EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 28.02.1996 Bulletin 1996/09

Application number: 92115527.1

Date of filing: 10.09.1992

Mixture of dyes for black dye donor for thermal color proofing
Mischung von Farbstoffen für schwarze Farbstoff-Donoren für thermische Farbprüfung
Mélange de colorants pour donneur de colorants noirs pour épreuves colorées obtenues par le procédé thermique

Designated Contracting States:
DE FR GB

Priority: 11.09.1991 US 757876

Date of publication of application: 17.03.1993 Bulletin 1993/11

Proprietor: EASTMAN KODAK COMPANY Rochester, New York 14650-2201 (US)

Inventors:
- Chapman, Derek David,
c/o Eastman Kodak Company
Rochester, New York 14650-2201 (US)

- Evans, Steven,
c/o Eastman Kodak Company
Rochester, New York 14650-2201 (US)

Representative: Brandes, Jürgen, Dr. rer. nat.
D-81541 München (DE)

References cited:
US-A- 4 743 582

PATENT ABSTRACTS OF JAPAN vol. 13, no. 385

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention relates to use of a mixture of cyan, yellow and magenta dyes in a black dye-donor element for thermal dye transfer imaging which can be used in a four-color proofing system that accurately represents the hue of a printed color image obtained from a printing press. In order to approximate the appearance of continuous-tone (photographic) images via ink-on-paper printing, the commercial printing industry relies on a process known as halftone printing. In halftone printing, color density gradations are produced by printing ink as patterns of “dots” of varying sizes, but of constant color density, instead of varying the color density continuously as is done in photographic printing.

There is an important commercial need to obtain a color proof image before a printing press run is made which will emulate the final printed image as closely as possible. Such a pre-press proof will be used as a guide to the press operator during the set-up and calibration of the printing press. It is desired that the color proof will accurately represent at least the neutral (gray) and color tone scales of the prints obtained on the printing press. In many cases, it is also desirable that the color proof accurately represent the image quality and halftone pattern of the prints obtained on the printing press. Traditionally, such color separation proofs have involved silver halide photographic, high-contrast lithographic systems or non-silver halide (for example the Signature® electrophotographic analog proofing system available from Eastman Kodak) light-sensitive systems which require many exposure and processing steps before a final, full-color proof is assembled.

Colorants that are used in the printing industry are insoluble pigments dispersed in a suitable carrier liquid to make an ink. In particular, carbon is often used in such a black ink and results in fairly uniform absorbance across the visible spectrum. In thermal transfer color printing systems that use diffusible dyes it is often difficult to find a blend of two or more dyes which yields both uniform neutral (black) color and fulfills the other requirements of the printing system such as transfer efficiency and donor storage stability.

In EP-A-0454083 (prior art according to Article 54(3)EPC), a process is described for producing a direct digital, halftone color proof of an original image on a dye-receiving element by means of laser thermal dye transfer. The proof can then be used to represent a printed color image obtained from a printing press. The process described therein comprises:

a) generating a set of electrical signals which is representative of the shape and color scale of an original image;

b) contacting a dye-donor element comprising a support having thereon a dye layer and an infrared-absorbing material with a first dye-receiving element comprising a support having thereon a polymeric, dye image-receiving layer;

c) using the signals to imagewise-heat by means of a diode laser the dye-donor element, thereby transferring a dye image to the first dye-receiving element; and

d) retransferring the dye image to a second dye image-receiving element which has the same substrate as the printed color image.

In the above process, multiple dye-donors are used to obtain a complete range of colors in the proof. For example, for a full-color proof, four colors: cyan, magenta, yellow and black are normally used.

By using the above process, the image dye is transferred by heating the dye-donor containing the infrared-absorbing material with the diode laser to volatilize the dye, the diode laser beam being modulated by the set of signals which is representative of the shape and color of the original image, so that the dye is heated to cause volatilization only in those areas in which its presence is required on the dye-receiving layer to reconstruct the original image.

Similarly, a thermal transfer proof can be generated by using a thermal head in place of a diode laser as described in U.S. Patent 4,923,846. Commonly available thermal heads are not capable of generating halftone images of adequate resolution but can produce high quality continuous tone proof images which are satisfactory in many instances. U.S. Patent 4,923,846 also discloses the choice of mixtures of dyes for use in thermal imaging proofing systems. The dyes are selected on the basis of values for hue error and turbidity. The Graphic Arts Technical Foundation Research Report No. 38, "Color Material" (58-(5) 293-301, 1985 gives an account of this method.

An alternative and more precise method for color measurement and analysis uses the concept of uniform color space known as CIE LAB in which a sample is analyzed mathematically in terms of its spectro-photometric curve, the nature of the illuminant under which it is viewed and the color vision of a standard observer. For a discussion of CIELAB and color measurement, see "Principles of Color Technology", 2nd Edition, p.25-110, Wiley-Interscience and "Optical Radiation Measurements", Volume 2, p.33-145, Academic Press.

In using CIELAB, colors can be expressed in terms of three parameters: L*, a* and b*, where L* is a lightness function, and a* and b* define a point in color space. Thus, a plot of a* v. b* values for a color sample can be used to accurately show where that sample lies in color space, i.e., what its hue is. This allows different samples to be quantitatively compared.
In color proofing in the printing industry, it is important to be able to match the proofing ink references provided by the International Prepress Proofing Association. These ink references are density patches made with standard 4-color process inks and are known as SWOP (Specifications Web Offset Publications) Color References. For additional information on color measurement of inks for web offset proofing, see “Advances in Printing Science and Technology”, Proceedings of the 19th International Conference of Printing Research Institutes, Eisenstadt, Austria, June 1987, J. T. Ling and R. Warner, p.55.

Thus, this invention relates to the use of a mixture of cyan, yellow and magenta dyes for thermal dye transfer imaging to approximate a hue match of the black SWOP Color Reference. The mixtures of dyes described in this invention provide a closer hue match to the SWOP standard and better transfer density than the preferred dye mixtures of U.S. Patent 4,923,846.

In U.S. Patent No. 4,816,435, a combination of thermally transferrable dyes is disclosed for use in producing black images. The dye types disclosed are di- and tri-cyanovinylanilines (for the yellow and magenta respectively) and phenol-based indoaniline cyan dyes. There is a problem with using these dyes in dye-donors in that the storage stability is not as good as one would like it to be. It is an object of this invention to provide a black dye-donor with good storage stability.

In JP 01/136,787, a combination of thermally-transferrable dyes is disclosed for use in producing black images. Quinophthalone, dicyanovinyl aniline and azopyridone yellow dyes are described along with imidazolylazonianiline magenta and phenol-based indoaniline cyan dyes. Here again, there is a problem with using these dyes in dye-donors in that the storage stability is not as good as one would like it to be.

Accordingly, this invention relates to a black dye-donor element for thermal dye transfer comprising a support having thereon a dye layer comprising a mixture of cyan, yellow and magenta dyes dispersed in a polymeric binder, at least one of the cyan dyes having the formula:

\[
\begin{align*}
\text{I} & \quad \text{O} \quad \text{N} \quad \text{O} \\
& \quad \text{N} \quad \text{R}^1 \text{R}^2 \\
& \quad \text{R}^3 \\
\end{align*}
\]

wherein:

- \(\text{R}^1 \) and \(\text{R}^2 \) each independently represents hydrogen; an alkyl group having from 1 to 6 carbon atoms; a cycloalkyl group having from 5 to 7 carbon atoms; an aryl group having from 6 to 10 carbon atoms; or ketaly; or such alkyl, cycloalkyl, aryl or heteraryl groups substituted with one or more groups such as alky1, aryl, alkoxy, arilxoy, amino, halogen, nitro, cyano, thiocyanato, hydroxyl, acyloxyl, acyl, alkoxy carbonyl, aminocarbonyl, alkoxy carbonyl, carboxamido, acylamino, ureido, imido, alkylsulfonyl, arylsulfonyl, alkyssulfonamido, alkylthio, arythio, trifluoromethyl, etc., e.g., methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, methoxymethyl, benzyl, 2-methanesulfonyl, 2-methoxyethyl, 2-cyanoethyl, methoxy carbonylmethyl, cyclohexyl, cyclopentyl, phenyl, pyridyl, naphthyl, thieryl, pyrazolyl, p-tolyl, p-chlorophenyl, m-(N-methyl sulfamoyl)phenyl methyl, methy1thio, butythio, benzthio, methanesulfonyl, pentanesulfonyl, methoxy, ethoxy, 2-methanesulfonyl, 2-methoxyethyl, 2-cyanoethyl, methoxy carbonylmethyl, 2-naphthylmethyl, furyl, p-tolylsulfonyl, p-chlorophenyl, m-(N-methyl sulfamoyl)phenoxyl, ethoxy carbonyl, methoxethoxy carbonyl, arlyoxy carbonyl, acetyl, benzyl, N,N-dimethyl carbamoyl, dimethylaminomethyl, morpholino, anilino, pyridinido, etc., with the proviso that \(\text{R}^1 \) and \(\text{R}^2 \) cannot both be hydrogen at the same time;

- or \(\text{R}^1 \) and \(\text{R}^2 \) can be joined together to form, along with the nitrogen to which they are attached, a 5- to 7-membered heterocyclic ring such as morpholine or pyrrolidine;

- or either or both of \(\text{R}^1 \) and \(\text{R}^2 \) can be combined with one or two of \(\text{R}^3 \) to form a 5- to 7-membered heterocyclic ring;

- each \(\text{R}^3 \) independently represents hydrogen, substituted or unsubstituted alkyl, cycloalkyl, aryl or heteraryl as described above for \(\text{R}^1 \) and \(\text{R}^2 \); alkoxy, arilxoy, halogen, nitro, cyano, thiocyanato, hydroxyl, acyloxyl, acyl, alkoxy carbonyl, aminocarbonyl, alkoxy carbonyl, carboxamido, acylamino, ureido, imido, alkylsulfonyl, arylsulfonyl, alkyssulfonamido, alkylthio, arythio, trifluoromethyl;

- or any two of \(\text{R}^3 \) may be combined together to form a 5- or 6-membered carbocyclic or heterocyclic ring; or one or two of \(\text{R}^3 \) may be combined with either or both of \(\text{R}^1 \) and \(\text{R}^2 \) to complete a 5- to 7-membered ring;

- \(m \) is an integer of 0 to 4;

- \(\text{R}^1 \) and \(\text{R}^2 \) each independently represents hydrogen; a substituted or unsubstituted alkyl, aryl or heteraryl group as described above for \(\text{R}^1 \) and \(\text{R}^2 \); or an electron withdrawing group such as cyano, alkoxy carbonyl, aminocarbonyl, alkylsulfonyl, arylsulfonyl, acetyl, nitro, etc.; and

- \(\text{R}^6 \) represents hydrogen; a substituted or unsubstituted alkyl, aryl or heteraryl group as described above for \(\text{R}^1 \) and
R², NH₂, NHR¹, NR¹R², NHCOR¹, NH₂SO₂R¹ or OR¹; and at least one of the yellow dyes having the formula:

wherein:
R⁰ represents the same groups as R¹ above;
R⁰ and R¹⁰ each independently represents R⁸; cyano; acyloxy such as acetoxyl, phenacyloxy, etc.; alkoxy of 1 to 6 carbon atoms such as ethoxy, -propoxy, etc.; halogen such as fluorine, chlorine or bromine; or alkoxyacarbonyl such as methoxycarbonyl, butoxycarbonyl, etc.;
or any two of R⁰, R⁸ and R¹⁰ together represent the atoms necessary to complete a 5- to 7-membered ring;
R¹¹ represents the same groups as R⁰;
G represents a substituted or unsubstituted alkyl, cycloalkyl or allyl group as described above for R⁰, NR¹²R¹³ or OR¹⁴;
R¹² and R¹³ each independently represents hydrogen, acyl or R⁰, with the proviso that R¹² and R¹³ cannot both be hydrogen at the same time;
or R¹² and R¹³ together represent the atoms necessary to complete a 5- to 7-membered ring;
R¹⁴ represents the same groups as R¹ above;
X represents C(R¹⁹)(R¹⁹), S, O or NR¹⁸;
R¹⁹ and R¹⁰ each independently represents the same groups as R⁰;
or R¹⁹ and R¹⁰ together represent the atoms necessary to complete a 5- to 7-membered ring; and
Y represents the atoms necessary to complete a 5- or 6-membered ring which may be fused to another ring system;
and at least one of the magenta dyes having the formula:

wherein:
R¹⁵ represents hydrogen or a substituted or unsubstituted alkyl or allyl group of from 1 to 10 carbon atoms, such as those listed above for R¹;
Q is R¹⁵, an alkoxy group of from 1 to 4 carbon atoms or taken together with R¹⁶ represents the atoms which form a 5- or 6-membered heterocyclic ring;
R¹⁶ is a substituted or unsubstituted alkyl or allyl group of from 1 to 10 carbon atoms, such as those listed above for R¹, or can be combined with Q as described above;
R²⁰ is a substituted or unsubstituted alkyl group of from 1 to 10 carbon atoms such as those listed above for R¹, or a substituted or unsubstituted aryl group of from 6 to 10 carbon atoms, such as those listed above for R¹;
J is CO, CO₂, -SO₂ or CONR²¹;
R²¹ is a substituted or unsubstituted alkyl or alkyl group of from 1 to 10 carbon atoms, such as those listed above for R¹, or a substituted or unsubstituted aryl group of from 6 to 10 carbon atoms, such as those listed above for R¹; and
R²¹ is hydrogen or R²⁰.

In a preferred embodiment for compounds according to formula I employed in the invention, R¹ and R² are each ethyl. In another preferred embodiment, R³ is hydrogen or methyl. In yet another preferred embodiment, R⁴ is methyl or phenyl. In still another preferred embodiment, R⁵ is cyano. In yet another preferred embodiment, R⁶ is n-C₄H₉, NHCOCH₃, NH₄⁺ or phenyl.
Compounds included within the scope of formula I employed in the invention include the following:

<table>
<thead>
<tr>
<th>Compound</th>
<th>R³</th>
<th>R⁴</th>
<th>R⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>H</td>
<td>C₆H₅</td>
<td>n-C₄H₉</td>
</tr>
<tr>
<td>I-2</td>
<td>H</td>
<td>C₆H₅</td>
<td>NHCOC₄H₉-t</td>
</tr>
<tr>
<td>I-3</td>
<td>H</td>
<td>CH₃</td>
<td>n-C₄H₉</td>
</tr>
<tr>
<td>I-4</td>
<td>CH₃</td>
<td>CH₃</td>
<td>n-C₄H₉</td>
</tr>
<tr>
<td>I-5</td>
<td>H</td>
<td>CH₃</td>
<td>NHCOC₄H₉-t</td>
</tr>
<tr>
<td>I-6</td>
<td>CH₃</td>
<td>CH₃</td>
<td>NHCOC₄H₉-t</td>
</tr>
<tr>
<td>I-7</td>
<td>H</td>
<td>C₆H₅</td>
<td>NH₂</td>
</tr>
<tr>
<td>I-8</td>
<td>CH₃</td>
<td>C₆H₅</td>
<td>NH₂</td>
</tr>
<tr>
<td>I-9</td>
<td>H</td>
<td>CH₃</td>
<td>c-C₆H₁₁</td>
</tr>
<tr>
<td>I-10</td>
<td>H</td>
<td>CH₃</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>I-11</td>
<td>CH₃</td>
<td>C₆H₅</td>
<td>NHCOC₄H₉-t</td>
</tr>
<tr>
<td>I-12</td>
<td>CH₃</td>
<td>CH₃</td>
<td>c-C₆H₁₁</td>
</tr>
</tbody>
</table>

I-13
The above dyes may be prepared analogously to the methods described in DE 2,808,825 and JP 63/247,092. In another preferred embodiment of the invention, Y in the above structural formula II represents atoms to complete an indolylidene ring. In another preferred embodiment, G is N(CH$_2$)$_2$ or CH$_2$. In still another preferred embodiment, X is C(CH$_3$)$_2$ or O. In yet still another preferred embodiment, R8 is C$_2$H$_5$ or CH$_3$ and R11 is C$_6$H$_5$. In still another preferred embodiment, R9 and R10 are each hydrogen.

The compounds of formula II employed in the invention above may be prepared by any of the processes disclosed in U. S. Patent 4,757,046.

Compounds included within the scope of formula II employed in the invention include the following:
<table>
<thead>
<tr>
<th>Cmpd</th>
<th>X</th>
<th>G</th>
<th>R²</th>
<th>R⁰</th>
<th>R¹⁰</th>
<th>R¹¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-1</td>
<td>C(CH₃)₂</td>
<td>N(CH₃)₂</td>
<td>C₂H₅</td>
<td>H</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-2</td>
<td>C(CH₃)₂</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-3</td>
<td>S</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-4</td>
<td>S</td>
<td>N(CH₃)₂</td>
<td>C₂H₅</td>
<td>H</td>
<td>H</td>
<td>C₂H₅</td>
</tr>
<tr>
<td>II-5</td>
<td>O</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-6</td>
<td>C(CH₃)₃</td>
<td>NHOCOCH₃</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-7</td>
<td>C(CH₃)₂</td>
<td>OC₂H₅</td>
<td>C₃H₇</td>
<td>H</td>
<td>H</td>
<td>C₆H₄-4-CO₂CH₃</td>
</tr>
<tr>
<td>II-8</td>
<td>C(CH₃)₂</td>
<td>N(CH₃)₂</td>
<td>C₂H₄-Cl</td>
<td>H</td>
<td>CH₃</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-9</td>
<td>O</td>
<td>OC₂H₅</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-10</td>
<td>S</td>
<td>NHOCOCH₃</td>
<td>CH₃</td>
<td>OCH₃</td>
<td>H</td>
<td>CH₃</td>
</tr>
<tr>
<td>II-11</td>
<td>C(CH₃)₂</td>
<td>N(CH₃)₂</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-12</td>
<td>C(CH₃)₂</td>
<td>OCH₃</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-13</td>
<td>C(CH₃)₂</td>
<td>NHOCOCH₃</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-14</td>
<td>C(CH₃)₂</td>
<td>N(CH₃)₂</td>
<td>C₂H₅</td>
<td>CH₃</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-15</td>
<td>C(CH₃)₂</td>
<td>OC₂H₅-i</td>
<td>C₂H₅</td>
<td>CH₃</td>
<td>H</td>
<td>C₆H₄-3Cl</td>
</tr>
<tr>
<td>II-16</td>
<td>C(CH₃)₂</td>
<td>NHOCOCH₃</td>
<td>C₂H₅</td>
<td>CH₃</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-17</td>
<td>C(CH₃)₂</td>
<td>N(CH₃)₂</td>
<td>CH₃</td>
<td>CO₂CH₃</td>
<td>H</td>
<td>C₂H₅</td>
</tr>
<tr>
<td>II-18</td>
<td>C(CH₃)₂</td>
<td>N(CH₃)₂</td>
<td>CH₂CH₂OH</td>
<td>H</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-19</td>
<td>NCH₃</td>
<td>N(CH₃)₂</td>
<td>CH₃</td>
<td>OCH₃</td>
<td>CH₂CH₂OH</td>
<td></td>
</tr>
<tr>
<td>II-20</td>
<td>C(CH₃)₂</td>
<td>N(CH₃)₂</td>
<td>CH₂CONHCH₃</td>
<td>H</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>II-21</td>
<td>O</td>
<td>CH₃</td>
<td>C₂H₅</td>
<td>H</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
</tbody>
</table>

In a preferred embodiment for compounds according to formula III employed in the invention, R¹⁵ and R¹⁶ are each C₃H₇, Q is H, J is CO, R²⁰ is CH₃ and R¹⁷ is 3-CH₂CO₂C₂H₅. In another preferred embodiment of the invention, R¹⁵ and R¹⁶ are each C₃H₇, Q is H, J is CO, R²⁰ is CH₃ and R¹⁷ is CH₃CH=CH₂.

The compounds of formula III above employed in the invention may be prepared by any of the processes disclosed in U.S. Patent 4,097,475.

Magenta dyes included within the scope of formula III include the following:

![Magenta dye structure](image)
<table>
<thead>
<tr>
<th>Dye</th>
<th>R<sup>15</sup></th>
<th>R<sup>16</sup></th>
<th>Q</th>
<th>R<sup>17</sup></th>
<th>R<sup>20</sup></th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>III-1</td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>H</td>
<td>CH<sub>2</sub>CO<sub>2</sub>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>3</sub></td>
<td>CO</td>
</tr>
<tr>
<td>III-2</td>
<td>H</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>OCH<sub>3</sub></td>
<td>CH<sub>2</sub>CO<sub>2</sub>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>3</sub></td>
<td>CO</td>
</tr>
<tr>
<td>III-3</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>-C(H<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>H<sub>4</sub>(CH<sub>2</sub>H<sub>3</sub>)<sub>3</sub>-</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>III-4</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>H</td>
<td>CH<sub>2</sub>COCH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>CO</td>
</tr>
<tr>
<td>III-5</td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>H</td>
<td>CH<sub>2</sub>COCH<sub>3</sub></td>
<td>CH<sub>2</sub>H<sub>5</sub></td>
<td>CO</td>
</tr>
<tr>
<td>III-6</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>CH<sub>2</sub>COCH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>SO<sub>2</sub></td>
</tr>
<tr>
<td>III-7</td>
<td>H</td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>OCH<sub>3</sub></td>
<td>CH<sub>2</sub>COCH<sub>3</sub></td>
<td>CH<sub>2</sub>H<sub>5</sub></td>
<td>CO</td>
</tr>
<tr>
<td>III-8</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>H</td>
<td>CH<sub>2</sub>COCH<sub>3</sub></td>
<td>(CH<sub>3</sub>)<sub>3</sub>C</td>
<td>CO</td>
</tr>
<tr>
<td>III-9</td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>H</td>
<td>CH<sub>2</sub>CN</td>
<td>CH<sub>2</sub>H<sub>5</sub></td>
<td>SO<sub>2</sub></td>
</tr>
<tr>
<td>III-10</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>C<sub>8</sub>H<sub>13</sub></td>
<td>CH<sub>3</sub></td>
<td>CO</td>
</tr>
<tr>
<td>III-11</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>CH<sub>2</sub>COCH<sub>3</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td>CO</td>
</tr>
<tr>
<td>III-12</td>
<td>H</td>
<td>CH<sub>3</sub></td>
<td>OCH<sub>3</sub></td>
<td>CH<sub>2</sub>COCH<sub>3</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td>CO</td>
</tr>
<tr>
<td>III-13</td>
<td>C<sub>6</sub>H<sub>5</sub>(CH<sub>2</sub>)<sub>2</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>H</td>
<td>CH<sub>2</sub>COCH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>CO</td>
</tr>
<tr>
<td>III-14</td>
<td>H</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>OCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CO</td>
</tr>
<tr>
<td>III-15</td>
<td>CH<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>CH<sub>2</sub>CN</td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>CO</td>
</tr>
<tr>
<td>III-16</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>H</td>
<td>CH<sub>2</sub>COCH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>CON(CH<sub>3</sub>)</td>
</tr>
<tr>
<td>III-17</td>
<td>H</td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>O(CH<sub>2</sub>)<sub>2</sub>OCH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>CO</td>
</tr>
<tr>
<td>III-18</td>
<td>C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>H</td>
<td>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub></td>
<td>CH<sub>3</sub></td>
<td>CO<sub>2</sub></td>
</tr>
<tr>
<td>III-19</td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>H</td>
<td>-CH<sub>2</sub>CH=CH<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td>CO</td>
</tr>
</tbody>
</table>

The use of dye mixtures in the dye-donor element of the invention permits a wide selection of hue and color that enables a close hue match to a variety of printing inks and also permits easy transfer of images one or more times to a receiver if desired. The use of dyes also allows easy modification of image density to any desired level. The dyes of the dye-donor element of the invention may be used at a coverage of from about 0.05 to about 1 g/m².

The dyes in the dye-donor of the invention are dispersed in a polymeric binder such as a cellulose derivative, e.g., cellulose acetate hydrogen phthalate, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose triacetate or any of the materials described in U.S. Patent 4,700,207; a polycarbonate; polyvinyl acetate; poly(styrene-co-acrylonitrile); a poly(sulfone) or a poly(phenylene oxide). The binder may be used at a coverage of from about 0.1 to about 5 g/m².

The dye layer of the dye-donor element may be coated on the support or printed thereon by a printing technique such as a gravure process.

Any material can be used as the support for the dye-donor element of the invention provided it is dimensionally stable and can withstand the heat of the laser or thermal head. Such materials include polyesters such as poly(ethylene terephthalate); polyamides; polycarbonates; cellulose esters; fluorine polymers; polyethers; polycetals; polyolefins; and polyimides. The support generally has a thickness of from about 5 to about 200 μm. It may also be coated with a subbing layer, if desired, such as those materials described in U.S. Patents 4,695,288 or 4,737,486.

The reverse side of the dye-donor element may be coated with a slipping layer to prevent the printing head from sticking to the dye-donor element. Such a slipping layer would comprise either a solid or liquid lubricating material or mixtures thereof, with or without a polymeric binder or a surface active agent. Preferred lubricating materials include oils or semi-crystalline organic solids that melt below 100°C such as poly(vinyl stearate), beeswax, perfluorinated alkyl ester polyethers, poly(capro-lactone), silicone oil, poly(tetrafluoroethylene), carbowax, poly(ethylene glycol), or any of those materials disclosed in U.S. Patents 4,717,711; 4,717,712; 4,737,485; and 4,738,950. Suitable polymeric binders for the slipping layer include poly(vinyl alcohol-co-butyal), poly(vinyl alcohol-co-acetal), poly(styrene), poly(vinyl acetate), cellulose acetate butyrate, cellulose acetate propionate, cellulose acetate or ethyl cellulose.
The amount of the lubricating material to be used in the slipping layer depends largely on the type of lubricating material, but is generally in the range of about 0.01 to about 2 g/m². If a polymeric binder is employed, the lubricating material is present in the range of 0.1 to 50 weight %, preferably 0.5 to 40, of the polymeric binder employed.

The dye-receiving element that is used with the dye-donor element of the invention usually comprises a support having thereon a dye image-receiving layer. The support may be a transparent film such as a poly(ether sulfone), a polyimide, a cellulose ester such as cellulose acetate, a poly(vinyl alcohol-co-acetal) or a poly(ethylene terephthalate). The support for the dye-receiving element may also be reflective such as baryta-coated paper, polyethylene-coated paper, an ivory paper, a condenser paper or a synthetic paper such as duPont Tyvek®. Pigmented supports such as white polyester (transparent polyester with white pigment incorporated therein) may also be used.

The dye image-receiving layer may comprise, for example, a polycarbonate, a polyurethane, a polyester, polyvinyl chloride, poly(ethylene-co-acrylonitrile), poly(caprolactone), a poly(vinyl acetate) such as poly(vinyl alcohol-co-butyl), poly(vinyl alcohol-co-benzal), poly(vinyl alcohol-co-acetal) or mixtures thereof. The dye image-receiving layer may be present in any amount which is effective for the intended purpose. In general, good results have been obtained at a concentration of from about 1 to about 5 g/m².

As noted above, the dye-donor elements of the invention are used to form a dye transfer image. Such a process comprises imagewise-heating a dye-donor element as described above and transferring a dye image to a dye-receiving element to form the dye transfer image.

The dye-donor element of the invention may be used in sheet form or in a continuous roll or ribbon. If a continuous roll or ribbon is employed, it may have only the dye thereon as described above or may have alternating areas of other different dyes or combinations, such as sublimable cyan and/or yellow and/or black or other dyes. Such dyes are disclosed in U.S. Patent 4,541,830. Thus, one-, two-, three- or four-color elements (or higher numbers also) are included within the scope of the invention.

Thermal printing heads which can be used to transfer dye from the dye-donor elements of the invention are available commercially. There can be employed, for example, a Fujitsu Thermal Head (FTP-040 MCSO01), a TDK Thermal Head F415 HH7-1089 or a Rohm Thermal Head KE 2008-F3.

A laser may also be used to transfer dye from the dye-donor elements of the invention. When a laser is used, it is preferred to use a diode laser since it offers substantial advantages in terms of its small size, low cost, stability, reliability, ruggedness, and ease of modulation. In practice, before any laser can be used to heat a dye-donor element, the element must contain an infrared-absorbing material, such as carbon black, cyanine infrared absorbing dyes as described in U.S. Patent 4,973,572 or other materials as described in U.S. Patents 4,948,777, 4,950,640, 4,950,639, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776, 4,948,776. The laser radiation is then absorbed into the dye layer and converted to heat by a molecular process known as internal conversion. Thus, the construction of a useful dye layer will depend not only on the hue, transferability and intensity of the image dyes, but also on the ability of the dye layer to absorb the radiation and convert it to heat.

Lasers which can be used to transfer dye from dye-donors employed in the invention are available commercially. There can be employed, for example, Laser Model SDL-2420-H2 from Spectra Diode Labs, or Laser Model SLD 304 V/W from Sony Corp.

A thermal printer which uses the laser described above to form an image on a thermal print medium is described and claimed in European Patent Application 90 901 207.0 (EP-A-0445224)

Spacer beads may be employed in a separate layer over the dye layer of the dye-donor in the above-described laser process in order to separate the dye-donor from the dye-receiver during dye transfer, thereby increasing the uniformity and density of the transferred image. That invention is more fully described in U.S. Patent 4,772,582. Alternatively, the spacer beads may be employed in the receiving layer of the dye-receiver as described in U.S. Patent 4,876,235. The spacer beads may be coated with a polymeric binder if desired.

The use of an intermediate receiver with subsequent retransfer to a second receiving element may also be employed in the invention. A multitude of different substrates can be used to prepare the color proof (the second receiver) which is preferably the same substrate used for the printing press run. Thus, this one intermediate receiver can be optimized for efficient dye uptake without dye-smearing or crystallization.

Examples of substrates which may be used for the second receiving element (color proof) include the following: Flo Kote Cove® (S. D. Warren Co.), Champion Textweb® (Champion Paper Co.), Quintessence Gloss® (Putlatch Inc.), Vintage Gloss® (Putlatch Inc.), Chromal Kote® (Champion Paper Co.), Consolish Gloss® (Consolidated Papers Co.), Ad-Proof Paper® (Appleton Papers, Inc.) and Mountie Matte® (Putlatch Inc.).

As noted above, after the dye image is obtained on a first dye-receiving element, it is retransferred to a second dye image-receiving element. This can be accomplished, for example, by passing the two receivers between a pair of heated rollers. Other methods of retransferring the dye image could also be used such as using a heated platen, use of pressure and heat, external heating, etc.

Also as noted above, in making a color proof, a set of electrical signals is generated which is representative of the shape and color of an original image. This can be done, for example, by scanning an original image, filtering the image to separate it into the desired additive primary colors-red, blue and green, and then converting the light energy into
EP 0 532 010 B1

electrical energy. The electrical signals are then modified by computer to form the color separation data which is used to form a halftone color proof. Instead of scanning an original object to obtain the electrical signals, the signals may also be generated by computer. This process is described more fully in Graphic Arts Manual, Janet Field ed., Arno Press, New York 1980 (p. 358ff).

5 A thermal dye transfer assemblage of the invention comprises

a) a dye-donor element as described above, and
b) a dye-receiving element as described above, the dye-receiving element being in a superposed relationship with the dye-donor element so that the dye layer of the donor element is in contact with the dye image-receiving layer of the receiving element.

10 The above assemblage comprising these two elements may be preassembled as an integral unit when a monochrome image is to be obtained. This may be done by temporarily adhering the two elements together at their margins. After transfer, the dye-receiving element is then peeled apart to reveal the dye transfer image.

15 When a three-color image is to be obtained, the above assemblage is formed three times using different dye-donor elements. After the first dye is transferred, the elements are peeled apart. A second dye-donor element (or another area of the donor element with a different dye area) is then brought in register with the dye-receiving element and the process repeated. The third color is obtained in the same manner.

The following examples are provided to illustrate the invention.

Example 1

A black dye-donor element was prepared by coating on a 100 µm poly(ethylene terephthalate) support:

1) a subbing layer of poly(acrylonitrile-co-vinylidene chloride-co-acrylic acid) (0.054 g/m²) (14:79:wt. ratio); and
2) a dye layer containing a mixture of cyan dye I-3, yellow dye II-1 and magenta dye III-19 illustrated above, (total dye coverage of 0.65g/m²) and the cyanine infrared absorbing dye illustrated below (0.054 g/m²) in a cellulose acetate propionate binder (2.5% acetyl, 45% propionyl) (0.27 g/m²) coated from dichloromethane.

30 Other dye-donors according to the invention were prepared as above except using the dyes identified below in the Table and illustrated above. Comparison dye-donors using a mixture of cyan, yellow and magenta dyes of the prior art as identified below, at a total coverage of 0.65 g/m², were also prepared similar to the dye-donor described above.

Cyanine Infrared Absorbing Dye

40

An intermediate dye-receiving element was prepared by coating on an unsubbed 100 µm thick poly(ethylene terephthalate) support a layer of crosslinked poly(styrene-co-divinylbenzene) beads (14 µm average diameter) (0.11 g/m²), triethanolamine (0.09 g/m²) and DC-510® Silicone Fluid (Dow Corning Company) (0.01 g/m²) in a Butvar® 76 binder, a poly(vinyl alcohol-co-butyl), (Monsanto Company) (4.0 g/m²) from 1,1,2-trichloroethane or dichloromethane.

Single color images were printed as described below from dye-donors onto a receiver using a laser imaging device as described in U.S. Patent 4,876,235. The laser imaging device consisted of a single diode laser connected to a lens assembly mounted on a translation stage and focused onto the dye-donor layer.

The dye-receiving element was secured to the drum of the diode laser imaging device with the receiving layer facing out. The dye-donor element was secured in face-to-face contact with the receiving element.
The diode laser used was a Spectra Diode Labs No. SDL-2430-H2, having an integral, attached optical fiber for the output of the laser beam, with a wavelength of 816 nm and a nominal power output of 250 milliwatts at the end of the optical fiber. The cleaved face of the optical fiber (100 microns core diameter) was imaged onto the plane of the dye-donor with a 0.33 magnification lens assembly mounted on a translation stage giving a nominal spot size of 33 μm and a measured power output at the focal plane of 115 milliwatts.

The drum, 312 mm in circumference, was rotated at 500 rev/min and the imaging electronics were activated. The translation stage was incrementally advanced across the dye-donor by means of a lead screw turned by a microstepping motor, to give a center-to-center line distance of 14 μm (714 lines per centimeter, or 1800 lines per inch). For a continuous tone stepped image, the current supplied to the laser was modulated from full power to 16% power in 4% increments. Maximum transfer density can be increased at the expense of printing speed by slowing the drum rotation while keeping all other operating parameters constant.

After the laser had scanned approximately 12 mm, the laser exposing device was stopped and the intermediate receiver was separated from the dye donor. The intermediate receiver containing the stepped dye image was laminated to Ad-Proof Paper® (Appleton Papers, Inc.) 60 pound stock paper by passage through a pair of rubber rollers heated to 120°C. The polyethylene terephthalate support was then peeled away leaving the dye image and polyvinyl alcohol-co-butyl firmly adhered to the paper. The paper stock was chosen to represent the substrate used for a printed ink image obtained from a printing press.

The Status T density of each of the stepped images was read using an X-Rite® 418 Densitometer to find the single step image within 0.05 density unit of the SWOP Color Reference. For the black standard, this density was 1.6.

The a* and b* values of the selected step image of transferred dye-mixture was compared to that of the SWOP Color Reference by reading on an X-Rite® 918 Colorimeter set for D50 illuminant and a 10 degree observer. The L* reading was checked to see that it did not differ appreciably from the reference. The a* and b* readings were recorded and the distance from the SWOP Color Reference calculated as the square root of the sum of differences squared for a* and b*:

\[i.e. \sqrt{(a^*_{e} - a^*_{s})^2 + (b^*_{e} - b^*_{s})^2} \]

\[e = \text{experiment (transferred dye)} \]
\[s = \text{SWOP Color Reference} \]

In addition, the above dye-donors were evaluated for storage stability by comparing transmission spectra of the donor before and after incubation at 50°C/50% RH for 4 days.
The following results were obtained:

<table>
<thead>
<tr>
<th>Dyes (Weight Ratio)</th>
<th>a</th>
<th>b</th>
<th>Distance From Reference</th>
<th>Density @ 500 rpm</th>
<th>Storage Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWOP</td>
<td>1.5</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I-3/II-1/III-19 (28:24:8)</td>
<td>2.0</td>
<td>2.0</td>
<td>0.5</td>
<td>2.1</td>
<td>no change</td>
</tr>
<tr>
<td>I-3/II-1/III-1 (28:24:8)</td>
<td>1.5</td>
<td>3.0</td>
<td>1</td>
<td>2.3</td>
<td>no change</td>
</tr>
<tr>
<td>I-3/II-2/III-1 (28:30:2)</td>
<td>2.5</td>
<td>0</td>
<td>2</td>
<td>1.6</td>
<td>no change</td>
</tr>
<tr>
<td>Control 1(^a)</td>
<td>-1.2(^b)</td>
<td>-5.4(^b)</td>
<td>8.0</td>
<td>0.8</td>
<td>no change</td>
</tr>
<tr>
<td>Control 2(^c)</td>
<td>-2.4</td>
<td>-1.5</td>
<td>5.5</td>
<td>1.6</td>
<td>75% of cyan component decomposed; magenta dye sublimes from coating at room temperature</td>
</tr>
<tr>
<td>Control 3(^d)</td>
<td>-6.4</td>
<td>-2.1</td>
<td>9</td>
<td>1.7</td>
<td>30% of cyan component decomposed</td>
</tr>
</tbody>
</table>

\(^a\) Similar to Example C-17, Table C-17, from U.S. Patent 4,923,846, a mixture of Solvent Blue 36, Solvent Red 19 and Foron Brilliant Yellow S-6GL (structures below) in a ratio of 7:4:4.

\(^b\) In order to obtain sufficient density for colorimetric comparisons, the laser imaging device had to be slowed to 400 rev/min.

\(^c\) Similar to Example 1 of U.S. patent 4,186,435, a mixture of dyes C-1, C-3 and C-5 in a ratio of 3:2:12:5:15.5 ratio (structures below).

\(^d\) Similar to Example 3 of JP 01/136,787, a mixture of dyes C-6, C-4, C-2 and C-1 (structures below) in a 2:3:3:2 ratio.
CYAN CONTROL DYES

SOLVENT BLUE 36

\[
\begin{align*}
\text{(C}_2\text{H}_5\text{)}_2\text{N} & - \text{N} & - \text{N} & - \text{C} & - \text{O} \\
\text{N} & - \text{HCOCH}_3 & & & \\
\end{align*}
\]

C-1

\[
\begin{align*}
\text{(C}_2\text{H}_5\text{)}_2\text{N} & - \text{N} & - \text{N} & - \text{C} & - \text{O} \\
\text{CH}_3 & - & \text{Cl} & & \\
\text{N} & - \text{HCOCH}_3 & & & \\
\end{align*}
\]

C-2

MAGENTA CONTROL DYES

\[
\begin{align*}
\text{(C}_3\text{H}_7\text{)}_2\text{N} & - \text{C} & - \text{C} & & \\
\text{CN} & - & \text{CN} & & \\
\end{align*}
\]

C-3
SOLVENT RED 19 (SUDAN RED 7B)

\[
\text{C-4}
\]

YELLOW CONTROL DYES

\[
\text{FORON YELLOW S-6GL}
\]

C-5
The data in the Table show that the dye combination of the invention provides high transfer density, neutral black hue very close to the SWOP Color Reference and excellent donor storage stability. The dyes of the prior art are further away from the SWOP Color Reference. In addition, the dyes disclosed in US 4,923,846 are not capable of yielding high transfer density while the dyes of US 4,186,435 and JP01-136787 exhibit very poor storage stability.

Claims

1. A black dye-donor element for thermal dye transfer comprising a support having thereon a dye layer comprising a mixture of at least one cyan, magenta and yellow dyes dispersed in a polymeric binder, characterized in that at least one of the cyan dyes has the formula:

wherein:

R¹ and R² each independently represents hydrogen; a substituted or unsubstituted alkyl group having from 1 to 6 carbon atoms; a substituted or unsubstituted cycloalkyl group having from 5 to 7 carbon atoms; a substituted or unsubstituted alky group; a substituted or unsubstituted aryl group having from 6 to 10 carbon atoms; or a substituted or unsubstituted heteraryl group; with the proviso that R¹ and R² cannot both be hydrogen at the same time;

or R¹ and R² can be joined together to form, along with the nitrogen to which they are attached, a 5- to 7-membered heterocyclic ring;

or either or both of R¹ and R² can be combined with one or two of R³ to form a 5- to 7-membered heterocyclic ring;

each R³ independently represents hydrogen, substituted or unsubstituted alkyl, cycloalkyl, alky, ary or hetaryl as described above for R¹ and R²; alkoxy; aryloxy; halogen; nitro; cyano; thiocyan; hydroxy; acyloxy; acyl; alkoxycarboxyl; aminocarboxyl; alkoxyacarboxyloxy; carbamoyloxy; acylamido; ureido; imido; alkylsulfonyl; arylsulfonyl; alkysulfonamido; arylsulfonamido; alkylthio; arylthio or trifluoromethyl;

or any two of R³ may be combined together to form a 5- or 6-membered carbocyclic or heterocyclic ring; or one or two of R³ may be combined with either or both of R¹ and R² to complete a 5- to 7-membered ring;

m is an integer of from 0 to 4;

R⁴ and R⁵ each independently represents hydrogen; a substituted or unsubstituted alkyl, ary or hetaryl group as described above for R¹ and R²; or an electron withdrawing group;

R⁶ represents hydrogen; a substituted or unsubstituted alkyl, ary or hetaryl group as described above for R¹
and R^2; NH$_2$, NHR, NR^1R^2, NHCO$_R$, NH$_2$O$_2$R or OR; and at least one of the yellow dyes having the formula:

$$\text{II}$$

wherein:

- R^8 represents the same groups as R^1 above;
- R^8 and R^{10} each independently represents R^9, cyano; acyloxy, alkoxy of 1 to 6 carbon atoms; halogen; or alkoxy-carbonyl;
- or any two of R^9, R^8 and R^{10} together represent the atoms necessary to complete a 5- to 7-membered ring;
- R^{11} represents the same groups as R^8;
- G represents a substituted or unsubstituted alkyl, cycloalkyl or aryl group as described above for R^9, NR$_{12}$R$_{13}$ or OR$_{14}$;
- R^{12} and R^{13} each independently represents hydrogen, acyl or R^9, with the proviso that R^{12} and R^{13} cannot both be hydrogen at the same time;
- or R^{12} and R^{13} together represent the atoms necessary to complete a 5- to 7-membered ring;
- R^{14} represents the same groups as R^1 above;
- X represents C(R$_{16}$)(R$_{19}$), S, O or NR$_{18}$;
- R^{16} and R^{19} each independently represents the same groups as R^9;
- or R^{16} and R^{19} together represent the atoms necessary to complete a 5- to 7-membered ring; and
- Y represents the atoms necessary to complete a 5- or 6-membered ring which may be fused to another ring system; and at least one of the magenta dyes having the formula:

$$\text{III}$$

wherein:

- R^{15} represents hydrogen or a substituted or unsubstituted alkyl or aryl group of from 1 to 10 carbon atoms;
- Q is R^{15}, an alkoxy group of from 1 to 4 carbon atoms or taken together with R^{16} represents the atoms which form a 5- or 6-membered heterocyclic ring;
- R^{16} is a substituted or unsubstituted alkyl or aryl group of from 1 to 10 carbon atoms, or can be combined with Q as described above;
- R^{20} is a substituted or unsubstituted alkyl group of from 1 to 10 carbon atoms or a substituted or unsubstituted aryl group of from 6 to 10 carbon atoms;
- J is CO, CO$_2$, SO$_2$- or CONR$_{21}$;
- R^{17} is a substituted or unsubstituted alkyl or aryl group of from 1 to 10 carbon atoms or a substituted or unsubstituted aryl group of from 6 to 10 carbon atoms; and
- R^{21} is hydrogen or R^{20}.

2. The element of Claim 1 characterized in that R^1 and R^2 are each ethyl; R^3 is hydrogen or methyl; R^4 is methyl or phenyl; R^5 is cyan; and R^6 is n-C$_4$H$_9$, NHCON$_2$C$_6$H$_4$-t, NH$_2$, c-C$_6$H$_4$- or phenyl.

3. The element of Claim 1 characterized in that G is N(CH$_3$)$_2$ or CH$_3$.

4. The element of Claim 1 characterized in that X is C(CH$_3$)$_2$ or O.
5. The element of Claim 1 characterized in that R⁰ is C₂H₅ or CH₃ and R¹¹ is C₆H₅.

6. The element of Claim 1 characterized in that R⁰ and R¹⁰ are each hydrogen.

7. The element of Claim 1 characterized in that R¹⁵ and R¹⁶ are each C₃H₇, Q is H, J is CO, R²⁰ is CH₃ and R¹⁷ is 3-CH₂CO₂C₂H₅; or R¹⁵ and R¹⁶ are each C₃H₇, Q is H, J is CO, R²⁰ is CH₃ and R¹⁷ is CH₂CH=CH₂.

8. A process of forming a dye transfer image comprising imagewise-heating a black dye-donor element according to claim 1.

9. A thermal dye transfer assemblage comprising:

 a) a black dye-donor element according to claim 1, and
 b) a dye-receiving element comprising a support having thereon a dye image-receiving layer, said dye-receiving element being in a superposed relationship with said black dye-donor element so that said dye layer is in contact with said dye image-receiving layer.

Patentansprüche

1. Schwarzes Farbstoff-Donorelement für die thermische Farbstoffübertragung mit einem Träger, auf dem sich eine Farbstoffschicht befindet, mit einer Mischung aus mindestens einem blaugrünen, purpurroten und gelben Farbstoff, die in einem polymeren Bindemittel dispergiert sind, dadurch gekennzeichnet, daß mindestens einer der blaugrünen Farbstoffe die Formel hat:

 ![Chemical Structure]

 worin bedeuten:
 R¹ und R² jeweils unabhängig voneinander Wasserstoff; eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 6 Kohlenstoffatomen; eine substituierte oder unsubstituierte Cycloalkylgruppe mit 5 bis 7 Kohlenstoffatomen; eine substituierte oder unsubstituierte Allylgruppe; eine substituierte oder unsubstituierte Arylgruppe mit 6 bis 10 Kohlenstoffatomen; oder eine substituierte oder unsubstituierte Hetarylgruppe; wobei gilt, daß R¹ und R² nicht beide gleichzeitig für ein Wasserstoffatom stehen können;
 oder R¹ und R² sind miteinander verbunden, und bilden gemeinsam mit dem Stickstoff, an dem sie gebunden sind, einen 5- bis 7-gliedrigen heterocyclischen Ring;
 oder einer oder beide der Reste R¹ und R² können mit einem oder zwei der Reste R³ kombiniert sein, unter Bildung eines 5- bis 7-gliedrigen heterocyclischen Ringes;
 R³ jeweils unabhängig voneinander Wasserstoff, substituiertes oder unsubstituiertes Alkyl, Cycloalkyl, Alkyl, Aryl oder Hetaryl, wie oben für R¹ und R² angegeben; Alkoxyl; Aryloxy; Halogen; Nitro; Cyano; Thiocyanato; Hydroxy; Acyloxy; Acyl; Alkoxy carbonyl; Aminocarbonyl; Alkoxy carbonyloxy; Carbamoyloxy; Acylamido; Ureido; Imido; Alkylsulfonyl; Arylsulfonyl; Alkylsulfonamido; Arylsulfonamido; Alkylthio; Arylthio oder Trifluoromethyl; oder beliebige zwei der Reste R³ können miteinander kombiniert sein unter Bildung eines 5- oder 6-gliedrigen carbocyclischen oder heterocyclischen Ringes; oder einer oder zwei der Reste R³ können mit einem oder beiden der Reste R¹ und R² kombiniert sein, unter Vervollständigung eines 5- bis 7-gliedrigen Ringes; m eine Zahl von 0 bis 4;
 R⁴ und R⁵ jeweils unabhängig voneinander Wasserstoff; eine substituierte oder unsubstituierte Alkyl-, Aryl- oder Hetarylgruppe, wie oben für R¹ und R² angegeben; oder eine elektronenabziehende Gruppe;
 R⁶ Wasserstoff; eine substituierte oder unsubstituierte Alkyl-, Aryl- oder Hetarylgruppe, wie oben für R¹ und R² angegeben; -NH₂, -NHR¹, -NR²R³, -NHCO₂R¹, -NHSO₂R¹ oder -OR¹; und daß mindestens einer der gelben Farbstoffe die folgende Formel hat:
worin bedeuten:
R^8 steht für die gleichen Gruppen wie oben für R^1 angegeben;
R^8 und R^10 stehen jeweils für einen der für R^8 angegebenen Reste; Cyano; Acyloxy; Alkoxy mit 1 bis 6 Kohlenstoffatomen; Halogen; oder Alkoxyacarbonyl;
oder beliebige zwei der Reste R^8, R^9 und R^10 stehen zusammen für die Atome, die zur Vervollständigung eines 5- bis 7-gliedrigen Ringes erforderlich sind;
R^11 steht für die gleichen Gruppen wie für R^8 angegeben;
G steht für eine substituierte oder unsubstituierte Alkyl-, Cycloalkyl- oder Allylgruppe, wie oben für R^8 angegeben, -NR^12R^13 oder -OR^14;
R^12 und R^13 stehen unabhängig voneinander für Wasserstoff, Acyl oder R^8, wobei gilt, daß R^12 und R^13 nicht beide zu gleicher Zeit für Wasserstoff stehen können;
oder R^12 und R^13 stehen zusammen für die Atome, die zur Vervollständigung eines 5- bis 7-gliedrigen Ringes erforderlich sind;
R^14 steht für die gleichen Gruppen wie R^1 oben;
X steht für -C(R^18)(R^19), S, O oder -NR^18;
R^18 und R^19 jeweils unabhängig voneinander für Gruppen, wie für R^8 angegeben;
or R^18 und R^19 stehen zusammen für die Atome, die zur Vervollständigung eines 5- bis 7-gliedrigen Ringes erforderlich sind; und
Y steht für die Atome, die zur Vervollständigung eines 5- oder 6-gliedrigen Ringes erforderlich sind, der an einem anderen Ringsystem an kondensiert sein kann;
und daß mindestens einer der purpurroten Farbstoffe der folgenden Formel entspricht:

worin bedeuten:
R^15 Wasserstoff oder eine substituierte oder unsubstituierte Alkyl- oder Allylgruppe mit 1 bis 10 Kohlenstoffatomen;
Q ist einer der für R^15 angegebenen Reste, eine Alkoxygruppe mit 1 bis 4 Kohlenstoffatomen oder steht zusammen mit R^16 für die Atome, die zur Vervollständigung eines 5- oder 6-gliedrigen heterocyclischen Ringes erforderlich sind;
R^16 eine substituierte oder unsubstituierte Alkyl- oder Allylgruppe mit 1 bis 10 Kohlenstoffatomen oder R^16 kann mit Q kombiniert sein, wie oben beschrieben;
R^20 eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 10 Kohlenstoffatomen oder eine substituierte oder unsubstituierte Arylgruppe mit 6 bis 10 Kohlenstoffatomen;
J gleich -CO-, -CO_2-, -SO_2- oder -CONR^{21};
R^{17} eine substituierte oder unsubstituierte Alkyl- oder Allylgruppe mit 1 bis 10 Kohlenstoffatomen oder eine substituierte oder unsubstituierte Arylgruppe mit 6 bis 10 Kohlenstoffatomen; und
R^{21} Wasserstoff oder einer der für R^{20} angegebenen Reste.
2. Element nach Anspruch 1, dadurch gekennzeichnet, daß R¹ und R² jeweils für Ethyl stehen; R³ für Wasserstoff oder Methyl steht; R⁴ für Methyl oder Phenyl steht; R⁵ für Cyano steht; und R⁶ steht für -n-C₄H₉ oder Phenyl.

3. Element nach Anspruch 1, dadurch gekennzeichnet, daß G steht für -n(CH₃)₂ oder -CH₃.

4. Element nach Anspruch 1, dadurch gekennzeichnet, daß X steht für -C(CH₃)₂ oder O.

5. Element nach Anspruch 1, dadurch gekennzeichnet, daß R⁶ steht für -C₂H₅ oder -CH₃ und R¹¹ steht für -C₆H₅.

7. Element nach Anspruch 1, dadurch gekennzeichnet, daß R¹⁵ und R¹⁶ jeweils stehen für -C₃H₇, Q steht für H, J steht für -CO₂-, R²⁰ steht für -CH₃ und R¹⁷ steht für -3-CH₂CO₂C₆H₅; oder R¹⁵ und R¹⁶ stehen beide für -C₃H₇, Q steht für H, J steht für -CO₂-, R²⁰ steht für -CH₃ und R¹⁷ steht für -CH₂CH=CH₂.

8. Verfahren zur Herstellung eines Farbstoffübertragungsbildes, bei dem man ein schwarzes Farbstoff-Donorelement gemäß Anspruch 1 bildweise erhitzt.

9. Zusammenstellung für die thermische Farbstoffübertragung mit:

 a) einem schwarzen Farbstoff-Donorelement gemäß Anspruch 1 und

 b) einem Farbstoff-Empfangselement mit einem Träger, auf dem sich eine Farbbild-Empfangsschicht befindet, wobei das Farbstoff-Empfangselement in übergeordneter Beziehung zu dem schwarzen Farbstoff-Donorelement angeordnet ist, derart, daß die Farbstoffsicht sich in Kontakt mit der Farbbild-Empfangsschicht befindet.

Revisions

1. Elément donneur de colorant noir pour transfert thermique, comprenant un support recouvert d'une couche de colorant comprenant un mélange contenant au moins un colorant cyan, un colorant magenta et un colorant jaune, dispersé dans un liant polymère, caractérisé en ce qu'au moins un des colorants cyan a la formule suivante:

![Chemical Structure]

où :

- R¹ et R² représentent chacun séparément l'hydrogène; un groupe alkyle substitué ou non, ayant 1 à 6 atomes de carbone; un groupe cycloalkyle substitué ou non, ayant 5 à 7 atomes de carbone; ou un groupe alyle substitué ou non; un groupe aryyle substitué ou non, ayant 6 à 10 atomes de carbone; ou un groupe hétérylque substitué ou non; à condition que R¹ et R² ne puissent pas être en même temps l'hydrogène;

- ou R¹ et R² peuvent être liés ensemble pour former, conjointement à l'azote auquel ils sont liés, un hétérocycle à 5 ou 7 membres;

- ou R¹ ou R², ou les deux à la fois, peuvent être combinés avec un ou deux groupes R³ pour former un hétérocycle à 5 ou 7 membres;

- chaque R³ représente séparément l'hydrogène, un alkyle substitué ou non, un cycloalkyle substitué ou non, ou un allyle substitué ou non, un aryle substitué ou non ou un hétérylque substitué ou non, comme décrit ci-dessus pour R¹ et R², alkoxy, aryloxy, halogène; nitro; cyano; thiocyanate; hydroxy; acyloxy; acyle; alkoxybenzyol; aminocarboxylique; alkoxycarboxylique; carbamoyloxy; acylamido, uréido, imido; alkylsulfonyle, arylysulfonyle, alkylsulfonamido, arylysulfonamido; alkylthio; arylythio, ou trifluorométhyle;

- ou deux groupes quelconques parmi les groupes R³ peuvent être combinés ensemble pour former un composé carbocyclique ou un hétérocycle à 5 ou 6 membres; ou un ou deux groupes parmi les groupes R³ peuvent être combinés avec R¹, ou avec R², ou avec les deux à fois, pour compléter un composé cycloïdal à 5 ou 7 membres.
m est un nombre entier compris entre 0 et 4 ;
R⁴ et R⁵ représentent chacun séparément l'hydrogène ; un groupe alkyle, aryle, ou hétéryle substitué ou non, tel que décrit plus haut pour R⁶ et R⁷ ; ou un groupe qui attire les électrons ;
R⁸ représente l'hydrogène ; un groupe alkyle, aryle ou hétéryle substitué ou non, tel que décrit plus haut pour R⁰ et R⁹ ; NH₂ ; NH⁻R¹, NR¹R², NHCOR¹, NH₂SO₂R¹ ou OR¹ ;
et au moins un des colorants jaunes à la formule :

![Image I](image1)

ou

R⁸ représente le même groupe que le groupe R⁰ ci-dessus ;
R⁶ et R⁷ représentent chacun séparément R⁸ ; cyano ; acyloxy ; alkoxy ayant 1 à 6 atomes de carbone ; halogène ; ou alkoxy-carbonyle ; ou deux groupes quelconques parmi R⁶, R⁸ et R⁷ qui représentent ensemble les atomes nécessaires pour compléter un composé cyclique à 5 ou 7 membres ; R¹¹ représente les mêmes groupes que R⁶ ;
G représente un groupe alkyle, cycloalkyle ou allyle substitué ou non, tel que décrit plus haut pour R⁶, NR¹²R¹³ ou OR¹⁴ ;
R¹² et R¹³ représentent chacun séparément l'hydrogène, un groupe acyle ou R⁶, à condition que R¹² et R¹³ ne puissent pas être simultanément l'hydrogène ;
or R¹² et R¹³ représentent ensemble les atomes nécessaires pour compléter un composé cyclique à 5 ou 7 membres ;
R¹⁴ représente les mêmes groupes que R⁴ ci-dessus ; X représente C(R¹⁸)(R¹⁹), S, O, ou NR¹⁸ ;
R¹⁶ et R¹⁷ représentent chacun séparément les mêmes groupes que R⁸ ;
or R¹⁶ et R¹⁷ représentent ensemble les atomes nécessaires pour compléter un composé cyclique à 5 ou 7 membres ; et
Y représente les atomes nécessaires pour compléter un composé cyclique à 5 ou 6 membres qui peut être fusionné avec un autre système cyclique ;
et au moins un des colorants magenta à la formule suivante :

![Image III](image2)

ou :
R¹⁵ représente l'hydrogène ou un groupe alkyle ou allyle substitué ou non, ayant 1 à 10 atomes de carbone ;
Q est R¹⁵, un groupe alkoxy ayant 1 à 4 atomes de carbone ou représente les atomes qui, lorsqu'ils sont pris ensemble avec R¹⁶, forment un hétérocyle à 5 ou 6 membres ;
R¹⁶ est un groupe alkyle ou allyle substitué ou non, ayant 1 à 10 atomes de carbone, ou il peut être combiné avec Q comme décrit ci-dessus ;
R²⁰ est un groupe alkyle substitué ou non, ayant 1 à 10 atomes de carbone, ou un groupe aryle substitué ou non, ayant 6 à 10 atomes de carbone ;
J est CO, CO₂, SO₂ ou CONR²¹ ;
R¹⁷ est un groupe alkyle ou allyle substitué ou non, ayant 1 à 10 atomes de carbone, ou un groupe aryle substitué ou non, ayant 6 à 10 atomes de carbone ; et
R²¹ est l'hydrogène ou R²⁰.
2. Élément selon la revendication 1, caractérisé en ce que R₁ et R₂ sont chacun un groupe éthyle ; R₃ est l'hydrogène ou un groupe méthyle ; R₄ est méthyle ou phényle ; R₅ est cyano ; et R₆ est n-C₄H₉, NHOC₄H₉-t, NH₂, c-C₆H₁₁, ou phényle.

5. Élément selon la revendication 1, caractérisé en ce que G est N(CH₃)₂ ou CH₃.

4. Élément selon la revendication 1, caractérisé en ce que X est C(CH₃)₂ ou O.

5. Élément selon la revendication 1, caractérisé en ce que R₈ est C₂H₅ ou CH₃ et R¹¹ est C₆H₅.

6. Élément selon la revendication 1, caractérisé en ce que R¹⁰ et R¹⁰ sont chacun l'hydrogène.

7. Élément selon la revendication 1, caractérisé en ce que R¹⁵ et R¹⁶ sont chacun C₃H₇, Q est H, J est CO, R²₀ est CH₃ et R¹⁷ est 3-CH₂CO₂C₂H₅ ; ou R¹⁵ et R¹⁶ sont chacun C₃H₇, Q est H, J est CO, R²₀ est CH₃ et R¹⁷ est CH₂CH=CH₂.

8. Procédé de formation d'une image par transfert de colorant, comprenant le réchauffement d'un élément donneur de colorant noir pour former une image, conformément à la revendication 1.

9. Assemblage pour transfert thermique de colorant, comprenant :

 a) un élément donneur de colorant noir, selon la revendication 1, et
 b) un élément récepteur de colorant, comprenant un support recouvert d'une couche réceptrice d'image de colorant, ledit élément récepteur de colorant étant dans une relation superposée avec ledit élément donneur de colorant noir, de manière à ce que ladite couche de colorant soit en contact avec ladite couche réceptrice d'image de colorant.