output 24 transducers, each output transducer 24 having the same number of fingers and each being spaced from the other transducers 22, 24 by distances \(l_i = l_1 \) to \(l_T \), where \(T \) is the number of transducers. Nagai teaches that it is desirable that the distances \(l_i \) be related such that for arbitrary distance \(l_j = m_j \cdot L \) where \(m_j \) is a positive real number and \(L \) is the acoustic wavelength, then the other distances \(l_j \) to \(l_T \), satisfy \(l_i = l_1 + m_j \cdot L \) where \(m_j \) is an arbitrary integer (0, ±1, ±2, etc.), for \(i = 2, 3, 4, \ldots \ T-1 \). Thus, the distances \(l_i \) must be equal or differ by an integral number of wavelengths \(L \).

FIG. 2 is a highly simplified schematic drawing of the transducer arrangement of another prior art SAW filter 30 according to Hikita, supra. Filter 30 has input terminal 31 connected to a plurality of input transducers 32, 33, 34 symmetrically arranged around the filter centerline 39. Filter output 35 is connected to a plurality of output transducers 36, 37 which are also grouped symmetrically around filter centerline 39. The transducers are also connected to ground lead 38. The interdigital array of transducers makes filter 30.

Hikita teaches that the number of electrode fingers in the transducers desirably taper as one moves from transducers located at or near the centerline toward transducers located at or near the ends of filter 30. That is, if \(N_1 \), \(N_2 \), and \(N_3 \) are the number of fingers respectively in input transducers 32, 33, 34 and \(M_1 \) and \(M_2 \) are the number of electrode fingers in output transducers 36, 37 respectively, then \(N_1 \geq N_2 \geq N_3 \) and \(M_1 \geq M_2 \).

While the above described prior art arrangements provide filtering action, they still suffer from some disadvantages well known in the art. For example, power handling capability is limited, it is difficult to optimize I/O impedance levels, and the spectral response of the filter is difficult to adjust. For this reason, such filters are still difficult to make and use or have less than the desired performance in electronic circuits, especially radios.

The foregoing and other problems are ameliorated or overcome by the structure and method of the present invention which is illustrated in various forms in FIG. 3-7. Unless specifically noted otherwise, the designations "input" and "output" (and the abbreviation "I/O"), whether singular or plural, with respect to the present invention are intended to be arbitrary designations for purposes of illustration and discussion, and can be interchanged.

Referring now to FIG. 3 which is a highly simplified schematic drawing of the transducer arrangement of SAW filter 40 according to an embodiment of the present invention. Filter 40 comprises input 41 coupled to a plurality of transducers 42, 42', 43, 43', 44 and 44' having numbers of interdigital electrode fingers \(N \) denoted \(N_1 \), \(N_1' \), \(N_2 \), \(N_2' \), \(N_3 \) and \(N_3' \), respectively. Filter 40 further comprises output 45 coupled to a plurality of transducers 46, 47, 47', 48, 48', 49 and 49' having numbers of interdigital electrode fingers \(M \) denoted \(M_1 \), \(M_2 \), \(M_2' \), \(M_3 \), \(M_3' \), \(M_4 \) and \(M_4' \), respectively. Transducers 42-44' and 46-49' are arranged in a sequential array, so that the input-output transducers desirably alternate as one progresses along the array. For example, starting at one end, a sequence of output transducers 49, 48, 47, 46, 47', 48' and 49', alternate with a sequence of input transducers 44, 43, 42, 42', 43' and 44' to form the sequence output-input-output-input-output-etc., (e.g., transducers 49, 44, 48, 43, 47, 42, etc.) making up the exemplary SAW device.

As indicated on FIG. 3, the transducer's electrode "fingers" are interdigitated or interleaved and desirably perpendicular to direction 52 of propagation of the acoustic wave. For a given transducer, the electrode fingers facing in a first direction are coupled to the input (or output) and the remaining electrode fingers of that transducer (facing in the opposite direction) are coupled to a common terminal, as for example ground connection 50.

The transducers themselves are also interleaved or interdigitated, that is, the ground contacts to the transducers are on one side of the array for the input transducers and on the other side of the array for the output transducers and the conductors leading to the input terminal approach only from one side of the array and the conductors leading to the output terminal approach from the other side of the array. This is not essential but is desirable and provides a convenient conductor layout.
Further, the transducers of filter 40 are desirably but not essentially symmetrical about centerline 51 passing through the center of filter array 40 perpendicular to acoustic wave direction 52. For convenience of explanation and without intending to be limiting, symmetry about centerline 51 is assumed in the discussion that follows and reference to transducers 42-49 is intended to include transducers having corresponding primed reference numbers.

The number of electrode fingers \(N_i, M_i \) in the transducers desirably varies according to the position of the transducer in the transducer array. It has been found that excellent electrical properties are obtained when the numbers of electrodes in the transducers vary such that the outermost transducers have more electrode fingers than the inner transducers. Starting at one end of the array and progressing towards centerline 51, the number of fingers in the first input (or output) transducer is larger than the number of fingers in the next encountered input (or output) transducer. In a preferred embodiment the number of fingers \(N_i, M_i \) in the outermost input or output transducer is also larger than the number of fingers in the most centrally located input or output transducer. For example, \(N_3 \geq N_2 \) and/or \(M_3 \geq M_2 \), and preferably, \(N_3 \geq N_4 \) and/or \(M_3 \geq M_4 \).

The following is an example of a filter having thirteen transducers (\(T = 13 \)) with a center frequency of about 922 MHz, a pass-band of approximately \(35 \pm 2 \) MHz with stop-bands on either side, a pass-band insertion loss of about 3 db and a stop-band rejection of at least 20 db. The exemplary filter is symmetrical about centerline 51. The number of electrode fingers \(n \) in the various transducers is shown in Table I below. As an aid to relating this example to the transducers in Fig. 3, the reference numerals of the transducers of FIG. 3 are shown in parenthesis.

<table>
<thead>
<tr>
<th>NUMBER OF ELECTRODE FINGERS IN DIFFERENT TRANSUDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSUDER</td>
</tr>
<tr>
<td>(N_1(42,42') =)</td>
</tr>
<tr>
<td>(N_2(43,43') =)</td>
</tr>
<tr>
<td>(N_3(44,44') =)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The numbers of fingers in the primed and unprimed transducers are equal in this example. This is preferred.

It is also desirable that the distance between the centerlines of adjacent pairs of transducers be adjusted so as to not differ by an integral multiple of acoustic wavelengths. This is explained below in more detail.

As shown on FIG. 3, adjacent pairs of transducers, e.g., 49/44, 44/48, 48/43, 43/47, 47/42 and 42/46, are separated by transducer centerline-to-centerline distances \(d_i \), which are in general not equal. Where \(T \) is the total number of transducers in array 40, the distances \(d_1 = d_1, d_2, d_3, \ldots d_T \) for \(i = 1, 2, 3, \ldots T-1 \) are not necessarily equal. With respect to the parameter \(d_i \), the index "i" is intended to be arbitrary in the sense that any of the distances \(d_i \) can be assigned as \(i = 1 \), and any other as \(i = 2 \), and so on without a particular order or sequence being implied. Determination of the locations of the centerlines of the transducers is explained more fully in connection with FIGS. 4-6.

FIG. 4 is a plan view illustrating transducer 60 having an odd number of electrode fingers therein. Electrode fingers 62 extend inwardly in a first direction from first common connection 64 and electrode fingers 63 extend inwardly in the opposite direction from common connection 65. Fingers 62, 63 are interdigital, that is, they interleave. Electrode fingers 62, 63 are typically one-quarter wavelength wide and are typically spaced apart by about one-quarter wavelength so that an electrical potential can be created therebetween. Transducer 60 has width 66 extending between outer-most edges 621, 621' of fingers 622, 622' of finger group 62 extending from connection 64. Transducer 60 has centerline 67 which is normal to wave propagation direction 52. Centerline 67 is half way between the outermost edges of fingers 621, 622, that is, the distances 68, 68' are equal. It will be noted that for a transducer with an odd number of fingers, centerline 67 falls on an electrode finger.

The number \(n \) of electrode fingers in transducer 60 is defined as the number of fingers extending from common connection 64 plus the number of electrode fingers extending from common connection 65. While transducer 60 is shown as having \(n = 17 \), this is merely for convenience of illustration and not intended to be limiting and larger or smaller numbers of fingers may be used, as is shown for example in Table I above. Transducer 60 is intended to illustrate a convenient transducer having multiple electrode fingers where \(n \) is an odd number.

FIG. 5 is a plan view illustrating transducer 70 having an even numbers of electrode fingers therein. Electrode fingers 72 extend inwardly in a first direction from first common connection 74 and electrode fingers 73 extend inwardly in the opposite direction from common connection 75. Fingers 72, 73 are interdigital, that is, they interleave. Electrode fingers 72, 73 are typically one-quarter wavelength wide and are typically spaced apart by about one-quarter wavelength so that an electrical potential can be created therebetween. Transducer 70 has width 76 extending between outer-most edges 721, 731 of fingers 722, 732. Finger 722 belongs to finger group 72 extending from common connection 74 and finger 732 belongs to finger group 73 extending from common connection 75.
Transducer 70 has centerline 77 which is normal to wave propagation direction 52. Centerline 77 is half way between the outermost edges 721, 731 of fingers 722, 732, that is, the distances 78, 78’ are equal. It will be noted that for a transducer with an even number of fingers, centerline 77 falls between electrode fingers in space 79.

The number n of electrode fingers in transducer 70 is defined as the number of fingers extending from common connection 74 plus the number of electrode fingers extending from common connection 75. While transducer 70 is shown as having n = 16, this is merely for convenience of illustration and not intended to be limiting or larger or smaller numbers of fingers may be used, as is illustrated for example in Table I above. Transducer 70 is intended to illustrate a convenient transducer having multiple electrode fingers where n is an even number.

FIG. 6 is a plan view illustrating multiple transducers such as are used in the present invention, arranged in a sequential array 80 and illustrating the relationships between adjacent transducers 60, 70, 60’, the centerlines thereof 67, 77, 67’ and direction 52 of propagation of the acoustic wave. FIG. 6 shows transducer array 80 making up a portion of filter 40 (FIG. 3). Array 80 comprises even number electrode transducer 70 sandwiched between odd-number electrode transducers 60, 60’, such as are shown for example in FIGS. 3-5. Transducers 60 (odd), 70 (even), 60’ (odd) in FIG. 6 are intended to exemplify various of the transducers in the filter of FIG. 3 having various numbers n of electrode fingers which are not necessarily the same. For example, transducers 60, 70, 60’ of FIG. 6 exemplify transducers 42 (e.g., n = 61), 47 (e.g., n = 40) and 43 (e.g., n = 55) respectively and in either order, or transducers 43 (e.g., n = 55), 48 (e.g., n = 40) and 44 (e.g., n = 65) respectively and in either order, or their primed counterparts. Corresponding to the arrangement of FIG. 3, connections 64’, 75, 64 indicated by the letter “G” are coupled to common or ground lead 50 of filter 40, and connection 74 to having 51 and connections 65’, 65 to input 41 of filter 40.

Transducers 60, 60’ have widths 66, 66’ and centerlines 67, 67’ defined in the same manner as for FIG. 4, that is, distances 660 and 681 are equal and distances 660’ and 681’ are equal. Transducer 70 has width 76 and centerline 77 defined in the same manner as for FIG. 5, that is, distances 780 and 781 are equal. Centerlines 67, 77, 67’ are separated by distances 81 and 82 respectively. Analogous distances to other transducers 700, 700’ lying to the right and left, respectively of transducers 60, 60’ are denoted as 82’ and 81’ respectively. In FIG. 6 transducers 700 and 700’ are illustrated as being further transducers with n even. However, this is merely for convenience of illustration and not intended to be limiting, since adjoining further transducers may have n even or odd.

Distances 81’, 82, 81, 82’ illustrate the manner in which distances d, in FIG. 3 are intended to be measured, that is, between the centerlines of the respective adjacent transducers. In the exemplary 13 transducer filter described earlier in connection with Table I and FIG. 3, the preferred centerline-to-centerline (CTC) distances are typically as shown in Table II:

<table>
<thead>
<tr>
<th>TRANSDUCER PAIR REFERENCE NUMBERS</th>
<th>CTC DISTANCES d_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>46-42</td>
<td>m_1-L + x</td>
</tr>
<tr>
<td>42-47</td>
<td>m_2-L + x - L/4</td>
</tr>
<tr>
<td>47-43</td>
<td>m_3-L + x + L/4</td>
</tr>
<tr>
<td>43-48</td>
<td>m_4-L + x - L/4</td>
</tr>
<tr>
<td>48-44</td>
<td>m_5-L + x + L/4</td>
</tr>
<tr>
<td>44-49</td>
<td>m_6-L + x - L/4.</td>
</tr>
</tbody>
</table>

The CTC distances for the primed reference numbers are the same. The quantity x is a design parameter and a positive real number. The quantity L is the acoustic wavelength and m_1 --- m_6 are integers. Values of x about x = 0.4 L are suitable, with values in the range of about 0.2 L to 0.6 L being useful.

Useful values of m_1 --- m_6 are determined by the number of fingers in adjacent transducers and their separation. There must be sufficient space between centerlines to at least accommodate the numbers of fingers in the adjacent transducers. Typically, the finger width and finger separation in the direction of wave propagation are about L/4 so that the distance from the leading edge of one finger to the leading edge of the next finger is about L/2. The larger the number n of fingers, the larger must be the CTC spacing of adjacent transducers. Hence, minimum values of m_1 --- m_6 are related to d, and n. Those of skill in the art will understand how to determine such minimum values. In general, it is desirable that m_1 --- m_6 be close to or equal to the minimum values.

As shown in Table II, at least some of the CTC distances d, of the preferred embodiment of the present invention differ by non-integral multiples of the acoustic wavelength L, irrespective of which distance d, is chosen as a base for comparison.

In FIG. 6, the “ground” of “common” terminals of the transducers lie on opposite sides of the longitudinal axis (parallel to propagation direction 52) of filter 80. These ground terminals are desirably all connected together by hooking the last ground finger of one transducer to the oppositely lying ground electrode of the next transducer. For example,
left-most finger 622 of transducer 60, which extends from ground potential electrode 64, is connected by longitudinal conductor 751 to "ground" potential electrode 75 of transducer 70. Similarly, right-most electrode 622 of transducer 60 is connected to "ground" potential electrode 75 of transducer 70 by longitudinal conductor 752.

FIG. 7 is a simplified schematic diagram indicating how the above-described filters according to the present invention are advantageously used in radio circuit 90. Radio circuit 90 comprises antenna 91 sending or receiving signals from optional diplexer 92 (which is coupled to the transmitter if one is used). Diplexer 92 sends an incoming signal to filter 93 which passes the resulting band limited signal to amplifier 94. From amplifier 94 the signal passes through another band limiting filter 95 to mixer 96. Mixer 96 also receives a signal from local oscillator 97 through band limiting filter 98. The mixed signal from mixer 96 passes through band limiting filter 99 which removes the local oscillator signal and sends the result to the receiver IF via output 100.

Filters 93, 95, 96 and/or 99 are advantageously SAW filters of the type described here and made according to the structure and method of the present invention, but of varying frequency or other properties according to the particular desired function. For example, filter 93 removes input RF frequencies outside the band in which the receiver is intended to operate. This is particularly useful for narrow band receivers such as are frequently required in cellular phone and paging applications and the like.

Filter 95 may have the same or a different pass band than filter 93 and removes any undesired harmonics generated by amplifier 94 or other out-of-band signals not removed by filter 93. Filter 98 desirably passes the LO frequency and stops undesired harmonics thereof. Filter 99 desirably passes the sum or difference frequencies produced by mixer 96, and blocks the local oscillator and input RF frequencies. This is important to avoid saturating the input stages of the IF amplifier which is typically coupled to output 100. Thus, electronic apparatus, and especially radios have improved properties as a result of the improved properties of the SAW filters of the present invention.

The above-described filters are constructed by a method comprising, in a first embodiment, providing a substrate for propagating acoustic waves and providing on the substrate a sequence of input transducers and output transducers, each transducer having a number of interdigitated electrode fingers, wherein the number of fingers in a first input or output transducer at or near a first end of the sequence is larger than the number of fingers in another input or output transducer more remote from the first end. Lithium niobate, quartz and lithium tantalate are examples of suitable substrate materials, with the latter being preferred. The transducers are formed by depositing a conductive film, usually a metal such as aluminum, on the substrate and then by means of photo-masking and etching steps well known in the art, the unwanted portions of the metal film are removed. These metallization, masking and etching steps are conventional and well known in the art. What is different is the shape of the electrode pattern formed in the film. This is accomplished by providing an etch mask having an image of the electrode shape and arrangement described herein.

In a further embodiment there is provided a method comprising, providing a substrate for propagating acoustic waves and providing on the substrate a sequence of transducers having predetermined centerlines normal to the direction of acoustic wave propagation, wherein each centerline is located halfway between outer edges of first and last electrode fingers of each transducer, and wherein centerlines of a first adjacent pair of transducers are a distance D_1 apart and centerlines of other adjacent pairs of transducers are distances D_2 to D_{1+T} apart, where T is the number of transducers, and wherein at least one of D_2 to D_{1+T} differs from D_1 by a non-integer number of wavelengths. It is further desirable that the foregoing step of providing transducers having the above-described centerline spacing and the step of providing transducers having numbers of fingers that vary along the transducer sequence in the above-described manner, be carried out simultaneously as a part of the metallization, masking and etching steps to define the transducer conductor pattern on the substrate.

It is further desirable that the step of providing the transducer comprises, providing a number of fingers in a first input (or output) transducer located at an end of the transducer array which is larger than a number of fingers in another input (or output) transducer further along the sequence, and in further detail, providing a sequence of transducers symmetric about a centerline and wherein the number of fingers in a first input (or output) transducer located near an end of the array is larger than the number of fingers in another input (or output) transducer located nearest the centerline.

In a preferred embodiment, the step of providing the transducers comprises providing one transducer in the sequence containing an odd number of electrode fingers and an adjacent transducer containing an even number of electrode fingers, and further that the step of providing the transducers comprises providing an input transducer with an even number of electrode fingers and an output transducer with an odd number of electrode fingers, or vice versa as regards the designations of input and output. In a still further embodiment, the step of providing the transducers comprises providing an input transducer with an even numbers of electrode fingers and another input transducer with an odd number of electrode fingers, and providing an output transducer with an odd number of electrode fingers, or vice versa as regards the designations of input and output.

Based on the foregoing description, it will be apparent to those of skill in the art that the present invention solves the problems and achieves the goals set forth earlier, and has substantial advantages as pointed out herein, namely,
having larger numbers of electrode fingers on the outboard transducers compared to the inboard transducers improves
the power handling capability. Further, the arrangement of the present design provides greater design flexibility in
optimizing the impedance and spectral response.

While the present invention has been described in terms of particular materials, structures and steps, these choices
are for convenience of explanation and not intended to be limiting and, as those of skill in the art will understand based
on the description herein, the present invention applies to other choices of materials, arrangements and process steps,
the invention being defined by the scope of the appended claims.

Claims

1. An acoustic wave filter (40) comprising a sequence of T electro-acoustic transducers, wherein T is the number of
electro acoustic transducers (42-49'), each electro-acoustic transducer having multiple interdigital electrode fingers
and a predetermined centerline equidistant between outermost interdigital electrode fingers, the sequence of elec-
tro-acoustic transducers arranged in a direction of acoustic wave propagation and comprising a plurality of input
(42-44') and a plurality of output (46-49') transducers, wherein a centerline-to-centerline distance D1(81-82') of a
first adjacent pair of an input (60, 60') transducer and an output (70) transducer and centerline-to-centerline dis-
tances of other adjacent pairs of an input transducer and an output transducer of D2 to D7, at least one of distances
D2 to D7 differs from distance D1 by a non-integral number of acoustic wavelengths, the acoustic wave filter being
classified in that:

the sequence of input (42-44') and output (46-49') transducers is symmetrical about a centerline (51) and
wherein beginning at either end of the sequence, the number of fingers in a first input (44) transducer is larger
than the number of fingers in an input (49) transducer located nearest the centerline.

2. The acoustic wave filter as claimed in claim 1, wherein the sequence of output (46-49') transducers is symmetrical
about a centerline (51) and wherein beginning at either end of the sequence, the number of interdigitated electrode
fingers in a first output (49) transducer is larger than the number of interdigitated electrode fingers in an output
(47) transducer located nearest the centerline (51).

3. The acoustic wave filter as claimed in claim 1 or 2, wherein one input (42-44') or output (46-49') transducer in the
sequence contains an odd number of interdigitated electrode fingers and an adjacent input or output transducer
contains an even number of interdigitated electrode fingers.

4. The acoustic wave filter as claimed in claim 1, 2 or 3, wherein the input (42-44') transducers comprise a transducer
with an even number of interdigitated electrode fingers and the output (46-49') transducers comprise transducers
with an odd number of interdigitated electrode fingers, or vice versa as regards designations of input and output.

5. The acoustic wave filter as claimed in any one of claims 1 to 3, wherein:

the input (42-44') transducers comprise a first input transducer having an even number of electrode fingers
and a second input transducer having an odd number of electrode fingers; and
the output (46-49') transducers comprise an output transducer having an odd number of electrode fingers, or
vice versa as regards designations of input and output.

6. The acoustic wave filter as claimed in any preceding claim, wherein at least one distance D2 to D7 differs from
distance D1 by an odd number of quarter acoustic wavelengths.

7. Electronic apparatus (90) comprising an acoustic wave filter (93, 95, 98, 99) according to any preceding claim.

8. Electronic apparatus (90) as claimed in claim 7, wherein the electronic apparatus (90) is a radio communication
device.

Patentansprüche

1. Akustisches Wellenfilter (40), das eine Folge aus T elektro-akustischen Wandlern aufweist, wobei T die Zahl der
elektro-akustischen Wandler (42-49') ist, wobei jeder elektro-akustische Wandler vielfache interdigitale Elektro-
denfinger und eine vorbestimmte Mittellinie äquidistant zwischen äußersten, interdigitalen Elektrodenfingern be-
sitzt, wobei die Folge der elektro-akustischen Wandler in einer Richtung der Ausbreitung der akustischen Welle angeordnet ist, und eine Vielzahl von Eingangs- (42-44) und eine Vielzahl von Ausgangs- (46-49) Wändern aufweist, wobei ein Abstand der Mittellinie zu Mitte linie D, (81-82) eines ersten angrenzenden Paares eines Eingangs- (60, 60') Wänders und eines Ausgangs- (70) Wänders und Abstände Mittellinie zu Mittellinie anderer angrenzender Paare eines Eingangs-Wandlers und eines Ausgangs-Wandlers von D₂ zu D₁₁, von dem Abstand D, um eine nicht ganzzahlige Zahl von akustischen Wellenlängen unterscheidet, wobei das akustische Wellenfilter gekennzeichnet ist durch:
die Folge der Eingangs- (42-44') und der Ausgangs- (46-49') Wandler ist symmetrisch um eine Mittellinie (51) und wobei sie an irgendeinem Ende der Folge beginnt, wobei die Zahl der Finger in einem ersten Eingangs- (44') Wandler größer als die Zahl der Finger in einem Eingangs- (49) Wandler, der am nahesten zu der Mittellinie gelegen ist.

2. Akustisches Wellenfilter nach Anspruch 1, wobei die Folge der Ausgangs- (46-49') Wandler symmetrisch um eine Mittellinie (51) ist und wobei, beginnend an irgendeinem Ende der Folge, die Anzahl der interdigitierten Elektrodenfinger in einem ersten Ausgangs- (49) Wandler größer als die Anzahl der interdigitierten Elektrodenfinger in einem Ausgangs- (47) Wandler, der am nahesten zu der Mittellinie (51) gelegen ist.

4. Akustisches Wellenfilter nach Anspruch 1, 2 oder 3, wobei die Eingangs- (42-44') Wandler einen Wandler mit einer geraden Anzahl interdigitierter Elektrodenfinger aufweisen und die Ausgangs- (46-49') Wandler einen Wandler mit einer ungeraden Anzahl interdigitierter Elektrodenfinger aufweisen, oder vice versa, und zwar in Bezug auf Benennungen von Eingang und Ausgang.

5. Akustisches Wellenfilter nach einem der Ansprüche 1 bis 3, wobei:
die Eingangs- (42-44') Wandler einen ersten Eingangs-Wandler, der eine gerade Anzahl an Elektrodenfingern besitzt, und einen zweiten Eingangs-Wandler, der eine ungerade Anzahl an Elektrodenfingern besitzt, aufweisen;
die Ausgangs- (46-49') Wandler einen Ausgangs-Wandler aufweisen, der eine ungerade Anzahl an Elektrodenfingern, oder vice versa, in Bezug auf Benennungen von Eingang und Ausgang, besitzt.

7. Elektronisches Gerät (90), das ein akustisches Wellenfilter (93, 95, 98, 99) gemäß einem der vorhergehenden Ansprüche aufweist.

8. Elektronisches Gerät (90) nach Anspruch 7, wobei das elektronische Gerät (90) eine Funkkommunikationsvorrichtung ist.

Reivendications

1. Filtre à ondes acoustiques (40) comprenant une séquence de T transducteurs électroacoustiques, dans laquelle T est le nombre de transducteurs électroacoustiques, dans laquelle T est le nombre de transducteurs électroacoustiques (42-49'), chaque transducteur électroacoustique ayant de multiples dents d'électrode interdigitée et une ligne équidistante prédéterminée entre les dents d'électrode interdigitée situées le plus à l'extérieur, la séquence de transducteurs électroacoustiques étant placée dans le sens de la propagation des ondes acoustiques et comprenant une pluralité de transducteurs d'entrée (42-44') et une pluralité de transducteurs de sortie (46-49'), dans lequel il existe une distance ligne équidistante-ligne équidistante D₁ (81-82') d'une première paire adjacente composée d'un transducteur d'entrée (60-60') et d'un transducteur de sortie (70) et des distances ligne équidistante-ligne équidistante d'autres paires adjacentes composées d'un transducteur d'entrée et d'un transducteur de sortie D₂ à D₁₁, au moins l'une des distances D₂ à D₁₁, différant de la distance D₁ d'un nombre non entier de longueurs d'onde acoustique, le filtre d'ondes acoustiques étant caractérisé en ce que:
2. Filtre d'ondes acoustiques selon la revendication 1, dans lequel la séquence de transducteurs de sortie (46-49°) est symétrique par rapport à une ligne équidistante (51) et dans lequel, en partant de l'une ou l'autre des extrémités de la séquence, le nombre de dents d'un premier transducteur d'entrée (44) est supérieur au nombre de dents d'un transducteur d'entrée (49) situé le plus près de la ligne équidistante (51).

3. Filtre d'ondes acoustiques selon la revendication 1 ou 2, dans lequel un transducteur d'entrée (42-44°) ou de sortie (46-49°) de la séquence contient un nombre impair de dents d'électrode interdigitée et un transducteur d'entrée ou de sortie adjacent contient un nombre pair de dents d'électrode interdigitée.

4. Filtre d'ondes acoustiques selon la revendication 1, 2 ou 3, dans lequel les transducteurs d'entrée (42-44°) comprennent un transducteur ayant un nombre pair de dents d'électrode interdigitée et les transducteurs de sortie (46-49°) comprennent des transducteurs ayant un nombre impair de dents d'électrode interdigitée, ou vice-versa en fonction des désignations entrée ou sortie.

5. Filtre d'ondes acoustiques selon l'une quelconque des revendications 1 à 3, dans lequel :

les transducteurs d'entrée (42-44°) comprennent un premier transducteur d'entrée ayant un nombre pair de dents d'électrode et un deuxième transducteur d'entrée ayant un nombre impair de dents d'électrode ; et
les transducteurs de sortie (46-49°) comprennent un transducteur de sortie ayant un nombre impair de dents d'électrode ou vice-versa en fonction des désignations entrée ou sortie.

6. Filtre d'ondes acoustiques selon l'une quelconque des revendications précédentes, dans lequel au moins une distance D_2 à D_{7,1} diffère de la distance D_1 d'un nombre impair de quarts de longueur d'onde acoustique.

7. Appareil électronique (90) comprenant un filtre d'ondes acoustiques (93, 95, 98, 99) selon l'une quelconque des revendications précédentes.

8. Appareil électronique (90) selon la revendication 7, dans lequel l'appareil électronique (90) est un dispositif de radiocommunication.
FIG. 7