NEW EUROPEAN PATENT SPECIFICATION

(54) Process for the preparation of a bridged metallocene compound as well as a catalyst component and a process for the polymerization of olefins

Verfahren zur Herstellung einer verbrückten Metallocenverbindung und einer Katalysatorkomponente sowie Verfahren für die Polymerisation von Olefinen

Procédé de préparation d’un composé métallocène ponté et d’un composant de catalyseur ainsi qu’un procédé de polymérisation des oléfines

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI NL PT SE

(30) Priority:
06.09.1991 NL 9101502

(43) Date of publication of application:
10.03.1993 Bulletin 1993/10

(73) Proprietor:
DSM N.V.
6411 TE Heerlen (NL)

(72) Inventor:
Van Beek, Johannus Antonius Maria
NL-6211 NB Maastricht (NL)

(56) References cited:
EP-A- 0 351 392
EP-A- 0 427 697
EP-A- 0 528 287

- J.C. Gallucci et al., Organometallics 1987, 6, 15-19
- J.M. Mantiguez et al., J. Am. Chem. Soc. 1978, 3078-3083
- H.D. Klotz et al., Zeitsch. f. Naturforschung 1968, 23a, 1690-1691
Description

[0001] The invention relates to a process for the preparation of a bridged metalloocene compound in which:

(I) a bridged double ligand, reacting with a proton acceptor, is converted into a bridged double anion
(II) the double anion is converted into the bridged metalloocene compound through a reaction with a compound of a group 4b, 5b or 6b metal from the Periodic System of Elements.

[0003] The invention further relates to a catalyst component for the polymerization of olefins and a process for the polymerization of olefins and a polyolefin.

[0004] A process for the preparation of a bridged metalloocene compound is known from EP-A-0351392, which discloses the preparation of a bridged dicyclopentadienyl metalloocene compound of the general formula:

\[R^*(\text{CpR}_n)(\text{CpR'}_m)\text{MeQ}_k \]

in which the symbols have the following meanings:

- \(\text{Cp} \) cyclopentadienyl ring or substituted cyclopentadienyl ring
- \(\text{R}_n \) hydrocarbon radical with 1-20 C atoms
- \(\text{R'}_m \) hydrocarbon radical with 1-20 C atoms
- \(R^* \) structural bridge between the Cp rings
- \(\text{Me} \) group 4b, 5b or 6b metal from the Periodic System of Elements
- \(\text{Q} \) hydrocarbon radical with 1-20 C atoms or halogen

\(k, m \) and \(n \) are integers, with \(k \leq 3, 0 \leq n \leq 4 \) and \(1 \leq m \leq 4 \).

[0005] The metalloocene compound isopropyl(9-fluorenyl)(1-cyclopentadienyl) zirconium dichloride is obtained in a yield of 42% in reaction (II). The method is described on page 6 of EP-A-0351392 (method B), where 5.5 g of metalloocene compound, with a molecular weight of 519.5 g/mol, is prepared from 0.025 mol of bridged double anion. This yield is on the high side of the yields customarily found for the preparation of bridged metalloocene compounds, but still is low and therefore disadvantageous for the process economy. Moreover, the metalloocene compounds prepared according to EP-A-0351392 have a low stability. They decompose easily as a solid or dissolved in a solvent and as a result their activity as a catalyst component decreases. In view of this, the metalloocene compounds according to EP-A-0351392 are purified in an additional step or stored in dry, oxygen-free argon.

[0006] The object of the invention is to provide a simple process for the preparation of a bridged metalloocene compound with improved yield.

[0007] According to the invention this is accomplished in that reaction (II) is carried out in a liquid dispersant which:

a) comprises one or more weak Lewis bases, the conjugated acid of which has a dissociation constant \(pK_a \) for which the following holds:

\[pK_a \leq -2.5, \]

1,2-dimethoxy ethane and toluene being excluded.

b) contains at most 1 mole equivalent, relevant to the metal compound, of strong Lewis base, the conjugated acid of which has a \(pK_a \) that is higher than -2.5 and under such conditions that the double anion and the compound of a group 4b, 5b or 6b metal from the Periodic System of Elements form a suspension in the Liquid dispersant. The \(pK_a \) values are based on D.D. Perrin: Dissociation Constants of Organic Bases in Aqueous Solution, International Union of Pure and Applied Chemistry, Butterworths, London 1965. The values were determined in an aqueous \(\text{H}_2\text{SO}_4 \) solution.

[0008] Surprisingly, according to the invention high yields are achieved in the preparation of metalloocene compounds and the resulting compounds prove to have a much higher stability than the known metalloocene compounds.

The advantage of bridged metallocene compounds as described in EP-A-0351392 is that they have a rigid structure. When they are used as catalyst component, this structure makes it possible to prepare polymers having a certain stereo configuration, for instance almost completely isotactic or syndiotactic polypropylene.

The synthesis of bridged metallocene compounds is disclosed inter alia in EP-A-0316155, WO-A-90/07526 and JP-A-90/173104. In the examples of these publications reaction (II) takes place in the presence of tetrahydrofuran, which is a strong Lewis base having a pKₐ of -2.08. When tetrahydrofuran is used as solvent the yields are low.

EP-A-0320762 does disclose the use of a weak Lewis base as liquid dispersant; however, more than 1 mole equivalent of strong Lewis base is present since use is made of zirconium tetrachloride complexed with 2 mole equivalents of tetrahydrofuran. The yield of the dimethylsilyl bis(1-indenyl) zirconium dichloride compound is only 22%.

In addition, EP-A-0351392 discloses the use of dichloromethane, but this is a non-coordinating solvent. There is no indication of the existence of the conjugated acid of dichloromethane. The pKₐ of the conjugated acid of dichloromethane is mentioned neither in Perrin, nor in Beilstein’s ‘Handbuch der organischen Chemie’, 4th ed., Springer, Berlin (1956). Dichloromethane cannot be regarded as a weak base according to the invention. Moreover, the dichloromethane may react with the organolithium compound. The yield is 42% at most. Although EP-A-0490256 and EP-A-0524624 both disclose the use of one specific liquid dispersant for reaction (II) the general teaching of applying weak Lewis bases of which the coordinated acid has a pKₐ ≤ -2.5 is neither taught nor suggested in the description of both patent applications. According to the invention yields higher than 60% are obtained.

A disadvantage of the bridged metallocene compounds is that synthesis using the known techniques is difficult and the synthesis yields are low. Furthermore, the bridged metallocene compounds obtained as reaction product have a low stability.

Polymerization of olefins with metallocene compounds is generally effected in the presence of an aromatic dispersant; in all examples of the above-mentioned literature toluene is used as solvent. However, in view of the cost price and for safety considerations it will generally not be considered desirable to use such dispersants in technical-scale production. For technical-scale polymerizations the cheaper aliphatic hydrocarbons, or mixtures thereof, as marketed by the petrochemical industry, are preferably used. Thus, fractionated hexane or gasoline, for instance, is a customary reaction medium in olefin polymerizations. Although many of the above-mentioned patent publications mention the possibility of polymerization in gasoline, in the examples the polymerization is effected only in toluene.

The process according to the invention is suitable for the preparation of bridged metallocene compounds of the following formula:

\[R^{*}(\text{CpR}_n)(\text{CpR}'_m)\text{Me}(\text{Q})_p \]

in which the symbols have the following meanings:

- \(\text{CpR}_n \) cyclopentadienyl, indenyl or fluorenyl group, whether or not substituted with one or more alkyl, phosphine, amine, alkyl ether or aryl ether groups
- \(\text{CpR}'_m \) cyclopentadienyl, indenyl or fluorenyl group, whether or not substituted with one or more alkyl, phosphine, amine, alkyl ether or aryl ether groups
- \(\text{R}^* \) structural bridge between the \(\text{Cp} \) rings
- \(\text{Me} \) group 4b, 5b or 6b metal from the Periodic System of Elements
- \(\text{Q} \) alkyl-, aryl-, aryl alkyl-, alkyl aryl-, amide-, alkoxy-, halogenide-, sulphide-, hydride- or phosphorus-containing group; the groups \(\text{Q} \) may be the same or different.

\(m, n \) and \(p \) are integers, with \(0 ≤ n ≤ 4 \), \(1 ≤ m ≤ 4 \) and \(1 ≤ p ≤ 4 \).

Examples of the bridged metallocene compounds according to the invention are:

dimethylsilyl bis(1-indenyl) zirconium dibromide
dimethylsilyl bis(1-indenyl) zirconium diethyl
dimethylsilyl bis(1-indenyl) zirconium dimethoxide
dimethylsilyl bis(1-indenyl) zirconium dihydride
dimethylsilyl bis(1-indenyl) zirconium chloride bromide
dimethylsilyl bis(1-indenyl) zirconium chloride methoxide
dimethylsilyl bis(1-indenyl) zirconium chloride methyl
dimethylsilyl bis(1-indenyl) zirconium chloride hydride
dimethylsilyl (9-fluorenyl)(1-cyclopentadieny) zirconium dichloride
dimethylsilyl (9-fluorenyl)(1-cyclopentadieny) zirconium dimethyl
dimethylsilyl (9-fluorenyl)(1-cyclopentadieny) zirconium diethoxide
dimethylsilyl bis(9-fluorenyl) zirconium dichloride
dimethylsilyl bis(9-fluorenyl) zirconium dimethyl
dimethylsilyl bis(9-fluorenyl) zirconium diethoxide
dimethylsilyl bis(1-cyclopentadieny) zirconium dichloride
dimethylsilyl bis(1-cyclopentadieny) zirconium dimethoxide
dimethylsilyl bis(1-cyclopentadieny) zirconium dihydride
dimethylsilyl bis(1-indenyl)(1-cyclopentadieny) zirconium dichloride
dimethylsilyl bis(1-indenyl)(1-cyclopentadieny) zirconium dimethyl
dimethylsilyl bis(1-indenyl)(1-cyclopentadieny) zirconium diethoxide
dimethylsilyl bis(1-indenyl)(9-fluorenyl) zirconium dichloride dimethylsilyl bis(1-indenyl)(9-fluorenyl) zirconium dimethyl
dimethylsilyl bis(1-indenyl)(9-fluorenyl) zirconium diethoxide
dimethylsilyl (9-fluorenyl)(1-cyclopentadieny) hafnium dichloride
dimethylsilyl (9-fluorenyl)(1-cyclopentadieny) hafnium dimethyl
dimethylsilyl (9-fluorenyl)(1-cyclopentadieny) hafnium diethoxide
dimethylsilyl bis(9-fluorenyl) hafnium dichloride
dimethylsilyl bis(9-fluorenyl) hafnium dimethyl
dimethylsilyl bis(9-fluorenyl) hafnium diethoxide
dimethylsilyl bis(1-cyclopentadieny) hafnium dichloride
dimethylsilyl bis(1-cyclopentadieny) hafnium dimethyl
dimethylsilyl bis(1-cyclopentadieny) hafnium diethoxide
2,2-propyl bis(1-indenyl) zirconium dibromide
2,2-propyl bis(1-indenyl) zirconium diethyl
2,2-propyl bis(1-indenyl) zirconium dimethoxide
2,2-propyl bis(1-indenyl) zirconium dihydride
2,2-propyl bis(1-indenyl) zirconium chloride bromide
2,2-propyl bis(1-indenyl) zirconium chloride methoxide
2,2-propyl bis(1-indenyl) zirconium chloride hydride
2,2-propyl bis(trimethyl cyclopentadieny) zirconium dichloride
2,2-propyl bis(5-dimethylamino-1-indenyl) zirconium dichloride
2,2-propyl bis(6-dipropylamino-1-indenyl) zirconium dichloride
2,2-propyl bis(4,7-bis(dimethylamino)-1-indenyl) zirconium dichloride
2,2-propyl bis(5-diphenylphosphino-1-indenyl) zirconium dichloride
2,2-propyl (1-dimethylamino-9-fluorenyl)(1-cyclopentadieny) zirconium dichloride
2,2-propyl (4-butylthio-9-fluorenyl)(1-cyclopentadieny) zirconium dichloride
2,2-propyl bis(4,5,6,7-tetrahydro-1-indenyl) zirconium dichloride
2,2-propyl bis(4-methyl-1-indenyl) zirconium dichloride
2,2-propyl bis(5-methyl-1-indenyl) zirconium dichloride
2,2-propyl bis(6-methyl-1-indenyl) zirconium dichloride
2,2-propyl bis(7-methyl-1-indenyl) zirconium dichloride
2,2-propyl bis(5-methoxy-1-indenyl) zirconium dichloride
2,2-propyl bis(4,7-dimethoxy-1-indenyl) zirconium dichloride
2,2-propyl bis(2,3-dimethyl-1-indenyl) zirconium dichloride
2,2-propyl bis(4,7-dimethyl-1-indenyl) zirconium dichloride
2,2-propyl (9-fluorenyl)(1-cyclopentadienyl) zirconium dichloride
2,2-propyl (9-fluorenyl)(1-cyclopentadienyl) zirconium dimethyl
2,2-propyl (9-fluorenyl)(1-cyclopentadienyl) zirconium diethoxide
2,2-propyl bis(9-fluorenyl) zirconium dichloride
2,2-propyl bis(9-fluorenyl) zirconium dimethyl
2,2-propyl bis(9-fluorenyl) zirconium diethoxide
2,2-propyl bis(1-cyclopentadienyl) zirconium dichloride
2,2-propyl bis(1-cyclopentadienyl) zirconium dimethyl
2,2-propyl bis(1-cyclopentadienyl) zirconium diethoxide
2,2-propyl (9-fluorenyl)(1-cyclopentadienyl) hafnium dichloride
2,2-propyl (9-fluorenyl)(1-cyclopentadienyl) hafnium dimethyl
2,2-propyl (9-fluorenyl)(1-cyclopentadienyl) hafnium diethoxide
2,2-propyl bis(9-fluorenyl) hafnium dichloride
2,2-propyl bis(9-fluorenyl) hafnium dimethyl
2,2-propyl bis(9-fluorenyl) hafnium diethoxide
diphenyl methyl bis(1-indenyl) zirconium dibromide
diphenyl methyl bis(1-indenyl) zirconium diethyl
diphenyl methyl bis(1-indenyl) zirconium dimethoxide
diphenyl methyl bis(1-indenyl) zirconium dihydride
diphenyl methyl bis(1-indenyl) zirconium chloride bromide
diphenyl methyl bis(1-indenyl) zirconium chloride methoxide
diphenyl methyl bis(1-indenyl) zirconium chloride methyl
diphenyl methyl bis(1-indenyl) zirconium chloride hydride
diphenyl methyl(9-fluorenyl)(1-cyclopentadienyl) zirconium-dichloride
diphenyl methyl(9-fluorenyl)(1-cyclopentadienyl) zirconium dimethyl
diphenyl methyl(9-fluorenyl)(1-cyclopentadienyl) zirconium diethoxide
diphenyl methyl bis(9-fluorenyl) zirconium dichloride
diphenyl methyl bis(9-fluorenyl) zirconium dimethyl
diphenyl methyl bis(9-fluorenyl) zirconium diethoxide

diphenyl methyl bis(1-cyclopentadienyl) zirconium dichloride
diphenyl methyl bis(1-cyclopentadienyl) zirconium dimethyl
diphenyl methyl bis(1-cyclopentadienyl) zirconium diethoxide
diphenyl methyl bis(1-indenyl) zirconium dichloride
diphenyl methyl bis(1-indenyl) zirconium dimethyl
diphenyl methyl bis(1-indenyl) zirconium diethoxide
diphenyl methyl bis(1-indenyl)(1-cyclopentadienyl) zirconium dichloride
diphenyl methyl bis(1-indenyl)(1-cyclopentadienyl) zirconium dimethyl
diphenyl methyl bis(1-indenyl)(1-cyclopentadienyl) zirconium diethoxide
diphenyl methyl bis(1-indenyl)(9-fluorenyl) zirconium dichloride
diphenyl methyl bis(1-indenyl)(9-fluorenyl) zirconium dimethyl
diphenyl methyl bis(1-indenyl)(9-fluorenyl) zirconium diethoxide
diphenyl methyl bis(1-indenyl)(9-fluorenyl) zirconium dichloride

diphenylsilyl bis(1-indenyl)(1-cyclopentadienyl) zirconium dichloride
diphenylsilyl bis(1-indenyl)(1-cyclopentadienyl) zirconium dimethyl
diphenylsilyl bis(1-indenyl)(1-cyclopentadienyl) zirconium diethoxide
diphenylsilyl bis(1-indenyl)(9-fluorenyl) zirconium dichloride
diphenylsilyl bis(1-indenyl)(9-fluorenyl) zirconium dimethyl
diphenylsilyl bis(1-indenyl)(9-fluorenyl) zirconium diethoxide
diphenylsilyl bis(1-indenyl)(9-fluorenyl)(1-cyclopentadienyl) zirconium dichloride
diphenylsilyl bis(1-indenyl)(9-fluorenyl)(1-cyclopentadienyl) zirconium dimethyl
diphenylsilyl bis(1-indenyl)(9-fluorenyl)(1-cyclopentadienyl) zirconium diethoxide
diphenylsilyl bis(1-indenyl)(9-fluorenyl) hafnium dichloride
diphenylsilyl bis(1-indenyl)(9-fluorenyl) hafnium dimethyl
diphenylsilyl bis(1-indenyl)(9-fluorenyl) hafnium diethoxide
diphenylsilyl bis(1-indenyl) zirconium dibromide

diphenylsilyl bis(1-indenyl) zirconium diethyl
diphenylsilyl bis(1-indenyl) zirconium dimethoxide
diphenylsilyl bis(1-indenyl) zirconium dihydride
diphenylsilyl bis(1-indenyl) zirconium chloride bromide
diphenylsilyl bis(1-indenyl) zirconium chloride methoxide
diphenylsilyl bis(1-indenyl) zirconium chloride hydride
diphenylsilyl (9-fluorenyl)(1-cyclopentadienyl) zirconium dichloride
diphenylsilyl (9-fluorenyl)(1-cyclopentadienyl) zirconium dimethyl
diphenylsilyl (9-fluorenyl)(1-cyclopentadienyl) zirconium diethoxide
diphenylsilyl bis(9-fluorenyl) zirconium dichloride
diphenylsilyl bis(9-fluorenyl) zirconium dimethyl
diphenylsilyl bis(9-fluorenyl) zirconium diethoxide
diphenylsilyl bis(9-fluorenyl)(1-cyclopentadienyl) hafnium dichloride
diphenylsilyl (9-fluorenyl)(1-cyclopentadienyl) hafnium dimethyl
diphenylsilyl (9-fluorenyl)(1-cyclopentadienyl) hafnium diethoxide
diphenylsilyl bis(9-fluorenyl) hafnium dichloride
diphenylsilyl bis(9-fluorenyl) hafnium dimethyl
diphenylsilyl bis(9-fluorenyl) hafnium diethoxide
diphenylsilyl bis(1-cyclopentadienyl) hafnium dichloride
diphenylsilyl bis(1-cyclopentadienyl) hafnium dimethyl
diphenylsilyl bis(1-cyclopentadienyl) hafnium diethoxide
diphenylsilyl bis(1-indenyl) hafnium dichloride
diphenylsilyl bis(1-indenyl) hafnium dimethyl
diphenylsilyl bis(1-indenyl) hafnium diethoxide
diphenylsilyl bis(1-indenyl)(1-cyclopentadienyl) hafnium dichloride
diphenylsilyl bis(1-indenyl)(1-cyclopentadienyl) hafnium dimethyl
diphenylsilyl bis(1-indenyl)(1-cyclopentadienyl) hafnium diethoxide
diphenylsilyl bis(1-indenyl)(9-fluorenyl) hafnium dichloride
diphenylsilyl bis(1-indenyl)(9-fluorenyl) hafnium dimethyl
diphenylsilyl bis(1-indenyl)(9-fluorenyl) hafnium diethoxide
diphenylsilyl bis(1-indenyl)(9-fluorenyl) hafnium dichloride
ethylen bis(1-indenyl) zirconium dichloride
ethylen bis(1-indenyl) zirconium dimethoxide
ethylen bis(1-indenyl) zirconium dihydride
ethylen bis(1-indenyl) zirconium chloride bromide
ethylen bis(1-indenyl) zirconium chloride methoxide
ethylen bis(1-indenyl) zirconium chloride methyl
ethylen bis(1-indenyl) zirconium chloride hydride
ethylen bis(1-indenyl) (trimethyl cyclopentadienyl) zirconium dichloride
ethylen bis(1-indenyl)(5-dimethylamino-1-indenyl) zirconium dichloride
ethylen bis(1-indenyl)(6-dipropylamino-1-indenyl) zirconium dichloride
ethylen bis(1-indenyl)(4,7-bis(dimethylamino)-1-indenyl) zirconium dichloride
ethylen bis(1-indenyl)(5-diphenylphosphino-1-indenyl) zirconium dichloride
ethylen bis(1-indenyl)(4,5,6,7-tetrahydro-1-indenyl) zirconium dichloride
The double ligand according to the invention is a compound containing at least two cyclopentadiene groups, substituted or not, which are chemically interbonded. Examples of substituted cyclopentadiene groups are fluorene and indene groups.

Examples of double ligands according to the invention are:

- dimethylsilyl bis(1-indene)
- dimethylsilyl (9-fluorene)(1-cyclopentadiene)
- dimethylsilyl bis(9-fluorene)
- dimethylsilyl bis(1-cyclopentadiene)
- dimethylsilyl bis(1-indene)
- dimethylsilyl bis(1-indene)(1-cyclopentadiene)
- dimethylsilyl bis(1-indene)(9-fluorene)
- dimethylsilyl(9-fluorene)(1-cyclopentadiene)
- 2,2-propyl bis(1-indene)
- 2,2-propyl bis(trimethyl cyclopentadiene)
- 2,2-propyl bis(5-dimethylamino-1-indene)
- 2,2-propyl bis(6-dipropylamino-1-indene)
- 2,2-propyl bis(4,7-bis(dimethylamino-1-indene)
- 2,2-propyl bis(5-diphenylphosphino-1-indene)
- 2,2-propyl (1-dimethylamino-9-fluorene)(1-cyclopentadiene)
- 2,2-propyl (4-butylthio-9-fluorene)(1-cyclopentadiene)
- 2,2-propyl bis(4,5,6,7-tetrahydro-1-indene)
- 2,2-propylbis(4-methyl-1-indene)
- 2,2-propylbis(5-methyl-1-indene)
- 2,2-propyl bis(6-methyl-1-indene)
- 2,2-propyl bis(7-methyl-1-indene)
- 2,2-propyl bis(5-methoxy-1-indene)
- 2,2-propyl bis(4,7-dimethoxy-1-indene)
- 2,2-propyl bis(2,3-dimethyl-1-indene)
- 2,2-propyl bis(4,7-dimethyl-1-indene)
- 2,2-propyl (9-fluorene)(1-cyclopentadiene)
- 2,2-propyl (9-fluorene)(1-cyclopentadiene)
- 2,2-propyl (9-fluorene)(1-cyclopentadiene)
- 2,2-propyl bis(9-fluorene)
The proton acceptor is a compound capable of reacting according to reaction (I) with two protons of the double ligand, yielding a bivalent anion, hereinafter referred to as the double anion. If the double ligand contains cyclopentadiene, indene and/or fluorene groups, each of these groups may release one proton, yielding cyclopentadienyl, indenyl and fluorenyl anions.

Examples of suitable proton acceptors are: organometallic compounds, amines, metal hydrides and alkali or earth alkali metals. According to the invention it is preferred to use an alkali organometallic compound or an earth alkali organometallic compound as proton acceptor, particularly an alkyl lithium or an alkyl sodium compound, and use is made in particular of methyl or butyl lithium. Reaction (I) may be a direct metalation reaction, for instance:

$$\text{dimethylsilyl bis(1-indene) + 2 butyl lithium} \rightarrow 2 \text{butane} + [\text{dimethylsilyl bis(1-indenyl)}]^2\cdot2\text{Li}^+$$

However, reaction (I) may also take the form of a redox reaction, an example being:

$$\text{dimethylsilyl bis(1-indene) + 2 Na} \rightarrow 2 \text{H}_2 + [\text{dimethylsilyl bis(1-indenyl)}]^2\cdot2\text{Na}^+$$

The reaction conditions for reaction (I) are not very critical, though substances that may react with the double ligand or the proton acceptor, such as water and oxygen, should virtually be absent. Therefore reaction (I) is usually carried out in a nitrogen atmosphere. The reaction pressure is immaterial. Usually a pressure of 0-0.2 MPa is used,
more in particular atmospheric pressure. All pressures will here be given as absolute pressure. The temperature during reaction (I) is -100 to 100 °C, preferably -80 to 50 °C. A change in the temperature during the reaction does not have any harmful effects.

[0023] Reaction (I) is carried out in a known manner in a liquid dispersant. The double ligand concentration is higher than 0.001 mol/l, preferably 0.01-10 mol/l, in particular 0.05-5 mol/l. The proton acceptor concentration is higher than 0.001, preferably 0.01 -10 mol/l, and in particular 0.05-10 mol/l. The advantage of the process according to the invention is that relatively high concentrations of double ligand and proton acceptor can be used.

[0024] The double anion formed as reaction product of reaction (I) is subsequently converted with a metal compound Me(Q)ₚ, Me being a metal ion of a group 4b, 5b or 6b metal from the Periodic System of Elements, while Q and p have the same meanings as in formula (2). This reaction proceeds according to the general reaction equation:

\[\text{C}_2^{2+} + \text{L-L}^{2-} + \text{Me(Q)}_p \rightarrow \text{L-L-MeQ}_p^{-2} + 2 \text{CQ} \] (II)

where C is a cation and L-L the double ligand. An example is:

\[[\text{dimethylsilyl bis(1-indenyl)}]_{2-}^{2-} 2\text{Li}^+ + \text{ZrCl}_4 \rightarrow [\text{dimethylsilyl bis(1-indenyl)}]_{2-}^{2-} \text{ZrCl}_2 + 2\text{LiCl} \]

According to the invention reaction (II) is carried out in a liquid dispersant comprising one or more weak Lewis bases, the conjugated acid of which has a dissociation constant \(pK_a < -2.5 \) and contains at most 1 mole equivalent, relative to the metal compound, of strong Lewis base, the conjugated acid of which has a \(pK_a \) higher than \(-2.5 \). The \(pK_a \) values cited here are based on D.D. Perrin: Dissociation Constants of Organic Bases in Aqueous Solution, International Union of Pure and Applied Chemistry, Butterworths, London 1965. The values were determined in an aqueous H₂SO₄ solution.

[0025] Reaction (II) is carried out under such reaction conditions that the double anion and the Me(Q)ₚ metal compound form a suspension in the liquid dispersant.

[0026] The liquid dispersant preferably comprises one or more weak Lewis bases, the conjugated acid of which has a \(pK_a \) of between -2.5 and -15, a value between -2.5 and -10 having greater preference. The others are examples of suitable dispersants according to the invention. Particularly suitable dispersants are ethoxy ethane \((pK_a = -3.59) \), isoproxy isopropane \((pK_a = -4.30) \), methoxy methane \((pK_a = -3.83) \), n-propoxy-n-propane \((pK_a = -4.40) \), n-butoxy-n-butane \((pK_a = -5.40) \), ethoxy-n-butane \((pK_a = -4.12) \), methoxy benzene \((pK_a = -6.54) \), dioxane \((pK_a = -6.54) \), dioxane \((pK_a = -2.92) \). Also highly suitable are dispersants consisting of 100-10 vol. % weak Lewis bases and 0-90 vol. % aliphatic hydrocarbon, preferably 100-50 vol. % weak Lewis bases and 0-50 vol % aliphatic hydrocarbon.

[0027] According to the invention it is possible to accurately control the stereoconfiguration of the bridged dicyclopentadienyl-compounds, by altering the Lewis base used as a liquid dispersant in reaction (II). The effect of the alteration of strength of the Lewis base is shown in the examples.

[0028] The molecules of the compounds can have two optical active centres and the compounds therefore can occur in two different stereoconfigurations designated as racemic-form (rac.) and meso-form. The presence of the racemic form and the meso form and the ratio rac./meso can be determined using \(^1\text{H}-\text{NMR}\) in a way known as such.

[0029] In the preparation of polypropylene the racemic form leads to the production of isotactic polypropylene, whereas the meso-form leads to the production of atactic polypropylene, which is an undesirable product. It is therefore advantageous to produce only the racemic form of the metallocene compounds. This is possible according to the invention. In case that both the racemic and the meso form are formed a high value of the ratio rac./meso possible, which is also advantageous for use in the liquid dispersant.

[0030] In polymerisation processes for the preparation of ethylene polymers or ethylene-propylene-diene-monomer rubbers both the racemic and the meso-form can yield suitable products. High relative amounts of either the racemic or the meso form can be advantageous, e.g. in the preparation of ethylene-propylene-diene-monomer rubbers, because the racemic and the meso-form yield different types of rubbers. Also the catalytic activity of the rac. and meso-form can be different which can lead to a preference for either the rac.- or the meso-form.

[0031] The metal compound Me(Q)ₚ is preferably a zirconium, titanium or hafnium compound. There is advantage in choosing the metal compound from compounds of the formula MeQₚ. Me standing for zirconium, titanium or hafnium, with a formal oxidation state of 4, and Q being the same or different groups, chosen from alkyl-, aryl-, alkyl aryl-, amide-, alkoxyl-, halogenide-, sulphide-, hydride- or phosphorus-containing groups. More preferably, Q are the same or the different alkoxyl or halogenide groups. The metal compound according to the invention is in particular zirconium tetrachloride, hafnium tetrachloride, tetrabutoxy zirconium or zirconium dibutoxy dichloride.

[0032] The reaction product of reaction (II) may contain the metallocene compound in the form of a complex or
mixture with salts and/or with the Lewis bases. An example is [dimethylsilyl bis(1-indenyli)]ZrCl₂·2 LiCl·0.5 CH₃CH₂OCH₂CH₃. For use as a catalyst component for the polymerization of olefins such complexes usually need to be converted into non-complexed metallocene compounds or be isolated from the mixture. Surprisingly, the bridged metallocene compounds according to the invention exhibit a high activity also in the form of a complex or mixture with salts and/or with the Lewis bases. This makes it possible to use the reaction product of reaction (II) directly as catalyst component, without removal of the complexed compounds or separation of the mixtures being necessary. Should such removal or separation be desired, then this can be effected in a known manner, for instance extraction with a solvent that is suitable for the metallocene compounds but not for the compounds to be removed. An example of such a solvent is dichloro methane.

The bridged metallocene compounds according to the invention can be used according to methods known per se as a catalyst component for the polymerization of olefins. They are known, for instance, as catalyst component for the production of polyethylene, polypropylene and ethylene-propylene-(third monomer)-rubbers or EP(D)M rubbers. In that case the catalyst component may be mounted on an inert support such as silica.

The metallocene compounds are used in a known way in combination with a cocatalyst, usually an aluminium compound. Cocatalysts based on aluminium compounds, for instance, can be found in EP-A-0287666, pages 20-21.

Other suitable cocatalysts are benzene-insoluble organo-aluminium compounds, as known from EP-A-0360492. See also US-A-4769428 (column 5), where organoaluminium alkyls and linear and cyclic alumoxanes are used as cocatalysts. The alumoxanes can be prepared in the ways disclosed in said patent publications, but they are commercially available. Examples of commercial alumoxanes are methyl alumoxanes from Schering en Texas Alkyls.

As solid or as suspension in an inert solvent the bridged metallocene compounds according to the invention have a very high stability, so that they can be stored for a long time. This contrasts with the known bridged metallocene compounds, which are sensitive to degradation, leading to a decrease in the polymerization activity. The invention therefore provides a catalyst component that is suitable for the polymerization of olefins, comprising a bridged metallocene compound prepared by the process according to the invention, characterized in that the catalyst component comprises a suspension of the metallocene compound in an inert solvent.

Polymerization can be effected in a known manner, taking place in the gas phase or in a liquid reaction medium. An inert solvent or the olefin can be used as reaction medium. The polymerization may be solution polymerization, suspension polymerization, bulk polymerization or gas phase polymerization. It can be carried out either continuously or discontinuously, at high pressures, from 50-300 MPa, as well as low pressures, from 0.1 -50 MPa.

The polymerization of olefins is preferably effected in a liquid polymerization medium which contains at least one olefin, this liquid polymerization medium comprising aliphatic hydrocarbon and the bridged metallocene compound forming a suspension in the polymerization medium. In such a preferred embodiment the bridged metallocene compounds according to the invention have a sufficiently high activity, in contrast to the known bridged metallocene compounds. In particular, the catalyst component can also be used as a suspension of the metallocene compound in an inert dispersant. The advantage of the embodiment is that use can be made of dispersants customarily used in industrial-scale polymerization of olefins, such as gasoline. This is advantageous since these dispersants are cheaper and safer than aromatic hydrocarbons, which until now were needed in the polymerization with bridged metallocene catalysts.

The invention will be elucidated on the basis of the following examples and comparative experiments, which are non-restrictive; the examples have, for instance, not been optimized with respect to the amount of dispersant, reaction temperature, etc. Metallocene compounds synthesized in the experiments were analyzed by means of neutron activation analysis and 1H-NMR (proton - nuclear magnetic resonance). With neutron activation analysis the concentrations of elements can be determined in a known way 1H-NMR supplies information on the structure of the metallocene compounds. The resonance peaks of the racemic-and meso-form of many metallocene compounds are given in the literature. The 1H-NMR analyses were performed in a known manner using a Bruker AC200 NMR apparatus at a frequency of 200 MHz. The samples for NMR analysis were prepared by adding c. 1ml of deuterobenzene to 1-10 mg of metallocene compound.

Example I

Synthesis of [isopropyl(9-fluorenyl)(1-cyclopentadienyl) zirconium dichloride

13.41 ml of a 1.74 M solution in hexane of butyl lithium was added to a cooled solution (-56 °C) of 3.18 g (11.67 mmol) of isopropyl (9-fluorenyl)(1-cyclopentadienyl) in 40 ml of diethyl ether in a Schlenk flask. During heating to 25 °C the solution changed from bright yellow via orange/red into an orange/yellow suspension. After cooling to -56 °C the suspension was added to a suspension of 2.72 g of zirconium tetrachloride in 40 ml of diethyl ether, which had been cooled to -56 °C. Immediately upon the addition the cooling medium was removed. After two minutes already an orange/red suspension had been obtained. After the reaction temperature had reached room temperature (after two
hours), the solid matter was filtered off and washed one time with 30 ml of diethyl ether; the wash liquid had a bright red colour.
Yield after vacuum drying: 5.86 g of red solid (85% yield on Zr basis) consisting of [isopropyl(9-fluorenyl)(1-cyclopentadienyl) zirconium dichloride] complexed or mixed with 2 mole equivalents of lithium chloride and 1 mole equivalent of diethyl ether per mole of metallocene compound. The product thus obtained is air stable for at least 72 hours.

Example II

A. Synthesis of dimethylsilyl bis(1-indene) (reaction I))

[0040] 9.89 ml of a 1.74 M solution in hexane of butyl lithium was added to a solution cooled to -56 °C of 2.01 g (17.2 mmol) of indene in 40 ml of diethyl ether. Subsequently, 1.11 g (8.6 mmol) of dimethylsilyl dichloride was added to the solution. After stirring for one hour the precipitate formed (lithium chloride) was filtered off.

B. Synthesis of [dimethylsityl bis(1-indenyl) zirconium dichloride]

[0041] The solution obtained under A was cooled to -56 °C, after which 9.9 ml of a 1.74 M solution in hexane of butyl lithium was added. The reaction was further carried out as in Example 1, but now with 2 g of ZrCl₄ (8.6 mmol). The product of the reaction was an orange powder (3.14 g; 64% yield), which upon analysis proved to be (rac.)dimethylsilyl bis(1 -indenyl) zirconium dichloride, complexed or mixed with 2 mole equivalents of lithium chloride and 0.5 mole equivalent of diethyl ether per mole of metallocene compound. This product is air stable.

Example III

Synthesis of [diphenyl (9-fluorenyl)(1-cyclopentadienyl) zirconium dichloride]

[0042] Synthesis as in Example I, now with:
1.38 g of diphenyl (9-fluorene)(1-cyclopentadiene) (3.48 mmol)
4.35 ml of 1.6 M butyl lithium (6.96 mmol)
0.81 g of zirconium tetrachloride (3.48 mmol)

The dark red [diphenyl (9-fluorenyl) (1-cyclopentadienyl) zirconium dichloride compound was obtained in a yield of 75% and is air stable.

Comparative Experiment A

Synthesis of [isopropyl (9-fluorenyl)(1-cyclopentadienyl) zirconium dichloride]

[0043] This compound was synthesized on the basis of zirconium tetrachloride complexed with 2 mole equivalents of tetrahydrofuran (THF) per mole of zirconium tetrachloride

Synthesis as in Example I, now with:
2.17 g of isopropyl (9-fluorene)(1-cyclopentadiene) (7.95 mmol)
9.94 ml of 1.6 M butyl lithium (15.9 mmol)
3.00 g of Zr₄.2THF (7.95 mmol).

A brown suspension was obtained. The solid obtained after upgrading, in a yield of 3.37 g, is an impure orange/brown product which decomposes in the air.

Example IV

Polymerization of ethylene

[0044] The reaction product of Example I was used for solution polymerization of ethylene. At an inlet temperature of 155 °C and a pressure of 20 bar, 1 ml of a suspension of 0.44 g of the reaction product in 50 ml of gasoline (0.015 M zirconium), 10 ml of a 1.6 M methyl alumoxane (MAO) solution in toluene and 50 ml pentamethylheptane was
metered to a 1.1 l reactor filled with 450 ml of heptane. The methyl alumoxane, type TA-01629, was supplied by Schering®; its aluminum content was 5 wt. % and its molecular weight 1100 g/mol. Polymerization started immediately, causing a 34 °C jump in the temperature, which was indicative of a high polymerization activity. After 10 minutes the polyethylene (PE) solution was drained and upgraded. Yield: 23 g of PE.

Example V

Polymerization of ethylene

Example VI

Polymerization of ethylene

Example VII

Polymerization of propylene

Example VIII

Polymerization of ethylene and propylene

Comparative experiment C

Polymerization of ethylene and propylene

Example IX

Synthesis of (1,2-ethylene (bis-(1-indenyl)zirconiumdichloride)

Example X

Synthesis as in Example I now with:

9.19 g (1,2-ethylene(bis-(1-indene)) (35.58 mmole) in 40 ml diethyl ether, 44.48 ml butyllithium 1.6 M in hexane (71.16 mmole).
8.29 g ZrCl₄ (35.58 mmole) in 40 ml diethyl ether

Yield of stable orange/yellow substance > 95%.
The ratio rac/meso is 55/45 determined by H-NMR.

Example X

Synthesis of (1,2-ethylene(bis-(1-indenyl)zirconium dichloride)

[0051] Synthesis of the dianion of (1,2-ethylene-(bis-(1-undenyl)zirconium dichloride) was carried out as in Example I using:

6.75 g (1,2-ethylene(bis-(1-indene))) (26.13 mmole) in 120 ml diethylether
32.66 ml butyllithium 1.6 M hexane (52.55 mmole).

[0052] The formed precipitate (dianion) was filtered off and washed with 120 ml gasoline (hexane), suspended in 80 ml dimethoxyethane, cooled to -20°C.

[0053] A solution having a temperature of -56°C of 5.78 g ZrCl_4 (24.80 mmole) was added.

[0054] The reaction mixture was a green suspension the colour of which changed through brown into yellow (after 24 h). The yellow precipitate was filtered off and dried.

Yield: 65% air stable rac-(1,2-ethylene(bis-(1-indene))-zirconium dichloride.

Example XI

Synthesis of (1,2-ethylene(bis-(1-indenyl)zirconium dichloride)

[0055] Synthesis of dianion as in Example X using 2.86 g dianion (11.07 mmole) slurried in 40 ml anisole 13.84 ml butyllithium 1.6 M in hexane (22.14 mmole) 2.20 g ZrCl_4 (9.44 mmole) in 40 ml anisole.

The formed precipitate was filtered off.

Yield: 80% air stable 1:1 rac/meso (1,2-ethylene(bis-(1-indenyl)zirconium dichloride)

The filtrate was not used.

Claims

1. Process for the preparation of a bridged metallocene compound of the following formula:

R''(CpR_n)(CpR'_m)Me(Q)_p \tag{2}

in which the symbols have the following meanings:

CpR_n cyclopentadienyl, indenyl or fluorenyl group, whether or not substituted with one or more alkyl, phosphine, amine, alkyl ether or aryl ether groups
CpR'_m cyclopentadienyl, indenyl or fluorenyl group, whether or not substituted with one or more alkyl, phosphine, amine, alkyl ether or aryl ether groups
R'' structural bridge between the Cp rings
Me group 4b, 5b or 6b metal from the Periodic System of Elements
Q alkyl-, aryl-, aryl alkyl-, alkyl aryl-, amide-, alkoxy-, halogenide-, sulphide-, hydride- or phosphorus-containing group; the groups Q may be the same or different

m, n and p are integers, with 0 \leq n \leq 4,
1 \leq m \leq 4 and 1 \leq p \leq 4,wherein

I. a bridged double ligand, is converted into a bridged double anion, by reaction with a proton acceptor,
II. the double anion is converted into the bridged metallocene compound through reaction with a compound of a group 4b, 5b or 6b metal from the Periodic System of Elements, characterized in that reaction (II) is carried out in a liquid dispersant which:

a. comprises one or more weak Lewis bases, the conjugated acid of which has a dissociation constant
pKₐ for which the following holds:

pKₐ ≤ -2.5, 1,2-dimethoxy ethane and toluene being excluded;

b. contains at most 1 mole equivalent, relevant to the metal compound, of strong Lewis base, the conjugated acid of which has a pKₐ that is higher than -2.5 and under such reaction conditions that the double anion and the compound of a group 4b, 5b or 6b metal from the Periodic System of Elements form a suspension in the liquid dispersant.

2. Process according to claim 1, characterized in that the liquid dispersant comprises one or more weak Lewis bases, the conjugated acid of which has a pKₐ between -2.5 and -15.

3. Process according to claim 1, characterized in that the liquid dispersant comprises one or more weak Lewis bases the conjugated acid of which has a pKₐ between -2.5 and -10.

4. Process according to claim 1, characterized in that the liquid dispersant comprises one or more ethers.

5. Process according to claim 4, characterized in that the liquid dispersant comprising one or more ethers is chosen from: ethoxy ethane, n-butoxy-n-butane, isoproxy isopropane, methoxy methane, n-prooxy-n-propane, ethoxy-n-butane, methoxy benzene, dioxane.

6. Process according to any one of claims 1-5, characterized in that the dispersant consists of 100-50 vol.% of weak Lewis bases and 0-50 vol.% of aliphatic hydrocarbon.

7. Process according to any one of claims 1-6, characterized in that the metal compound is a zirconium, titanium or hafnium compound.

8. Process according to claim 7, characterized in that the metal compound is chosen from compounds having the formula

MeQ₄

where the symbols have the following meanings:

Me zirconium, titanium or hafnium, with a formal oxidation state of 4,
Q the same or different groups, chosen from alkyl-, aryl, aryl alkyl-, alkyl aryl-, amide-, alkoxy-, halogenide-, sulphide-, hydride-, or phosphorus-containing groups.

9. Process according to claim 8, characterized in that Q are the same or different alkoxy or halogenide groups.

10. Process according to claim 9, characterized in that the metal compound is zirconium tetrachloride, hafnium tetrachloride, tetrabutoxy zirconium or zirconium dibutoxy dichloride.

Patentansprüche

1. Verfahren zur Herstellung einer verbrückten Metallocenverbindung der folgenden Formel:

R⁺(CpRₙ) (CPRₘ⁻) MeQₚ

worin die Symbole die folgende Bedeutung haben:

CpRₙ Cyclopentadienyl-, Indenyl- oder Fluorenyl-Gruppe, ggf. substituierter mit einer oder mehreren Alkyl-, Phosphin-, Amin-, Alkyl-Ether- oder Aryl-Ether-Gruppe(n)
CpRₘ Cyclopentadienyl-, Indenyl- oder Fluorenyl-Gruppe, ggf. substituierter mit einer oder mehreren Alkyl-,
Phosphin-, Amin-, Alkylether- oder Arylether-Gruppe(n)

R" Strukturbrücke zwischen den Cp-Ringen
Me Metall der Gruppe 4b, 5b oder 6b des Periodensystems der Elemente
Q Alkyl-, aryl-, arylalkyl-, alkylaryl-, amid-, alkoxy-, halogenid-, sulphid-, hydrid- oder phosphorhaltige Gruppe; die Gruppen Q können gleich oder unterschiedlich sein;

m, n und p sind ganze Zahlen, mit 0 ≤ n ≤ 4,
1 ≤ m ≤ 4 und 1 ≤ p ≤ 4,

worin:

I) ein verbrückter Doppelligand durch Reaktion mit einem Protonenakzeptor in ein verbrücktes Doppelanion umgewandelt wird;

(II) das Doppelanion durch Reaktion mit einer Verbindung eines Metalls der Gruppe 4b, 5b oder 6b des Periodensystems der Elemente in die verbrückte Metallocenverbindung umgewandelt wird,
dadurch gekennzeichnet, dass die Reaktion (II) in einem flüssigen Dispersionsmittel durchgeführt wird, welches:

- a) oder mehrere schwache Lewis-Basen umfasst, deren konjugierte Säure eine Dissoziationskonstante pKₐ hat, für welche Folgendes gilt: pKₐ ≤ -2,5, wobei 1,2-Dimethoxyethan und Toluol ausgeschlossen werden;
- b) höchstens 1 Moläquivalent, bezogen auf die Metallverbindung, einer starken Lewis-Base enthält, deren konjugierte Säure einen pKₐ hat, der höher ist als -2,5, und unter solchen Reaktionsbedingungen, dass das Doppelanion und die Verbindung eines Metalls aus der Gruppe 4b, 5b oder 6b des Periodensystems der Elemente eine Suspension im flüssigen Dispersionsmittel bilden.

2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das flüssige Dispersionsmittel eine oder mehrere schwache Lewis-Basen umfasst, deren konjugierte Säure einen pKₐ zwischen -2,5 und -15 hat.

3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das flüssige Dispersionsmittel eine oder mehrere schwache Lewis-Basen umfasst, deren konjugierte Säure einen pKₐ zwischen -2,5 und -10 hat.

4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das flüssige Dispersionsmittel einen oder mehrere Ether umfasst.

5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, dass das flüssige Dispersionsmittel, das einen oder mehrere Ether umfasst, ausgewählt ist aus: Ethoxyethanol, n-Butoxy-n-butanol, Isopropoxyisopropan, Methoxyethanol, n-Propoxy-n-propan, Ethoxy-n-butanol, Methoxybenzol, Dioxan.

7. Verfahren gemäß einem der Ansprüche 1-6, dadurch gekennzeichnet, dass die Metallverbindung eine Zirkonium-, Titan- oder Hafnium-Verbindung ist.

8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass die Metallverbindung aus Verbindungen der Formel

\[
\text{MeQ}_4
\]

ausgewählt ist, worin die Symbole die folgenden Bedeutungen haben:

Me Zirkonium, Titan oder Hafnium mit einer formalen Oxidationsstufe von 4

9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass Q gleiche oder verschiedene Alkoxy- oder Halo-
genid-Gruppen sind.

10. Verfahren gemäß Anspruch 9, **dadurch gekennzeichnet, dass** die Metallverbindung Zirkoniumtetrachlorid, Hafniumtetrachlorid, Tetrabutoxyzirkonium oder Zirkoniumdibutoxydichlorid ist.

Revendications

1. Procédé pour la préparation d’un composé métallocène ponté de formule

\[R^*(C_p R_n)(C_p R'_m)Me(Q)_p \]

formule dans laquelle les symboles ont les significations suivantes :

- \(C_p R_n \) : groupe cyclopentadiényle, indényle ou fluorényle, éventuellement avec substitution d’un ou plusieurs groupes alkyle, phosphine, amine, éther d’alkyle ou éther d’aryle,

- \(C_p R'_m \) : groupe cyclopentadiényle, indényle ou fluorényle, éventuellement avec substitution d’un ou plusieurs groupes alkyle, phosphine, amine, éther d’alkyle ou éther d’aryle,

- \(R^* \) : pont structurel entre les anneaux Cp,

- \(Me \) : métal du Groupe 4b, 5b ou 6b du Système Périodique des Éléments,

- \(Q \) : groupe contenant alkyle, aryle, aryalkyle, alkylaryle, amide, alcoxy, halogénure, sulfure, hydrure ou phosphore; les groupes Q peuvent être identiques ou différents,

- \(m, n \) et \(p \) sont des nombres entiers, étant posé que \(0 \leq n \leq 4 \) et que \(1 \leq m \leq 4 \) et \(1 \leq p \leq 4 \),

I) un double-ligand ponté est converti en un double-anion ponté, par réaction avec un accepteur de protons ;
II) le double-anion est converti en composé métallocène ponté par l’intermédiaire d’une réaction avec un composé d’un métal du Groupe 4b, 5b ou 6b du Système Périodique des Éléments, **caractérisé en ce que** la réaction (II) est effectuée dans un dispersant liquide qui :

- comprend une ou plusieurs bases de Lewis faibles, dont l’acide conjugué possède une constante de dissociation \(pK_a \) pour laquelle on a : \(pK_a \leq -2.5 \), exclusion faite de 1,2-diméthoxyéthane et toluène,

b) contient au plus 1 équivalent molaire, approprié au composé métallique, d’une base de Lewis forte, dont l’acide conjugué a un \(pK_a \) qui est supérieur à -2.5, et dans des conditions réactionnelles telles que le double-anion et le composé d’un métal du Groupe 4b, 5b ou 6b du Système Périodique des Éléments forment une suspension dans le dispersant liquide.

2. Procédé selon la revendication 1, **caractérisé en ce que** le dispersant liquide comprend une ou plusieurs bases de Lewis faibles, dont l’acide conjugué a un \(pK_a \) compris entre -2.5 et -15.

3. Procédé selon la revendication 1, **caractérisé en ce que** le dispersant liquide comprend une ou plusieurs bases de Lewis faibles, dont l’acide conjugué à un \(pK_a \) compris entre -2.5 et -10.

4. Procédé selon la revendication 1, **caractérisé en ce que** le dispersant liquide comprend un ou plusieurs éthers.

5. Procédé selon la revendication 4, **caractérisé en ce que** le dispersant liquide comprenant un ou plusieurs éthers est choisi parmi : l’éthoxyéthane, le n-butoxy-n-butane, l’isoproxy-isopropane, le méthoxyméthane, le n-propoxy-n-propane, l’éthoxy-n-butane, le méthoxybenzène, le dioxyane.

6. Procédé selon l’une quelconque des revendications 1 à 5, **caractérisé en ce que** le dispersant se compose de
100 à 50% en volume de bases de Lewis faibles et de 0 à 50% en volume d’hydrocarbure aliphatique.

7. Procédé selon l’une quelconque des revendications 1 à 6, caractérisé en ce que le composé métallique est un composé du zirconium, du titane ou de l’hafnium.

8. Procédé selon la revendication 7, caractérisé en ce que le composé métallique est choisi parmi les composés de formule :

\[\text{MeO}_4 \]

où les symboles ont les significations suivantes :

- \(\text{Me} \) zirconium, titane ou hafnium, avec un état d’oxydation formel de 4 ;
- \(Q \) groupes identiques ou différents, choisis parmi les groupes contenant un groupe alkyle, aryle, arylalkyle, alkylaryl, amide, alcoxy, halogénure, sulfure, hydrure ou phosphore.

9. Procédé selon la revendication 8, caractérisé en ce que \(Q \) sont les groupes alcoxy ou halogénure identiques ou différents.

10. Procédé selon la revendication 9, caractérisé en ce que le composé métallique est le tétrachlorure de zirconium, le tétrachlorure d’hafnium, le tétrabutoxyzirconium ou le dichlorure de dibutoxyzirconium.