EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 20.12.95 Bulletin 95/51

Application number: 92116331.7

Date of filing: 24.09.92

Modular interchangeable power distribution system

Divisional application 94120362.2 filed on 24/09/92.

Priority: 01.10.91 US 771029
16.06.92 US 899195

Date of publication of application: 07.04.93 Bulletin 93/14

Publication of the grant of the patent: 20.12.95 Bulletin 95/51

Designated Contracting States:
DE FR GB IT

References cited:
EP-A- 0 174 733
FR-A- 2 400 786
GB-A- 2 059 183
US-A- 4 367 370

Proprietor: MOLEX INCORPORATED
2222 Wellington Court
Lisle Illinois 60532 (US)

Inventor: Bogiel, Steven B.
1232 Knottingham Court
Schaumburg, IL 60193 (US)

Representative: Blumbach, Kramer & Partner Patentanwälte,
Sonnenberger Strasse 100
D-65193 Wiesbaden (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
DESCRIPTION

SPECIFICATION

MODULAR INTERCHANGEABLE POWER DISTRIBUTION SYSTEM

Field of the Invention

This invention generally relates to the art of power distribution systems and, particularly, to such systems for electrification of areas such as modular wall panels by means of interchangeable circuit control modules as defined in the preamble of claim 1.

Background of the Invention

There are various environments wherein a plurality of different power lines, which include power circuits and ground circuits, lead from different power sources, which may include different transformers, fuses and the like, to a given area for distribution thereof. Most often, a plurality of electrical connectors are used for interconnection, respectively, with the different power lines. For instance, the connectors may be provided in the form of plug-receiving receptacles and each receptacle is interconnected to an individual power line.

An example of such an environment is in the art of modular wall panel systems which divide a given area into separate or distinct work areas. All kinds of electronic equipment, such as computers, printers, heaters and the like may be employed in each work area and must be "plugged-in" to the power distribution lines. The utilization of an electrical connector for each separate power distribution line results in very cumbersome outlet configurations involving a multiplicity of receptacles or outlets and an undesirable duplication of many of the connector components. The need for a plurality of power lines can range from the obvious necessity of preventing overloading of a given line, to the need for providing an isolated or "clean" line having an isolated ground whereby sensitive equipment such as computers or delicate sensing devices are not exposed to current spikes or impulses caused by other electrical equipment, such as a heater, being interconnected to the same power line. An example of a problem which could occur when sharing such equipment is the accidental erasure of computer data, for instance.

From the US-A-4,367,370 a power panel system with selective multiple circuits is known comprising a plurality of power lines forming distributions circuits, a receptacle with receptacle contacts and a plurality of circuit contacts. One of the receptacle contacts is connected to a chosen circuit contact by a switch member.

There is a need for, and it would be highly desir-
means. A strain relief means is mountable to the rear of the common housing means for holding the power lines in interconnection with the rearwardly projecting circuit contacts.

Other objects, features and advantages of the invention will be apparent from the following detailed description taken in connection with the accompanying drawings.

Brief Description of the Drawings

The features of this invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with its objects and the advantages thereof, may be best understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements in the figures and in which:

FIGURE 1 is a fragmented elevational view of a modular wall panel embodying the concepts of the invention;
FIGURE 2 is an exploded perspective view of the components mounted within the track means of the wall panel, including various components according to the invention;
FIGURE 3 is an exploded perspective view of the common housing means, the power line strain relief and two of the circuit contacts;
FIGURE 4 is an exploded perspective view of the housing of one of the interchangeable circuit control modules, along with three different arrays of control contacts for mounting on the housing;
FIGURE 5 is an exploded perspective view of the common plug-receiving receptacle and one of the interchangeable circuit control modules, with the power contacts on the module shown in phantom; and
FIGURE 6 is a view similar to that of Figure 5, with the control contacts shown projecting from a side of the circuit control module.
FIGURE 7 is an end view of Figure 1 showing the ability of the invention to fit within panels having a narrow thickness.
FIGURE 8 is an end view of Figure 1 showing the ability of the invention to fit within panels having a wide thickness.

Detailed Description of the Preferred Embodiment

Referring to the drawings in greater detail, and first to Figure 1, the invention is exemplified herein for use in a power distribution system for the electrification of modular wall panels, such as are used in dividing a given area into separate work spaces. As stated above, however, it should be understood that the invention is equally applicable and useful for other environments than modular wall panel systems.

More particularly, Figure 1 shows a modular wall panel 10 having upright support members 12 along opposite vertical edges thereof, and a track means 14 running generally horizontally along the bottom of panel 10. As is known, the track means provide a generally hollow conduit or passage along the bottoms of the interconnected wall panels for receiving power distribution lines to feed power to the different work areas for utilization thereat. Panel 10, including upright supports 12 and track means 14, is supported on a subjacent surface, such as a floor or the like, by support feet 16.

Figure 1 also shows a panel-to-panel "whip connector", generally designated 18, which comprises a harness having wiring 20 interconnected between power connectors 22 at opposite ends of the harness. The harness includes a plurality of power lines providing a plurality of distribution circuits between adjacent wall panels or between an end-most panel and a power source. As will be described in greater detail, Figure 1 shows a pair of common receptacles, generally designated 24, and an accompanying pair of circuit selectors in the form of interchangeable circuit control modules, generally designated 26, exposed through an aperture 28 in track means 14. The receptacles and circuit control modules are part of a power distribution subassembly, generally designated 30, mounted within track means 14.

Figure 2 shows the various components of power distribution subassembly 30, including receptacles 24 and circuit control modules 26, according to the invention. The power distribution subassembly 30 includes a generally U-shaped channel, generally designated 32, along with a cover 34 and an end mounting bracket 36. Cover 34 has hooked flanges 38 running longitudinally along opposite sides thereof, and depending from the bottom thereof, for snapping into hooked grooves 40 along the top edges of side walls 42 of channel 32. End bracket 36 may be of various designs and will not be described in detail herein, the designs varying to fit different panel configurations and to mount the power distribution subassembly within track means 14 (Fig. 1). Suffice it to say, the mounting bracket includes apertures 44 (Fig. 2) for receiving appropriate fastening means 46 (Fig. 1) for mounting the power distribution subassembly within track means 14 on the underside of panel 10. The mounting bracket includes hooked flanges 48 for snapping into hooked grooves 50 along the top edge of U-shaped channel 32.

As stated above in relation to Figure 1, power distribution harness 18 includes a plurality of power lines or wiring 20 defining power distribution circuits between adjacent wall panels or between a given wall panel, such as panel 10, and an appropriate power source. Power connectors 22 are provided at opposite ends of the harness. Now, referring to Figure 2, power distribution subassembly 30 includes a pair of
end connectors, generally designated 52, mounted within the ends of U-shaped channel 32 by means of flanges 54 projecting outwardly from the end connectors into slots 56 in the sides of the channel. A plurality of "power" lines 58 run between and are appropriately interconnected between contacts within end connectors 52. Therefore, with either one or both of the end connectors being coupled with a respective power connector 22 of a harness 18 (Fig. 1), power is distributed to power lines 58 within U-shaped channel 32.

At this point, it should be understood that the use of the term "power" lines 58 is meant to encompass wiring which may include separate "hot" or power wires, neutral wires and ground wires, as is well known.

Generally, the invention contemplates an interchangeable modular system whereby common receptacles 24 can be interconnected with different ones of power lines 58 running between end connectors 52. The use of the term "common" receptacle 24 is meant to mean any receptacle, including known or standard receptacle configurations adapted for receiving a standard electrical plug. For instance, each receptacle 24 shown in Figure 2 includes the usual pair of prong receiving slots 60 along with a ground prong receiving hole 62.

Still referring to Figure 2, each receptacle 24 and any one of a plurality of interchangeable circuit modules 26 are mounted into the front of a common housing 64 which is positioned within U-shaped channel 32, whereby the receptacle and the module project through an opening 66 in one side wall 42 of the channel. Openings 66 are shown in both opposite side walls of the channel because the modular wall panel may service two adjacent work areas on opposite sides of the wall panel. As described in relation to Figure 1, the receptacles and the circuit control modules also are accessible through openings 28 in track means 14 along the bottom of the wall panel. As described in greater detail hereinafter, strain relief means, generally designated 68, are engageable with the back sides of housings 64 to hold power lines 58 in interengagement with a plurality of circuit contacts mounted within housing 64, as will be apparent hereinafter.

Figures 2, 7 and 8, show the ability of the invention to adjust to panels having different thicknesses widths while using the same components of the power distribution subassembly 30. The common housing 64 has a multiplicity of vertically oriented slots 102 on two opposite sides of the housing. These slots are adapted to slide into vertical sides 104 of opening 66 in sidewall 42. Cut 100 is provided through hooked grooves 40 and 50 so that slots 102 can slip onto vertical sides 104 without interfering with the hooked grooves 40 and 50. The thickness of the wall panel will determine which of the slots 102 will be slipped over vertical side 104. Figure 7 shows slots 102 closest to the outwardly facing receptacle surface 106 slipped over vertical sides 102. This arrangement is used for wall panel having relatively small thickness. Figure 8 shows slots 102 furthest from the outwardly facing receptacle surface 106 slipped over the vertical sides 102. This arrangement is used for a wall panel having a relatively large thickness.

Referring to Figure 3, each housing means 64 has a first opening 70 at the front thereof for receiving one of the receptacles 24, and a second opening 72 for receiving one of the interchangeable circuit control modules 72, the openings being in communication, as at 74. A back cover 76 may be provided for closing the back side of at least opening 70. A plurality of circuit contacts, generally designated 78, are mounted within housing 64, with insulation displacement bifurcated portions 78a projecting from the rear of the housing, and forwardly projecting bifurcated contact portions 78b being exposed within opening 72. In the circuit scheme illustrated in the drawings, there would be eight circuit contacts 78 mounted within housing 64, corresponding to eight distinct wires of power lines 58, as described hereinafter. Consequently, strain relief member 68 has eight pairs of notches 88a in two vertical rows thereof for alignment with eight notches 80 in two vertical rows thereof on the back side of housing 64. Notches 88a and 80 embrace and hold the discrete electrical wires in insulation displacement interengagement with contact portions 78a. The strain relief member snaps onto housing 64 by means of ramped detents 82 on the top and bottom of the housing which are engaged by U-shaped arms 88b of the strain relief member.

Referring back to Figure 2, it should be noted that there are three interchangeable circuit control modules 26 shown at the right-hand side of the depiction, although only one of the modules can be inserted into opening 72 in housing 64. This depiction is illustrated to exemplify the interchangeability of the circuit control modules. Now, referring to Figure 4, each circuit control module 26 includes a housing 84 having a grippable portion 86 at the front thereof, along with eight horizontal slots 88 in a vertical column of slots. The back side 84a and right-hand side 84b of housing 84 are open, for purposes described hereinafter. In accordance with the wiring and circuit contact scheme described in relation to Figure 3, the eight slots 88 are provided for receiving portions of eight different control contacts in different arrays for interconnection with different ones of circuit contacts 78 corresponding to different power distribution circuits.

More particularly, although different wiring arrangements and interconnection schemes are contemplated, Figure 4 shows somewhat schematically three different arrays of control contacts in three different columns. The left-hand column of contacts includes a power or line contact "L1", a ground contact "G1" and a neutral contact "N1". The center column
of contacts includes a power or line contact "L2", a ground contact "G1" and a neutral contact "N2". The right-hand column of contacts includes a power or line contact "L3", a ground contact "G2" and a neutral contact "N3". Each contact includes a blade portion 90 and a slotted portion 92, with the blade portion and the slotted portion of some of the contacts being interconnected by a body portion 94. It can be seen that all of the blade portions are substantially identical and the slotted portions are of substantially identical configurations. The blade portions are designed for sliding between bifurcated contact portions 78b (Fig. 3) of selected ones of circuit contacts 78. The slotted portions 92 are designed for sliding into engagement with blade portions of receptacle contacts mounted on receptacles 24, as described hereinafter. It can be seen that the body portions 94 of some of the control contacts are of different lengths to position the respective blade portions in different ones of slots 88 in housing 84 of the interchangeable circuit control modules. In other words, all of the circuit control modules have identical configurations for positioning within common housing 84 (Fig. 3), except for the configuration of the control contacts and the different dispositions of the components thereof.

With the above description of Figure 4, it can be assumed that power lines 58 (Fig. 2) include three power or line wires, two ground wires and three neutral wires. With the array and configuration of control contacts shown in the left-hand column of Figure 4, power or line contact "L1" will be interconnected with a circuit contact 78 terminated to a first one of the power wires, ground contact "G1" will be interconnected with a circuit contact 78 terminated to a first ground wire and control contact "N1" will be interconnected with a circuit contact terminated to a first neutral wire. Referring to the center column of control contacts shown in Figure 4, power or line contact "L2" will be interconnected with a circuit contact terminated to a second power wire, control contact "G1" will be interconnected with a circuit contact terminated, again, to the first ground wire, and control contact "N2" will be interconnected with a circuit contact terminated to a second neutral wire. Referring to the third or right-hand column or array of control contacts in Figure 4, power or line contact "L3" will be interconnected with a circuit contact terminated to a third power wire, control contact "G2" will be interconnected with a circuit contact terminated to a second ground wire and control contact "N3" will be interconnected to a circuit contact terminated to a third neutral wire. The second ground wire, to which contact contact "G2" is electrically coupled, may be an isolated ground for the system, as described above, to prevent interference with delicate electronic equipment at particular work areas.

Figure 5 shows one of the interchangeable circuit control modules 26, with control contacts "L1", "G1" and "N1" (i.e., the left-hand array of control contacts shown in Figure 4) in phantom as if mounted within housing 84 of the circuit control module. Figure 5 shows one of the common receptacles 24 having blade portions 96 of appropriate receptacle contacts projecting from the left-hand side of the receptacle. These contact blades are designed for sliding into slotted portions 92 of the control contacts as indicated by arrows "A" (Fig. 4), when one of the control modules is inserted into opening 72 in housing 84 (Fig. 3) after the receptacle is inserted into opening 70 of the housing. The blade portions 96 of the receptacle contacts always are in the same disposition. Consequently, referring back to Figure 4, it can be seen that the slotted portions 92 of all of the control contacts shown in Figure 4 are in the same relative dispositions, regardless of the different configurations of the control contacts and the different locations of the blade portions 90 thereof, the plate portions 90 being located differently for interconnection with different ones of the eight circuit contacts 78. The receptacle contacts, although not shown, extend through receptacle 24 for engagement by standard prongs of standard plugs to be inserted into slots 60 and holes 62. Therefore, the center blade 96 would be part of a common ground contact running through receptacle 24 whereby ground prongs of appropriate plugs, inserted into holes 62, will interconnect with the ground contact running through the receptacle and of which the center blade 96 is a part thereof.

Lastly, Figure 6 is identical to Figure 5, but the blade portions 90 of control contacts "L1", "G1" and "N1" are shown projecting from the left-hand side of circuit control module 26. In other words, the circuit control module now has been loaded with the left-hand array of control contacts as shown in Figure 4.

In use, and referring to Figures 2, 3 and 6 with kick panel 31 removed, receptacles 24 are inserted into openings 70 in common housings 84 whereby blade portions 96 (Fig. 6) of each receptacle projects into opening 72 in the housing. With eight circuit contacts 78 terminated to three power or line wires, two ground wires and three neutral wires in a proper vertical array, and the terminated contacts and wires being held in position by strain relief member 68, the system is ready for receiving any one of the different, interchangeable circuit control modules 26 which have been loaded with different arrays of control contacts as shown in and described in relation to the different arrays illustrated in Figure 4. One of the interchangeable circuit control modules will electrically couple the respective receptacle contacts to one of the power or line wires, one of the ground wires and one of the neutral wired of power lines 58 (Fig. 2). Another circuit control module will electrically couple the receptacle contacts with a second power or line wire, the first ground wire and a second neutral wire. The third circuit control module will electrically couple the
receptacle contacts to a third power or line wire, a second ground wire and a third neutral wire. Again, it should be emphasized that the eight-wire scheme of power lines 58, circuit contacts 78 and the particular number, array and disposition of the control contacts are but for illustration purposes and a wire variety of power line numbers and/or configurations are accommodatable by the present invention. In fact, rather than discrete wires comprising power lines 58, a flat ribbon cable also could be used within the concepts of the interchangeable circuit control module scheme of the invention.

Claims

1. A power distribution system which includes a plurality of electrical power lines (58) defining a plurality of power distribution circuits, a receptacle (24) mounted adjacent the power lines and including receptacle contacts (96) to be coupled to some of the power lines, and a plurality of circuit contacts (78) interconnected with the power lines (58), CHARACTERISED BY including a plurality of interchangeable circuit control modules (26) each including a plurality of control contacts (L1, L2, L3, G1, G2, N1, N2, N3) of a different array engageable with the receptacle contacts (96) and different ones of the circuit contacts (78) corresponding to a different one of said power distribution circuits, such that any one of the circuit control modules is selectable from the plurality of circuit control modules for selectively interchangeably interconnecting the receptacle contacts (96) with a power distribution circuit.

2. A power distribution system as set forth in claim 1, including a common housing means (64) for mounting the receptacle (24), the circuit contacts (78) and the interchangeable circuit control modules (26) thereon.

3. A power distribution system as set forth in claim 2, wherein said common housing means (64) include first opening means (70) for receiving the receptacle.

4. A power distribution system as set forth in claim 3, wherein said common housing means (64) include second opening means (72) for interchangeably receiving the circuit control modules (26).

5. A power distribution system as set forth in claim 4, wherein said first (70) and second (72) opening means are in communication, and the receptacle contacts (96) and the control contacts (78) have respectively complementarily engageable portions exposed on the receptacle (24) and on the circuit control modules (26), respectively, for interconnection between the communicating opening means.

6. A power distribution system as set forth in claim 5, wherein said first (70) and second (72) opening means open at a front of the common housing means (64), and the circuit contacts (78) project from a rear of the common housing means for interconnection with the power lines (58).

7. A power distribution system as set forth in claim 6, wherein said circuit contacts (78) have insulation displacement portions (79a) projecting from the rear of the common housing means (64).

8. A power distribution system as set forth in claim 4, wherein said first (70) and second (72) opening means open at a front of the common housing means (64), the circuit contacts (78) project from a rear of the common housing means for interconnection with the power lines (58), and including a strain relief means (68) for holding the power lines interconnected with the circuit contacts.

Patentansprüche

1. Leistungsverteilungsanlage, die eine Vielzahl von elektrischen Versorgungsleitungen (58) aufweist, welche eine Vielzahl von Leistungsverteilungsstromkreisen definieren, fernern eine nahe den Versorgungsleitungen angeordnete Steckdose (24), die mit einigen Versorgungsleitungen zu verbindende Steckdosenkontakte (96) enthält, fernern eine Vielzahl von Stromkreiskontakten (78), die mit den Versorgungsleitungen (64) verbunden sind, gekennzeichnet durch, eine vielfach von austauschbaren StromkreissteuermODULEN (26), die je eine Vielzahl von Steuerkontakten (L1, L2, L3, G1, G2, N1, N2, N3) unterschiedlicher Anordnung enthalten, welche mit den Steckdosenkontakten (96) und verschiedenen Stromkreiskontakten (78) verbindbar sind, wobei die Stromkreiskontakte unterschiedlichen Leistungsverteilungsschaltungen entsprechen, so daß jedes Stromkreissteuermodule aus der Vielzahl von StromkreissteuermODULEN wahlbar ist, um selektiv und austauschbar die Steckdosenkontakte (96) mit einer Leistungsverteilungsschaltung zu verbinden.

2. Leistungsverteilungsanlage nach Anspruch 1 mit einem gemeinsamen Gehäuse (64) zur Anbringung der Steckdose (24), der Stromkreiskontakte (78) und der austauschbaren Stromkreissteuer-
module (26).

3. Leistungsverteilungsanlage nach Anspruch 2, bei der das gemeinsame Gehäuse (64) eine erste Öffnung (70) zur Aufnahme der Steckdose besitzt.

4. Leistungsverteilungsanlage nach Anspruch 3, bei der das gemeinsame Gehäuse (64) eine zweite Öffnung (72) zur austauschbaren Aufnahme der Stromkreissteuermodule (26) aufweist.

5. Leistungsverteilungsanlage nach Anspruch 4, bei der die erste (70) und die zweite (72) Öffnung in Verbindung stehen und die Steckdosenkontakte (96) sowie die Steuerkontakte (78) jeweils komplementär verbindbare Teile in der Steckdose (74) und den Stromkreissteuermodulen (26) zur Verbindung zwischen den Öffnungen besitzen.

6. Leistungsverteilungsanlage nach Anspruch 5, bei der die erste (70) und die zweite (72) Öffnung an einer Vorderseite des gemeinsamen Gehäuses (64) vorhanden sind und die Stromkreiskontakte (78) von der Rückseite des gemeinsamen Gehäuses zur Verbindung mit den Versorgungsleitungen (58) vorstehen.

7. Leistungsverteilungsanlage nach Anspruch 6, bei der die Stromkreiskontakte (78) Isolationsverdrängungssteile (78a) besitzen, die von der Rückseite des gemeinsamen Gehäuses (64) vorstehen.

8. Leistungsverteilungsanlage nach Anspruch 4, bei der die erste (70) und die zweite (72) Öffnung an der Vorderseite des gemeinsamen Gehäuses (64) vorhanden sind und die Stromkreiskontakte (78) von der Rückseite des gemeinsamen Gehäuses zur Verbindung mit den Versorgungsleitungen (58) vorstehen und eine Zugentlastung (88) besitzen, um die Stromversorgungsleitungen in Verbindung mit den Stromkreiskontakten zu halten.

Revendications

1. Système de distribution de puissance qui comprend des lignes électriques de puissance (58) définissant plusieurs circuits de distribution de puissance, un réceptacle (24) monté à côté des lignes de puissance et comprenant des contacts de réceptacle (96) destinés à être connectés à certaines des lignes de puissance et plusieurs contacts de circuit (78) interconnectés avec les lignes de puissance (58), caractérisé en ce qu'il comprend : plusieurs modules de commande de circuit interchangeable (26) chacun incluant plusieurs contacts de commande (L1, L2, L3, G1, G2, N1, N2, N3) de réseaux différents pouvant venir en contact avec les contacts de réceptacle, (96) et certains, différents, des contacts de circuit (78), correspondant à l'un, différent, des circuits de distribution de puissance, de façon telle que l'un quelconque des modules de commande de circuit puisse être sélectionné parmi plusieurs modules de commande de circuit, pour interconnecter sélectivement de manière interchangeable les contacts de réceptacle (96) avec un circuit de distribution de puissance.

2. Système de distribution de puissance, selon la revendication 1, incluant un moyen formant boîtier commun (64) pour y monter le réceptacle (24), les contacts de circuit (78) et les modules de commande de circuit interchangeables (26).

3. Système de distribution de puissance, selon la revendication 2, dans lequel le dit moyen formant boîtier commun (64) comprend un premier moyen formant ouverture (70) pour recevoir le réceptacle.

4. Système de distribution de puissance, selon la revendication 3, dans lequel le dit moyen formant boîtier commun (64) comprend un second moyen formant ouverture (72) pour recevoir de manière interchangeable les modules de commande de circuit (26).

5. Système de distribution de puissance, selon la revendication 4, dans lequel lesdits premier (70) et second (72) moyens formant ouvertures sont en communication, et dans lequel les contacts de réceptacle (96) et les contacts de commande (78) ont, respectivement, des parties pouvant venir en contact de façon complémentaire, accessibles, respectivement, sur le réceptacle (24) et sur les modules de commande de circuit (26) pour interconnexion entre les moyens formant ouvertures en communication.

6. Système de distribution de puissance, selon la revendication 5, dans lequel lesdits premier (70) et second (72) moyens formant ouvertures débouchent à l'avant du moyen formant boîtier commun (64), et dans lequel les contacts de circuit (78) font saillie par rapport à l'arrière du moyen formant boîtier commun pour interconnexion avec les lignes de puissance (58).

7. Système de distribution de puissance, selon la revendication 6, dans lequel lesdits contacts de
circuit (78) ont des parties autodénudantes (78a) en saillie par rapport à l’arrière du moyen formant boîtier commun (64).

8. Système de distribution de puissance, selon la revendication 4, dans lequel lesdits premier (70) et second (72) moyens formant ouvertures débouchent à l’avant du moyen formant boîtier commun (64), et dans lequel les contacts de circuit (78) font saillie par rapport à l’arrière du moyen formant boîtier commun pour interconnexion avec les lignes de puissance (58), et incluant un moyen de soulagement de traction (68) pour maintenir les lignes de puissance interconnectées avec les contacts de circuit.