NEW EUROPEAN PATENT SPECIFICATION

(54) Fabric care composition comprising water soluble or water dispersible copolymer containing UV-absorbing monomer

Wasserlösliches oder in Wasser dispergierbares Copolymer mit UV-Strahlen absorbierendem Monomer enthaltendes Wäschepflegemittel

Composition pour le traitement du linge contenant un copolymer soluble dans l’eau ou dispersé dans l’eau avec un monomère absorbant les rayons ultraviolets

(84) Designated Contracting States: CH DE ES FR GB IT LI NL SE

(43) Date of publication of application: 20.01.1993 Bulletin 1993/03

(73) Proprietors:
• UNILEVER PLC
 London EC4P 4BQ (GB)
 Designated Contracting States: GB
• UNILEVER N.V.
 3013 AL Rotterdam (NL)
 Designated Contracting States: CH DE ES FR IT LI NL SE

(72) Inventors:
• Langer, Matthew Evan,
 Unilever Research U.S., Inc.
 New Jersey 07020 (US)

(51) Int Cl.⁶: C11D 3/37, C08G 69/00,
 C08G 69/44, C08G 63/66

(56) References cited:
The subject invention relates to fabric care composition comprising water-dispersible or water-soluble copolymers which contain at least one UV-absorbing monomer and one hydrophilic monomer component. The copolymers used in these compositions may optionally contain a hydrophobic monomer component. The compositions of the invention provide anti-fading and soil release benefits. Because of their UV absorbency, the copolymers used in the composition of the invention could also be used in other compositions such as may be recognized by those skilled in the art.

UV light induced fading of fabric is a major concern to those residing in areas of high solar intensity. A fabric care composition comprising an agent which could provide protection from solar ultraviolet radiation and thereby retard the rate of garment fading would therefore prove useful.

UV absorbing copolymers are described in FR 2 307 385, EP 0 021 569 describes amino-terminated polymers. Polyetheramide elastomers with polyetheryler groups are described in DE 1 921 738.

Block polymers are disclosed in EP 0 185 427 as useful soil release agents in detergent compositions.

US Patent No. 3.657.231 to Proctor & Gamble describes oligomeric optical brightening compounds in which between 2 and 24 fluorescent moieties are linked together by means of inorganic or organic chemical linkages. The brightening compounds, some of which also absorb UV radiation, may be used in detergent compositions.

Compositions comprising a UV absorbing monomer in combination with a hydrophilic monomer, in the form of a block copolymer, which both delivers the copolymer into an aqueous system and also provides soil-release effect, are unknown.

More particularly, it is known, for example, that poly (ethylene terephthalate) poly(ethylene glycol) copolymers absorb onto hydrophobic surfaces to confer soil release properties (U.S. Patent No. 4,702,857 to Procter & Gamble; U.S. Patent No. 4,569,772 to Colgate Palmolive, and U.S. Patent No. 3,959,230 to Procter & Gamble). These materials are believed to function by hydrophilically modifying a hydrophobic surface such as oily soil on fabric or polyester fabric itself, deterring deposition of hydrophobic soils including body sebum. The poly(ethylene terephthalate) unit is believed to seek and adhere to the hydrophobic surface; the poly(ethylene glycol) portion is felt to give hydrophilic character to the fabric surface as well as aid the polymer in transfer through the aqueous medium.

In addition, UV-absorbing agents such as p-aminobenzoic acid (PABA) and its derivatives have been used for nearly a century as UV screening agents (N.A. Shaeth in "Sunscreens: Development, Evaluation, and Regulatory Aspects," N.J. Lowe and N.A. Shaeth, Eds., Marcel Dekker, Inc., New York, 1990).

UV sunscreen agents such as PABA, however, are generally water-insoluble and there appears to be no teaching of combining such agents in carriers such that they may be used, for example, in fabric cleaning compositions.

U.S. Patent 4, 153,744 to K.H. Remley teaches the use of a tetrakis(hydroxymethyl)phosphonium salt to impart resistance to UV light-induced shade change to vat-dyed cellulose textile materials. These compounds are unrelated to the copolymers of the invention. Further the process for delivering the compound is time-consuming and requires ammoniation of fabric followed by treatment with glacial acetic acid/hydrogen peroxide.

U.S. Patent 4,788,054 to R.J. Bernhardt, et al. teaches the use of N-phenylphthalimides as ultraviolet radiation [check] absorbers for cotton, wool, polyester, and rayon fabric. Again, these compounds are unrelated to the copolymers used in the compositions of the invention. Further, an aqueous sulphuric acid vehicle is required for depo.

In P.C. Crews et al., Text. Chem. Color., 19 (11): 21 (1987), the use of 2-hydroxy-4-dodecylbenzophenone, 2-hydroxy-4-octylbenzophenone, and 2-hydroxy-4-methoxybenzophenone as UV absorbers for museum textiles is taught. These compounds differ from those used in the compositions of the invention. Here, potentially carcinogenic perchloroethylene is required as the liquid carrier.

Water-soluble 2-hydroxy-4-methoxybenzophone-5-sulfonic acid was also shown to reduce dye fading of museum textiles, but with significant yellowing of fabric.

B. Milligan et al., Polym. Degrad. Stab., 10(4): 335 (1985), teach the use of 2,2'-dihydroxy-4,4'-bis-sulphobutyloxybenzophenone as a water-soluble ultraviolet light absorber for retarding the photo degradation of wool, but its synthesis requires the use of butanesulphonic acid, a suspected carcinogen.

None of the above-identified references make mention of soil release potential or teach materials that can be delivered in home laundry care.

U.S. Patents 3,888,965, to S.L. Kwolok, 3,699,085 to T.A. Johnson, and 3,600,350 to S.L. Kwolok teach the synthesis of poly (p-benzamide) through polycondensation of 4-aminobenzyolchloride hydrochloride, and German Patents Ger. Offen. 2,351,922 and 2,538,143 teach the synthesis of poly (p-benzamide) via homopolymerization of 4-aminobenzenecarboxylic acid in the presence of phosphates. In each of these references, the resulting poly PABA is insoluble in water, dilute acid, dilute base, and most organic solvents, rendering its application as a UV-absorbing polymer for fabric or skin care useless.

Japanese Patent Jpn. Kokai Tokkyo Koho 80,137,217 (Unilikai Ltd.) teaches the synthesis of poly(ethylene
tereophthalate)/poly(\(\nu\)-benzamide) copolymers for high modulus automobile tire cords. I. F. Osipenko, et al., Vesti Akad. Navuk BSSR, Ser. Khim. Navuk, 1: 105 (1980). Teach the synthesis of poly(ethylene terephthalate)/poly(\(\nu\)-benzamide) copolymers and that the incorporation of \(\nu\)-aminobenzoic acid into poly(ethylene terephthalate) improves fibre-forming properties and dye ability. Neither of these patents or publications mention the use of the poly(\(\nu\)-benzamide)-based materials as UV-absorbing agents or soil-release agents, nor do these disclosures mention that the poly(\(\nu\)-benzamide)-based materials are water-soluble or water dispersible.

In each of the above-identified references, the compound used differs from the copolymer used in the compositions of the invention, there is no teaching that a UV-absorbing monomer can be delivered in an aqueous system, and there is no teaching or suggestion that the UV-absorbing monomer can be used in a copolymer which imparts fade-resistance or soil-release properties.

The subject invention provides a fabric care composition comprising a water dispersible or water-soluble block copolymer which contains at least one UV-absorbing monomer and one hydrophilic monomer component. The copolymer may optionally contain a hydrophobic monomer component to control delivery and deposition.

The copolymer has the formula:

\[-(\text{A})_n-(\text{B})_m-(\text{C})_p-\]

wherein \(\text{A}\) is a monomer, other than a terephthalate said monomer being capable of absorbing ultraviolet radiation in the 280-400 nanometre (nm) range and bears the appropriate bifunctionality for incorporation into the main chain of the polymer;

\(\text{B}\) is a hydrophilic monomer;
\(\text{C}\) is a hydrophobic monomer;
\(n\) ranges from 1 to 500;
\(m\) ranges from 5 to 500; and
\(p\) ranges from 0 to 500.

More specifically, the copolymer used in the composition of the invention is intended to achieve a balance in water-solubility such that it is soluble enough to be able to deliver a normally insoluble UV monomer to a fabric surface but sufficiently insoluble that the delivered monomer can stick or adsorb onto the fabric surface. To ensure that the copolymer is not so water-soluble that it cannot adsorb onto the fabric surface, a hydrophobic comonomer may be used.

Compositions

Surface Active-Agents

The fabric care compositions in which the copolymer may be used may contain an alkali metal or alkanoamine soap of a \(\text{C}_{10-24}\) fatty acid or they may contain one or more surface active agents selected from the group consisting of anionic, nonionic, cationic, amphoteric and zwitterionic surfactants or, finally, they may contain mixtures of any of these.

Examples of anionic synthetic detergents are salts including: sodium, potassium, ammonium and substituted ammonium salts such as mono-, di- and triethanolamine salts of \(\text{C}_6-\text{C}_{22}\) alkylbenzenesulfonates, \(\text{C}_6-\text{C}_{22}\) primary or secondary alkanesulfonates, \(\text{C}_6-\text{C}_{24}\) olefin sulfonates, sulphonated polycarboxylic acids prepared by sulphonation of the pyrolysed product of alkaline earth metal citrates, e.g. as described in British Patent specification No. 1,082,179, \(\text{C}_6-\text{C}_{22}\) alkyl sulphates, \(\text{C}_6-\text{C}_{24}\) alkylpolyglycol ether sulphates, \(\text{C}_6-\text{C}_{24}\) alkylpolyglycols, \(\text{C}_6-\text{C}_{24}\) carboxylates and \(\text{C}_6-\text{C}_{24}\) phosphates containing up to 10 moles of ethylene oxide; further examples are described in *Surface Active Agents and Detergents* (Vol. I and II) by Schwarz, Perry and Berch.

Examples of nonionic synthetic detergents are the condensation products of ethylene oxide, propylene oxide and (or butylene oxide with \(\text{C}_6-\text{C}_{18}\) alkylphenols, \(\text{C}_6-\text{C}_{18}\) primary or secondary aliphatic alcohols, \(\text{C}_6-\text{C}_{18}\) fatty acid amides; further examples of nonionics include tertiary amine oxides with one \(\text{C}_6-\text{C}_{18}\) alkyl chain and two \(\text{C}_1-\text{C}_3\) alkyl chains. The above reference also describes further examples of nonionics.

The average number of mole of ethylene oxide and (or propylene oxide present in the above nonionics varies from 1-30; mixtures of various nonionics, including mixtures of nonionics with a lower and a higher degree of alkoxylation, may also be used.

Further types of nonionic surfactants are those derived from etherification of an alkyl or an alkylaryl alcohol with a reducing sugar. Particularly suitable examples are the alkyl polyglycosides described in U.S. Patent No.
4,713,447 to Letton et al. and DE 3,827,534 (assigned to Henkel). A further class of nonionics particularly useful for
drier sheets are the distributing agents such as those described in U.S. Patent No. 4,421,792 to Rudy et al., hereby
incorporated by reference into the subject application.

[0027] Examples of cationic surfactants include, but are not limited to the quaternary ammonium compounds such
as the monoalkyltrimethyl and dialkyldimethylammonium halides or C₃₋₉ alkyl sulfate salts (i.e., methyl or ethyl sul-
fates), alkyl pyridinium salts and substituted imidazolinium species. Still other useful agents are the primary, second-
ary and tertiary amines and the condensation products of fatty acids with an alkyl polyamine (e.g., bis(amidoamine).

[0028] Another class of cations which are contemplated for use in the compositions of the invention are ester linked
quaternary ammonium materials of the following formula:

\[
\begin{align*}
R_1 & - N^+ - (CH2)_n - CH - CH_2 \\
& \quad T \\
R_1 & - R_2
\end{align*}
\]

wherein each \(R_1 \) group is independently selected from \(C_{1-14} \) alkyl, alkenyl or hydroxyalkyl groups; each \(R_2 \) group is
independently selected from \(C_{12-24} \) alkyl or alkenyl groups;

\[T \] is

\[
\begin{align*}
\text{O} & - C - \\
\text{O} & - C = O - \\
\text{O} & - C - O & ;
\end{align*}
\]

and

\[n \] is an integer from 0-5.

[0029] These ester-linked quaternary ammonium materials are particularly preferred for use in fabric conditioners
because they are more biodegradable than conventional quaternary ammonium materials.

[0030] Examples of amphoteric or zwitterionic detergents are \(N \)-alkylamino acids, sulphobetaines, and condensation
products of fatty acids with protein hydrolysates although, owing to their relatively high costs, they are usually used in
combination with an anionic or a nonionic detergent.

[0031] Mixtures of the various types of active detergents may also be used, and preference is given to mixtures of
an anionic and a nonionic detergent active. Soaps (in the form of their sodium, potassium and substituted ammonium
salts) of fatty acids may also be used, preferably in conjunction with an anionic and/or a nonionic synthetic detergent.

[0032] The fabric care compositions which contain copolymers comprising UV absorbing monomers may be heavy
duty detergent compositions, powdered detergent compositions, fabric softener compositions or fabric dryer sheet
compositions.

[0033] In one embodiment of the invention, the composition is a heavy duty liquid detergent composition comprising
one 1-75% by weight of a detergent-active compound, wherein the detergent active compound includes 0 to 40% of
an anionic surfactant selected from the group consisting of alkyl benzene sulfonates, alkyl sulfates, and alkyl ethoxy
sulfates in combination with 0 to 40% of a nonionic surfactant selected from the group consisting of alcohol alkoxylates,
aliphatic phenol alkoxylates, alkyl polyglycosides, and alkyl glycerol ethers; and from 0 to 30% of a detergent builder
selected from the group consisting of alkali metal salts of citric acid, copolymers of acrylic and maleic acid, oxydisuc-
cinate, tartrate monosuccinate/tartrate disuccinate, \(C_6 \) to \(C_{16} \) carboxylic acids, zeolites, condensed phosphates, and
combinations thereof.

[0034] In a preferred embodiment, the liquid detergent composition comprises, in addition to the copolymer of the
invention, the following:

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{11-15}) Average Alkyl Benzene Sulfonate</td>
<td>25 to 30%</td>
</tr>
<tr>
<td>(C_{12-16}) Alcohol Ethoxylate (9) E.O.</td>
<td>10 to 14%</td>
</tr>
<tr>
<td>Sodium Citrate (2\text{H}_2\text{O})</td>
<td>6 to 15%</td>
</tr>
</tbody>
</table>
In a second embodiment of the invention, the composition is a powdered detergent composition comprising, in addition to the copolymer of the invention: a) from 0 to about 40% anionic surfactant selected from the group consisting of alkali metal or ammonium salts of alkyl benzene sulfonates, alkyl sulfates, allyl ether sulfates; b) from 0 to about 40% of a nonionic surfactant selected from the group consisting of alkyl alkoxylates, alkylene oxides, alkyl polyglycosides, and alkyl glycerol ethers; c) from 5 to about 70% of a detergent builder selected from the group consisting of sodium tripolyphosphate, sodium aluminosilicates, sodium C₉-C₁₈ alcohol carboxylates, poly(acrylic) acid and copolymers of acrylic and maleic acid, allyl ether carboxylates, citric acid and combinations thereof; d) from 2 to about 40% of an alkalinity buffer selected from the group consisting of sodium silicate, sodium carbonate, and organic amines; and e) from 0 to about 40% sodium sulfate.

In a third embodiment of the invention the composition is a fabric softener composition comprising, in addition to the copolymer of the invention from 2 to about 40% of a mixture comprising: a) from 0 to about 95% of a cationic ammonium salt selected from the group consisting of alkyl or alkenyl quaternary ammonium salts, alkylpyridinium salts, and substituted imidazolium salts; b) from 0 to about 95% of primary, secondary or tertiary amines; c) from 0 to about 95% of the condensation product of a C₈ to C₁₈ alkyl carboxylic acid and an alkylpolyamine; and d) from 0 to about 40% of a polysilane or alkyl, alkoxy, or alkylamine modified polysiloxane.

In a fourth embodiment of the invention, the composition is a fabric drier sheet comprising, in addition to the copolymer of the invention, a) from 5 to 40% of a fabric softening or antistatic agent selected from the group consisting of cationic alkyl or alkenyl ammonium salts, alkyl pyridinium salts, alkyl amines, clays and poly siloxanes; b) from 2 to about 90% of a dispersing agent selected from the group consisting of urea, ammonium carbonate, ethoxylated alkanols, polyethylene glycols, and block copolymers of a polyethylene glycol and polypropylene glycol; and c) a backing strip or sheet carrying said composition.

In general the surfactant used in the various fabric care compositions of the invention will comprise from about 1-75% by weight of the composition, preferably from about 20-40% by weight.

The copolymer used in the compositions of the invention may comprise from 0.01 to 10% by weight of the composition, preferably from 0.05 to 5% by weight, most preferably from 1-3%. It should be noted that in a standard formulation, the copolymer generally will comprise from 0.01-5%, preferably 0.1-3% of the composition but that the upper range may increase if the copolymer is included as part of a concentrate composition.

As will be apparent from some of the compositions already described above, a number of optional ingredients are well known to those skilled in the art may be added to the fabric care compositions of the invention in addition to surfactants and the copolymer containing a UV monomer. For example, the fabric conditioning compositions may include silicones such as predominately linear polydialkylsiloxanes, e.g. polydimethylsiloxanes; soil release polymers such as block copolymers of polyethylene oxide and terephthalate; fatty amines selected from the group consisting of primary fatty amines, secondary fatty amines, tertiary fatty amines and mixtures thereof; amphoteric surfactants: smectite type inorganic clays, anionic soaps; zwitterionic quaternary ammonium compounds and nonionic surfactants.

The fabric conditioning compositions may also include an agent which produces a pearlescent appearance. E.g., an organic pearling compound such as ethylene glycol distearate, or inorganic pearling pigments such as microfine mica or titanium dioxide (TiO₂) coated mica. Other optional ingredients include emulsifiers, electrolytes (for example, sodium chloride or calcium chloride) preferably in the range from 5 to 500 ppm, optical brighteners of fluorescent agents preferably in the range from 0.01 to 5% by weight, buffers, perfumes preferably from 0.1 to 5% by weight, germicides, bactericides, and bacteriostatic agents. Bacteriostatic agents are preferably employed in the range from 1 to 1000 ppm, based on % active of such agent.

Similarly, if the composition is a heavy duty detergent, the compositions may include water soluble and/or insoluble detergent builder salts, alkalinity buffers, e.g., monoethanolamine, triethanolamine, borax and the like, hydrolyses, e.g., ethanol, sodium xylene sulfonate, sodium cumene sulfonate and the like, clays, antifoaming agents; e.g., aluminium stearate, soil-redeposition or anti-redeposition agents, optical brighteners, anti-foam agents and bactericides.

The list of optional ingredients is not intended to be exhaustive and other optional ingredients which may not be listed but are well known in the art may be included in the various compositions.
Copolymers

[0044] The block copolymers used in the invention may be defined by the following formula I:

\[-(A)_{n}-(B)_{m}-(C)_{p}-(I)\]

wherein \(A\) is a monomer, other than a terephthalate, said monomer being capable of absorbing ultraviolet radiation in the 280-400 nanometer (nm) range and bearing the appropriate bifunctionality for incorporation into the main chains of the polymer. Examples of such groups include planar aromatic basec moieties such as aminobenzoate esters, anthranilate esters, salicylate esters, hydroxycinnamate esters, hydroxycarboalkoxybenzophenones, hydroxycarboalkoxydibenzoylmethanes, carboalkoxyxcinnameate esters, dihydroxy- and dicarboxyalkoxybenzophenones, dihydroxy-, and dicarboxy-benzoylmethanes, dihydroxy-, dicarboxyalkoxy-, and dihydroxy-carboxy substitutted betacarotenes, and dihydroxy dicarboxyalkoxy-, and hydroxy-carboxy substituted vitamin E derivatives.

\[B\] is a hydrophilic monomer incorporated to confer hydrophilicity to hydrophobic surfaces;
\[C\] is a hydrophilic monomer incorporated to adjust the water solubility or water dispersibility and binding strength to hydrophobic surfaces;
\(n\) is at least 1 and may range from 1 to 500 preferably 50-500;
\(m\) is at least 5 and may range from 5 to 300; and
\(p\) may be zero and may range from 0 to 500.

[0045] It should be noted that if \(A\), the UV-absorbing monomer is itself water-soluble in that there is no precipitation from aqueous solution at a concentration of about 0.1 weight percent, then \(p\) defining the chain length of the hydrophobic monomer should be at least 1 to ensure deposition of the polymer. Also if the length of the hydrophilic monomer \(B\) or the percentage of \(B\) as a total percentage of the copolymer is such that the resulting copolymer is too water soluble to effectively allow the UV monomer to adsorb onto hydrophobic surfaces (i.e., of the fabric), then \(p\) must be greater than 0. Specifically, \(p\) must be large enough to ensure that adsorption takes place while at the same time not so large as to preclude water dispersibility. As indicated above, a careful balance must be maintained so that the copolymer is soluble enough to deliver normally insoluble UV monomer to a fabric surface yet the copolymer is sufficiently insoluble such that the delivered monomer can adsorb onto the fabric surface.

[0046] In general, the level of \(m\) is chosen to balance the water dispersibility, substantive and hydrophilic character of the deposited coating. In practice, a minimum value of \(m\) of approximately 5 is useful.

[0047] The monomer \(A\) may comprise 0.05 to 99.9 mol% of the polymer, preferably 5-75%, most preferably 20-70 mol%, the hydrophilic monomer \(B\) may comprise 0.05 to 49.9 mol% of the polymer, preferably 10 to 45%, most preferably 20-40 mol% and the hydrophobic monomer \(C\), if present, may comprise 0.05 to 49.9 mol% of the polymer, preferably 10 to 45%, most preferably 20-40%.

[0048] Although \(A\), \(B\), and \(C\) are expressed above as a copolymer, it is to be understood that the places of \(A\), \(B\) and \(C\) may be interchanged.

[0049] The block copolymers of the invention may be further defined by the following formula II:

\[
\begin{align*}
\text{R}_1 & \longleftrightarrow \text{R}_2 \\
\text{R}_3 & \longleftrightarrow \text{R}_4 \\
(\text{OR}_3) & \longleftrightarrow (\text{OR}_4) \\
\text{R}_5 & \longleftrightarrow \text{R}_6
\end{align*}
\]

wherein:
\(R\) is a difunctional aryl or alkyl group such as, for example, difunctional benzene or naphthalene, preferably difunctional benzene or a difunctional straight or branched alkyl chain containing 4 to 16 carbon atoms;
\(R_1\) is hydrogen or an aliphatic containing group having 1-20 carbons, preferably a straight-chained alkyl group having 1-12 carbons, most preferably 1 to 5 carbons, an aryl, an alkaryl, a secondary amine such as, for example, dialkylamine, an alkali metal sulfonate, an alkali metal carboxylate, an alkyl ether or a halogen atom;
EP 0 523 956 B2

R_2 is a straight or branched chain alkoxy group having 1 to 16 carbons, preferably 1 to 4 carbons, or an aryloxy or a substituted aryloxy group;

R_3 is a straight or branch chain alkyl group having 1 to 16 carbons, preferably a 1-3 carbons; and

R_4 is a UV absorbing-monomer bearing the appropriate bifunctionality for incorporation into the main chain of the polymer. By bifunctional is meant any UV absorbing monomer as defined above bearing at least the functional groups such as are well known to those skilled in the art. Examples include amines, esters, carboxylic acid, hydroxyl groups etc.

x, which represents the number of monomeric units of the optional hydrophobic group, is selected such that the hydrophobe is present at 0-49.9 mol% of the polymer;

y is selected such that the R_2 group is present at 0-49.9 mol% of the polymer;

z is selected such that the $(OR_3)_n$ group is present at 0-49.9 of the polymer wherein n is an integer between 2 and 200, preferably 10 to 25; and

w is selected such that the R_4 is present at 0.05-99.9 mol% of the polymer.

[0050] It should be noted that w plus z must equal at least 0.05 mol% and y plus z must also equal at least 0.05 mol%.

[0051] As discussed above, the UV absorbing monomer (represented above by R_4) is a moiety bearing the appropriate bifunctionality for incorporation into the main chain of the polymer. The UV absorbing monomer should absorb in the UVB (320-320 nm) and/or the UVA range (320-400 nm). Preferred monomers are either highly conjugated and/or poly (ene) based derivatives and/or aromatic based derivatives bearing the appropriate functional group. Examples of such UVB and/or UVA absorbers which may be used include p-aminobenzoic esters, m-aminobenzoic esters, anthranilate esters, salicylate esters, 2, 3, and 4-hydroxycinnamate esters; 2,2', 3,3', and 4,4'-dihydroxy and dicarboxylic esters; benzophenones and isomeric mixtures thereof; 2,2', 3,3', and 4,4'-dihydroxy and dicarboxylic dibenzylmethanes and isomeric mixtures thereof; and 2,2', 3,3', and 4,4'-dihydroxy- and dicarboxylic dibenzylacetones. Particularly preferred is methyl 4-aminobenzoate because of its ease of preparation and commercial availability. Still other examples of UV absorbing monomers which can suitably be used by those skilled in the art may be found in Shaaith, N.A., Encyclopedia of UV absorbers for Sunscreen Products. Cosmetics and Toiletries, 1987, March (pp 21-39).

[0052] As discussed above, the UV absorbing monomer may be added as 0.05-99.9 mol% of the polymer, preferably 5-75 mol%, most preferably 20-70%.

[0053] The hydrophilic component (represented by R_2 and $(OR_3)_n$) is incorporated to confer hydrophilicity to naturally hydrophobic surfaces such as soiled cotton or polyester as well as to facilitate transfer of the polymer through an aqueous medium. Hydrophilic monomers which may be used include, but are not limited to the -diols or alkyleneglycols such as ethylene glycol, propylene glycol, butylene glycol, and mixtures of the three. Other hydrophilic monomers which may be used as R_2 are based on simple sugars or poly(saccharides), or poly(ols) which may include glucose, sucrose, sorbitol or glycerol.

[0054] In a preferred embodiment of the invention, the R_2 is an ethylene glycol and $(OR_3)_n$ is a poly(ethylene glycol). Suitable polyethylene glycols which may be produced by Union Carbide and sold under the CARBOWAX(R) trade name. Examples include CARBOWAX(R) 300, 600, 1000, 3500 and the like. It is not absolutely required that the ethylene glycol monomeric unit be present as part of the final copolymer although generally the molecule is present at 5-30 mol%, preferably 10-30 mol% of the polymer.

[0055] The poly(ethylene glycol), however, must be present in at least sufficient quantity to ensure that the final copolymer may be delivered through an aqueous medium. In general, this monomer is present as 5-45 mol%, preferably 20-45% of the polymer.

[0056] In general, applicants have found that the reaction works favourably when the poly(ethylene glycol) is mixed with the ethylene glycol in a molar ratio of about 1.5:1. There is no criticality to this ratio, however, and the copolymer will form within any of the broad ranges described above.

[0057] The hydrophobic monomer which may be optionally incorporated is used to adjust the water solubility and binding strength of the copolymer to hydrophobic surfaces. As noted above, this monomer should be present if the UV absorbing monomer is water-soluble or if the percentage of y plus z (i.e., hydrophilic monomer) is so high that the polymer is too water soluble to adsorb onto hydrophobic surfaces. Suitable hydrophobic monomers which may be used include long chain aliphatic α, ω-diols, α, ω-diamines, or α, ω-dicarboxylates. Another suitable class of hydrophobic monomers includes the aromatic 4,4'-phenyleneediods, 4,4'-biphenols, or 4,4'-dihydroxydiphenyl ethers, as well as the analogous dicarboxylic acid and diaminospecies. Especially preferred monomers are teraphthalic acid and hexanediolic acid.
These monomers are generally added as 0.05-49.9 mol% of the reaction mixture, preferably 10-45 mol%.

In one especially preferred embodiment of the invention, the UV absorbing monomer is methyl 4-aminobenzoate, the hydrophilic monomer is a mixture of poly(ethylene glycol) and ethylene glycol and the hydrophobic monomer is dimethyl terephthalic acid.

The molecular weight of the copolymers may range from oligomers of about 750 to polymers of 100,000, preferably 1,000 to 15,000, and most preferably 2,000 to about 10,000. The ratio of monomers can vary broadly depending upon the end use requirements such as whether the polymer is being used for soil release, antiredeposition, or enzyme stabilization.

However, as is usual for soil release agents, some balance is generally sought between hydrophilic and hydrophobic properties. These can be fine tuned by those skilled in the art.

As mentioned above, in one embodiment of the invention, the copolymers of the present invention may be based upon the condensation product of dimethyl terephthalate, ethylene glycol, poly(ethylene glycol), and methyl 4-aminobenzoate.

The polyethylene glycol used will generally have a molecular weight ranging from about 200 to about 10,000.

These components may be combined via a 1-step transesterification reaction as set forth below:

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{CO}_2\text{CH}_3 \quad + \quad \text{HOCH}_2\text{CH}_2\text{OH} \quad + \\
\text{CH}_3\text{O}_2\text{C} & \quad \text{CO}_2\text{CH}_3 \quad + \quad \text{H}\left\{\text{OCH}_2\text{CH}_2\right\}_n\text{OH}
\end{align*}
\]

\[\text{220}^\circ\text{C} \quad \text{MeOH}\]

\[
\begin{align*}
\text{HN} & \quad \text{C} & \quad \text{OCH}_2\text{CH}_2\text{O} & \quad \text{C} \quad \text{OCH}_2\text{CH}_2\text{O} \quad \text{C} \\
\text{X} & \quad \text{Z} & \quad \text{X} & \quad \text{Z}
\end{align*}
\]

SCHEME 1

\[
\begin{align*}
X & = \quad 0-49.9 \text{ mol}\% \\
Y & = \quad 0-49.9 \text{ mol}\% \\
Z & = \quad 0-49.9 \text{ mol}\% \\
n-2 & = \quad 1-70\% \\
w & = \quad 0.05-99.9 \text{ mol}\%
\end{align*}
\]

According to the above scheme, the hydrophobic poly(ethylene terephthalate) unit has been incorporated to
adhere the polymer to hydrophobic surfaces such as oily soil residue on cotton fabric or polyester-based fabric. The hydrophobic poly (ethylene glycol) unit has been incorporated to facilitate polymer transfer through an aqueous medium and to modify a hydrophobic surface to a more hydrophilic state, thereby deterring oily soil build-up. The methyl 4-aminobenzoate unit has been incorporated primarily to provide anti-fading benefits. The methyl 4-aminobenzoate was obtained commercially.

[0066] Polymers were obtained by charging the reaction vessel with 1 eq of dimethyl terephthalate, 2 eq. of the ethylene glycol-poly(ethylene glycol) mixture, 0.5-3 eq. of 4-aminobenzoate, and suitable catalysts such as Ca(OAc)2. The contents of the reaction vessel were heated between 175-220°C for between 26-30 hours. The resulting materials ranged in molecular weight from 1,000-15,000 and absorbed UV light in the UVB (280-320 nm) range.

[0067] The following examples are intended to further illustrate the invention and are not intended to be limiting in any way.

EXEMPLARY PROCEDURE FOR PREPARATION OF POLYMERS

[0068] To a 250 mL 3-neck round bottom flask fitted with an overhead stirrer, distillation condenser, and nitrogen inlet tube was added 5.59g (28.8 mmol) dimethyl terephthalate, 2.15g (34.7 mmol) ethylene glycol, 33.45g (23.1 mmol) poly(ethylene glycol) MW = 1450, 6.05g (40.0 mmol) methyl p-aminobenzoate, 0.031g (0.20 mmol) Ca(OAc)2, 0.031g (0.11 mmol) Sb2O3, and 0.031g (0.14 mmol) 2,6-di-tert-butyl-4-methylphenol. The reaction vessel was purged with nitrogen and was heated at 175°C for 2h. The temperature was raised to 205°C, at which point MeOH began to distill off, and was heated at that temperature for 5h. The temperature was further raised to 220°C and maintained for an additional 19h. The reaction mixture was allowed to cool to room temperature, where upon the polymer was removed. Optionally, the reaction mixture was allowed to cool 80°C, and was placed under vacuum (2 torr). The reaction mixture was reheated to 220°C, and was kept at that temperature for 4h. The vacuum was removed and the reaction mixture was allowed to cool to room temperature under nitrogen.

1H NMR (CDCl3, 200 MHz), δ 3.68 (broad s, -(CH2)4CH2O)n, 3.84 (t, J = 4.7 Hz, -HNC6H4CO2CH2CH2O)n, 3.84 (t, J = 4.7 Hz, -HNC6H4CO2CH2CH2O)n, 3.84 (t, J = 4.7 Hz, -HNC6H4CO2CH2CH2O)n, 4.40 (t, J = 4.7 Hz, -HNC6H4CO2CH2CH2O)n, 4.49 (t, J = 4.7 Hz, -HNC6H4CO2CH2CH2O)n, 4.63 (s, -HNC6H4CO2CH2CH2O)n, 4.71 (s, -HNC6H4CO2CH2CH2O)n, 6.64 (d, J = 8.0 Hz, -HNC6H4CO2CH2CH2O)n, 7.85 (d, J = 8.0 Hz, -HNC6H4CO2CH2CH2O)n, 8.11 (s, -HNC6H4CO2CH2CH2O)n.

EXEMPLARY 2

PREPARATION AND CHARACTERISATION OF POLYMER FOR GPC AND UV SPECTROPHOTOMETRY

[0069] A series of poly(ethylene terephthalate)/poly(oxyethylene terephthalate)/poly(p-benzamide) polyamide/esters were synthesized according to the procedure described in Example 1. Samples were characterized by UV spectroscopy and gel permeation chromatography (GPC), using chloroform as the solvent. Molar extinction (ε) was calculated based upon the Beer’s Law equation ε = A/εc, where A = absorbance as measured by the UV spectrometer, 1 = path length, and c = the molar concentration. In the case of these polymers, molarity was based upon the molecular weight of the average repeating unit. The results are presented below in Table 1:

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B*</td>
</tr>
<tr>
<td>C*</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

* Vacuum employed

MW = molecular weight as determined by gel permeation chromatography (GPC)
λ max = wavelength (nanometres) of maximum absorbance
PEG MW = poly(ethylene glycol) molecular weight as specified by supplier
PABA = methyl 4-aminobenzoate
ε = extinction (i.e. A/εc) as defined by Beer’s Law
Table 1 (continued)

<table>
<thead>
<tr>
<th>Polymer</th>
<th>MW</th>
<th>(\lambda_{\text{max}})</th>
<th>PEG MW</th>
<th>(mol. eq.)</th>
<th>(\epsilon/(\text{mol-cm}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>2,000</td>
<td>286nm</td>
<td>600</td>
<td>0.60</td>
<td>8,400</td>
</tr>
<tr>
<td>F*</td>
<td>11,300</td>
<td>286nm</td>
<td>1,450</td>
<td>0.20</td>
<td>3,400</td>
</tr>
<tr>
<td>G*</td>
<td>9,000</td>
<td>285nm</td>
<td>1,450</td>
<td>0.33</td>
<td>7,500</td>
</tr>
<tr>
<td>H</td>
<td>6,700</td>
<td>283nm</td>
<td>1,450</td>
<td>0.50</td>
<td>8,800</td>
</tr>
<tr>
<td>I*</td>
<td>6,800</td>
<td>284nm</td>
<td>1,450</td>
<td>0.50</td>
<td>6,500</td>
</tr>
<tr>
<td>J*</td>
<td>9,100</td>
<td>286nm</td>
<td>1,450</td>
<td>0.50</td>
<td>6,000</td>
</tr>
<tr>
<td>K</td>
<td>5,600</td>
<td>284nm</td>
<td>1,450</td>
<td>0.60</td>
<td>8,900</td>
</tr>
<tr>
<td>L*</td>
<td>5,600</td>
<td>284nm</td>
<td>1,450</td>
<td>0.60</td>
<td>8,900</td>
</tr>
<tr>
<td>M</td>
<td>11,700</td>
<td>281nm</td>
<td>3,350</td>
<td>0.50</td>
<td>8,900</td>
</tr>
<tr>
<td>N</td>
<td>11,100</td>
<td>283nm</td>
<td>3,350</td>
<td>0.60</td>
<td>10,700</td>
</tr>
<tr>
<td>O</td>
<td>1,700</td>
<td>283nm</td>
<td>600</td>
<td>0.50</td>
<td>5,300</td>
</tr>
<tr>
<td>P</td>
<td>13,700</td>
<td>280nm</td>
<td>3,400</td>
<td>0.50</td>
<td>7,770</td>
</tr>
</tbody>
</table>

* Vacuum employed
MW = molecular weight as determined by gel permeation chromatography (GPC)
\(\lambda_{\text{max}} \) = wave-length (nanometres) of maximum absorbance
PEG MW = poly(ethylene glycol) molecular weight as specified by supplier
PABA = methyl 4-aminobenzoate
\(\epsilon \) = extinction (i.e. A/d) as defined by Beer’s Law

EXAMPLE 3

[0071] Solutions of anti-fade polymers of the present invention were prepared by dissolving 2g of anti-fade polymer in 50g of chloroform. Solutions were sprayed from a Humbrol Spray Gun onto 10 x 15 cm swatches of green cotton. Approximately 0.04g of the anti-fade polymers were deposited onto each test cloth. The test swatches were exposed to simulated solar radiation via an Atlas CIE/6 Weather-O-meter for 45h. The spectral output (xenon arc radiation filtered through borosilicate glass) approximates Mierni (25° 46' north latitude) daylight. Test conditions meet BS 1006 and DIN standards for light fastness testing. Anti-fade protection was assessed by reflectance spectroscopy using an ICS Micromatch Reflectance Spectrophotometer. The percent anti-fade protection was calculated as the change in reflectance (Ks) from the untreated to the treated cloths, relative to the untreated cloths, i.e.,

\[
\% \text{ Anti-fade protection} = (K_s \text{ untreated} \cdot K_s \text{ treated}) - K_s \text{ untreated}.
\]

[0072] The results for green cotton are shown below in Table 2:

Table 2

<table>
<thead>
<tr>
<th>Polymer</th>
<th>MW</th>
<th>PEG MW (mol. eq.)</th>
<th>% Anti-Fade Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,600</td>
<td>600</td>
<td>0.50</td>
</tr>
<tr>
<td>E</td>
<td>2,000</td>
<td>600</td>
<td>0.60</td>
</tr>
<tr>
<td>H</td>
<td>6,700</td>
<td>1,450</td>
<td>0.50</td>
</tr>
<tr>
<td>P</td>
<td>13,700</td>
<td>3,400</td>
<td>0.50</td>
</tr>
<tr>
<td>K</td>
<td>5,800</td>
<td>1,450</td>
<td>0.60</td>
</tr>
<tr>
<td>A</td>
<td>1,000</td>
<td>600</td>
<td>0.60</td>
</tr>
<tr>
<td>O</td>
<td>1,700</td>
<td>600</td>
<td>0.50</td>
</tr>
<tr>
<td>C</td>
<td>2,700</td>
<td>600</td>
<td>0.50</td>
</tr>
</tbody>
</table>

[0073] This Example shows that, of the polymers from Table 1 tested, anti-fade protection ranging from 2.6-30% increases were found. The Example shows that a UV absorbing monomer can be incorporated into a water-dispersible or water soluble copolymer which can be used in a solvent vehicle and that the copolymer will provide anti-fading effect.
The polymer causes no noticeable staining of the fabric.

It should be noted that not all polymers of Table 1 were tested but that the polymers of Table 2 were selected as representative examples having an adequate distribution of molecular weight and PABA loading.

Example 4

Anti-Fading Evaluation: Polymer Delivery Via Chloroform Vehicle Onto Blue Polyester

Solutions of anti-fade polymers of the present invention were prepared by dissolving 2g of anti-fade polymer in 50g of chloroform. Solutions were sprayed from a Humbrol Spray Gun onto 10 x 15 cm swatches of blue polyester. Approximately 0.04g of the anti-fade polymers were deposited onto each test cloth. The test swatches were exposed to simulated solar radiation via an Atlas Ci65a Weather-O-Meter for 45h. The spectral output (xenon arc radiation filtered through borosilicate glass) approximates Miami (25°, 46° north latitude) daylight. Test conditions meet BS 1006 and DIN standards for light fastness testing. Anti-fade protection was assessed by reflectance spectroscopy using an ICS Micromatch Reflectance Spectrophotometer. The percent anti-fade protection was calculated as the change in reflectance (Ks) from the untreated to the treated cloths, relative to the untreated cloths, i.e.,

\[
\% \text{ Anti-fade protection} = \frac{\text{Ks untreated} - \text{Ks treated}}{\text{Ks untreated}}
\]

The results for blue polyester are shown below in Table 3:

Table 3

<table>
<thead>
<tr>
<th>Polymer</th>
<th>MW</th>
<th>PEG MW</th>
<th>(mol. eq.)</th>
<th>% Anti-Fade Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>6700</td>
<td>1,450</td>
<td>0.05</td>
<td>3.6</td>
</tr>
<tr>
<td>A</td>
<td>1000</td>
<td>600</td>
<td>0.60</td>
<td>3.2</td>
</tr>
<tr>
<td>O</td>
<td>1700</td>
<td>600</td>
<td>0.60</td>
<td>2.1</td>
</tr>
<tr>
<td>C</td>
<td>2700</td>
<td>600</td>
<td>0.50</td>
<td>8.3</td>
</tr>
</tbody>
</table>

This example again shows that a UV absorbing monomer can be incorporated into a solvent vehicle and impart anti-fading effect. The selection of polymer in Table 3 was made on the basis of effectiveness from the results of Table 2.

EXAMPLE 5

Anti-Fading Evaluation: Polymer Delivery Via a Rinse Conditioner Formulation onto Blue Polyester

Rinse conditioners containing 5% w/w Arquad 2HT (TM) (dihardened tallow dimethylammonium chloride) softener and 2.5% w/w anti-fade polymer were prepared by adding a neat mixture of the melted solids to 70°C water with vigorous agitation. These fabric care formulations were used at a concentration of 4g/l on 10g swatches of blue polyester. The rinse treatment was carried out in a terq-o-tometer at 60 rpm with 21°C demineralized water for 5 min. The polyester fabric pieces were spun and line dried. These test swatches were exposed to simulated solar radiation via an Atlas Ci65a Weather-O-Meter for 45h. The spectral output (xenon arc radiation filtered through borosilicate glass) approximates Miami (25°, 46° north latitude) daylight. Test conditions meet BS 1006 and DIN standards for light fastness testing. Anti-fade protection was assessed by reflectance spectroscopy using an ICS Micromatch Reflectance Spectrophotometer. The percent anti-fade protection was calculated as the change in reflectance (Ks) from the untreated to the treated cloths, relative to the untreated cloths, i.e.,

\[
\% \text{ Anti-fade protection} = \frac{(\text{Ks untreated} - \text{Ks treated})}{\text{Ks untreated}}
\]

The results for blue polyester are shown below in Table 4:
Table 4

<table>
<thead>
<tr>
<th>Polymer</th>
<th>MW</th>
<th>PEG MW</th>
<th>(mol. eq.)</th>
<th>% Anti-Fade Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>6,700</td>
<td>1,450</td>
<td>0.50</td>
<td>14.9</td>
</tr>
<tr>
<td>A</td>
<td>1,000</td>
<td>600</td>
<td>0.60</td>
<td>1.8</td>
</tr>
<tr>
<td>O</td>
<td>1,700</td>
<td>600</td>
<td>0.50</td>
<td>3.4</td>
</tr>
<tr>
<td>C</td>
<td>2,700</td>
<td>600</td>
<td>0.50</td>
<td>3.0</td>
</tr>
</tbody>
</table>

[0081] This Example is similar to Example 4 and demonstrates that a UV absorbing monomer can be incorporated into a fabric care composition and can impart anti-fading effect.

[0082] In Example 4, delivery of the polymer was via a chloroform solvent while, in this Example, delivery was via a rinse conditioner in a wash.

EXAMPLE 6

Soil Release Evaluation: Polymer Delivery Via a Rinse Conditioner Formulation Onto Virgin (Undyed) Polyester

[0083] Rinse conditioners containing 5% w/w dihardened tallow dimethylammonium chloride softener (Arquad 2HT (TM)) and 1% w/w anti-fade polymer were prepared by adding a neat mixture of the melted solids to 70°C water with vigorous agitation. These fabric care formulations were used at a concentration of 2mL/L on 3" x 10" swatches of virgin polyester. The rinse treatment was carried out in a terg-o-meter at 80 rpm with 21°C demineralized water for 5 min. The polyester fabrics were line dried. The test cloths were stained with a 100μL solution of 0.06% w/w sudan red in olive oil, and left to wick for four days. Baseline reflectance data were obtained using an ICS Micromatch Reflectance Spectrophotometer. The test cloths were re-washed in a terg-o-meter at 40°C with 5g/L of a commercially available laundry detergent for 15 min., rinsed at 21°C for 5 min., and line dried. Soil release benefit from the anti-fade polymers was assessed by redetermining reflectance. The percent detergency (i.e., soil release) was calculated as the change in reflectance (Ks) from the cloths before to the cloths after re-washing, relative to the cloths before re-washing, i.e.,

% Detergency = (Ks before - Ks after) / Ks before

[0084] The results for virgin polyester are shown below in Table 5:

Table 5

<table>
<thead>
<tr>
<th>Polymer</th>
<th>MW</th>
<th>PEG MW</th>
<th>(mol. eq.)</th>
<th>% Detergency</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,600</td>
<td>600</td>
<td>0.50</td>
<td>81</td>
</tr>
<tr>
<td>E</td>
<td>2,000</td>
<td>600</td>
<td>0.60</td>
<td>74</td>
</tr>
<tr>
<td>H</td>
<td>6,700</td>
<td>1,450</td>
<td>0.50</td>
<td>85</td>
</tr>
<tr>
<td>P</td>
<td>13,700</td>
<td>3,400</td>
<td>0.50</td>
<td>36</td>
</tr>
<tr>
<td>K</td>
<td>5,800</td>
<td>1,450</td>
<td>0.60</td>
<td>86</td>
</tr>
<tr>
<td>A</td>
<td>1,000</td>
<td>600</td>
<td>0.60</td>
<td>42</td>
</tr>
<tr>
<td>O</td>
<td>1,700</td>
<td>600</td>
<td>0.50</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>2,700</td>
<td>600</td>
<td>0.50</td>
<td>94</td>
</tr>
</tbody>
</table>

[0085] This Example shows that the novel copolymer of the invention can be used not only to impart anti-fading effect, but that it simultaneously imparts soil-release effect when the copolymer is incorporated in a fabric composition.

EXAMPLES 7-11

[0086] Use of copolymers of the Invention in Heavy Duty Liquid (HDL) Compositions.
Example 1

Composition 1

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>wt.%</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium C11-C15 Alkyl Benzene Sulfonate</td>
<td>10.0</td>
<td>17.0</td>
<td>26.0</td>
<td>15.0</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>Sodium Alkyl Ethoxy Sulfate(2)</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>Alcohol Ethoxylate(1)</td>
<td>8.0</td>
<td>7.0</td>
<td>12.0</td>
<td>5.0</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>Sodium Citrate</td>
<td>7.0</td>
<td>7.0</td>
<td>10.0</td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Sodium Salts of C12-C18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Fatty Acid</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Sodium tartrate mono and disuccinate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Monoethanolamine</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Silicate</td>
<td>--</td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savinase(TM)</td>
<td>0.75</td>
<td></td>
<td></td>
<td>0.75</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Sodium Borate</td>
<td>3.5</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Formate</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Glycerol</td>
<td>--</td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propylene Glycol</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Sodium Xylene Sulfonate</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td>1.0</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Tinopal UNPA(TM)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>FW Polyester</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
1) C12 to C15 alcohol condensed with 9 mole ethylene oxide
2) C12 to C15 alcohol condensed with 3 mole ethylene oxide and sulphated

Example 2

Composition 2

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>wt.%</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium C11-C15 Alkyl Benzene Sulfonate</td>
<td>11.0</td>
<td>11.5</td>
<td>17.0</td>
<td>11.0</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>Sodium C12-C15 Alkyl Ethoxy Sulfate(2)</td>
<td>--</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium C12-C15 Alkyl Sulfate</td>
<td>10.0</td>
<td></td>
<td></td>
<td>9.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Alcohol Ethoxylate(1)</td>
<td>--</td>
<td>3.0</td>
<td></td>
<td>2.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Sodium Salt of C12-C15 Fatty Acid</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Sodium Tripolyphosphate</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>Sodium Aluminosilicate</td>
<td>25.0</td>
<td>15.0</td>
<td>20.0</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Silicate</td>
<td>3.0</td>
<td>20.0</td>
<td>5.0</td>
<td>15.0</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>Sodium Carbonate</td>
<td>18.0</td>
<td>18.0</td>
<td>15.0</td>
<td>30.0</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Savinase(TM)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Tinopal AMS(TM)</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
(1) & (2) same as HDL compositions
EP 0 523 956 B2

(continued)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW Polyester</td>
<td></td>
</tr>
<tr>
<td>Sodium Sulfate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethyl/alkyl ammonium chloride</td>
<td>3.2</td>
</tr>
<tr>
<td>Trimethyl/alkyl ammonium chloride</td>
<td>0.6</td>
</tr>
<tr>
<td>Alkyl amidoethyl alkyl imidazoline</td>
<td>3.3</td>
</tr>
<tr>
<td>Polydimethyl siloxane</td>
<td>0.1</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.7</td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>0.1</td>
</tr>
<tr>
<td>FW Polyester</td>
<td>0.1</td>
</tr>
<tr>
<td>Water</td>
<td>0.1</td>
</tr>
</tbody>
</table>

[0068] Use of copolymers of the invention in Fabric Softener Compositions.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethyl/alkyl ammonium chloride</td>
<td>6.5</td>
</tr>
<tr>
<td>Trimethyl/alkyl ammonium chloride</td>
<td>6.25</td>
</tr>
<tr>
<td>Alkyl amidoethyl alkyl imidazoline</td>
<td>16.0</td>
</tr>
<tr>
<td>Polydimethyl siloxane</td>
<td>0.5</td>
</tr>
<tr>
<td>Ethanol</td>
<td>1.4</td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>0.3</td>
</tr>
<tr>
<td>FW Polyester</td>
<td>0.1</td>
</tr>
<tr>
<td>Water</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Claims

1. A fabric care composition comprising

 (a) 1-75% by weight of a surfactant selected from the group consisting of soap, nonionic surfactant, anionic surfactant, amphoteric surfactant, zwitterionic surfactant, cationic surfactant and mixture thereof; and

 (b) 0.01 to 10% by weight of a water-soluble or water dispersible block copolymer having the formula:

\[-(A)_n-(B)_m-(C)_p \] \((I) \)

wherein A is a monomer, other than a terephthalate, said monomer being capable of absorbing ultraviolet radiation in the 280-400 nanometre (nm) range and bears the appropriate bifunctionality for incorporation into the main chain of the polymer;

B is a hydrophilic monomer;

C is a hydrophobic monomer;

n ranges from 1 to 500;

m ranges from 5 to 500; and

p ranges from 0 to 500.

2. A fabric care composition according to claim 1, wherein the block copolymer has the formula:
EP 0 523 956 B2

wherein:

R is a difunctional aryl group or a difunctional straight or branched alkyl chain having 4 to 16 carbons;

R₁ is hydrogen, an aliphatic group having 1-20 carbons, an aryl, an alkaryl, a secondary amine, an alkali metal sulfonate, an alkali metal carboxylate, an alkyl ether or a halogen atom;

R₂ is a straight or branched chain alkoxy group having 1 to 16 carbons, an aryl or a substituted aryl group;

R₃ is a straight or branch chain alkyl group having 1 to 16 carbons;

R₄ is a UV-absorbing monomer absorbing in the UVB (280-320 nm) and/or UVA (320-400 nm) range;

x is selected such that the hydrophobe comprises 0-49.9% of the polymer;

y is selected such that the R₂ group comprises 0-49.9 mol% of the polymer;

z is selected such that the (OR₃) group comprises 0 to 49.9 mol% of the polymer wherein n is an integer between 2 and 200; and

w is selected such that R₄ comprises 0.05-99.9 mol% polymer;

and wherein w plus z equals at least 0.05 mol%, and y plus z equals at least 0.05 mol%.

3. A composition according to claim 2 wherein R is

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
\text{C} \\
\text{C} \\
\text{O}
\end{array}
\]

and R₁ is hydrogen.

4. A composition according to claim 2 wherein R₂ is -OCH₂CH₂-.

5. A composition according to claim 2 wherein R₃ is -CH₂CH₂-.

6. A composition according to claim 2 wherein R₄ is a highly conjugated and/or poly(ene)-based derivative and/or aromatic based derivative bearing a difunctional group.

7. A composition according to claim 2 wherein R₄ is

\[
\begin{array}{c}
\text{N} \\
\text{H} \\
\text{C} \\
\text{C} \\
\text{O}
\end{array}
\]

8. A composition according to claim 2 wherein the block copolymer is prepared by polymerizing a mixture of dimethyl terephthalate, ethylene glycol, polyethylene glycol of MW 200-3000 and methyl 4-aminobenzoate.

9. A composition according to claim 1 wherein the composition is a heavy duty liquid detergent comprising:
from 1-75% by weight of a detergent-active compound, wherein the detergent active compound includes 0 to 40% of an anionic surfactant selected from the group consisting of alkyl benzene sulfonates, alkyl sulfates, and alkyl ethoxy sulfates in combination with 0 to 40% of a nonionic surfactant selected from the group consisting of alcohol alkoxylates, alkyl phenol alkoxylates, alkyl polyglycosides, and alkyl glycerol ethers; and

from 0 to 30% of a detergent builder selected from the group consisting of alkali metal salts of citric acid, copolymers of acrylic and maleic acid, oxysuccinate, tartrate monosuccinate/tartrate disuccinate, C₈ to C₁₈ carboxylic acids, zeolites, condensed phosphates, and combinations thereof.

10. A composition according to claim 1, wherein the composition is a powdered detergent comprising: a) from 0 to about 40% anionic surfactant selected from the group consisting of alkali metal or ammonium salts of alkyl benzene sulfonates, alkyl sulfates, alkyl ether sulfates; b) from 0 to about 40% of a nonionic surfactant selected from the group consisting of alkyl alkoxylates, alkylphenol alkoxylates, alkyl polyglycosides, and alkyl glycerol ethers; c) from 5 to about 70% of a detergent builder selected from the group consisting of sodium tripolyphosphate, sodium aluminosilicates, sodium C₈-C₁₈ alkyl carboxylates, poly(acrylic acid) and copolymers of acrylic and maleic acid, alkyl ether carboxylates, citric acid and combinations thereof; d) from 2 to about 40% of an alkalinity buffer selected from the group consisting of sodium silicate, sodium carbonate, and organic amines; and e) from 0 to about 40% sodium sulfate.

11. A composition according to claim 1, wherein the composition is a fabric softener composition comprising from 2 to about 40% of a mixture comprising: a) from 0 to about 95% of a cationic ammonium salt selected from the group consisting of alkyl or alkaryl quaternary ammonium salts, alkylpyridinium salts, and substituted imidazolium salts; b) from 0 to about 95% of primary, secondary or tertiary amines; c) from 0 to about 95% of the condensation product of a C₈ to C₁₈ alkyl carboxylic acid and an alkyl(polyamine; and d) from 0 to about 40% of a polysiloxane or alkyl, alkoxy, or alkylamine modified polysiloxane.

12. A composition according to claim 19, wherein the cationic softener is an ester-linked quaternary material having the formula

\[
\begin{align*}
\text{R}_1 &\quad \text{N}^+ \quad \text{O} \quad \text{CH} \quad \text{CH}_3 \\
\text{R}_2 &\quad \text{T} \\
\text{R}_3 &\quad \text{T}
\end{align*}
\]

wherein each \(R_1 \) group is independently selected from \(C_{1-4} \) alkyl, alkenyl or hydroxyalkyl groups; each \(R_2 \) group is independently selected from \(C_{12-24} \) alkyl or alkenyl groups;

\(T \) is

\[
\begin{align*}
\text{-C-C-} &\quad \text{-O-C-O-} &\quad \text{or} &\quad \text{-C-O-} \\
\end{align*}
\]

and

\(n \) is an integer from 0-5.

13. A composition according to claim 1, wherein the composition is a fabric dryer sheet comprising a) from 5 to 40% of a fabric softening or antistatic agent selected from the group consisting of cationic alkyl or alkaryl ammonium
salts, alkyl pyridinium salts, alkyl amines, clays and poly siloxanes; b) from 2 to about 90% of a dispersing agent selected from group consisting of urea, ammonium carbonate, ethoxylated alcohols, polyethylene glycols, and block copolymers of a polyethylene glycol and polypropylene glycol, and c) a backing strip or sheet carrying said composition.

(a) 1-75% by weight of a surfactant selected from the group consisting of soap, nonionic surfactant, anionic surfactant, amphoteric surfactant, zwitterionic surfactant, cationic surfactant and mixtures thereof; and

(b) 0.01 to 10% by weight of a water-soluble or water dispersible block copolymer having the formula:

\[-(A)_n-(B)_m-(C)_p-\] (I)

wherein A is a monomer, other than a terephthalate, said monomer being capable of absorbing ultraviolet radiation in the 280-400 nanometre (nm) range and bears the appropriate bifunctionality for incorporation into the main chain of the polymer.

B is a hydrophilic monomer;
C is a hydrophobic monomer;
n ranges from 1 to 500;
m ranges from 5 to 600; and
p ranges from 0 to 500.

Patentansprüche

1. Ein Wäschepflegemittel, enthaltend

(a) 1 bis 75 Gewichtsprozent eines Surfactants, ausgewählt aus der Gruppe bestehend aus Seife, nichtionischem Surfactant, anionischem Surfactant, amphoterischem Surfactant, zwitterionischem Surfactant, kationischem Surfactant und Mischungen derselben; und

(b) 0.01 bis 10 Gewichtsprozent eines wasserlöslichen oder wasserdispersierbaren Blockcopolymeren der Formel:

\[-(A)_n-(B)_m-(C)_p-\] (I)

worin A ein von einem Terephthalat verschiedenen Monomers ist, wobei das Monomere fähig zur Absorption ultravioletter Strahlung in dem 280-400-Nanometer-(nm)-Bereich ist und die geeignete Bifunktionalität für die Inkorporierung in die Hauptkette des Polymere aufweist;

B ein hydrophiles Monomeres ist;
C ein hydrophobes Monomeres ist;
n im Bereich von 1 bis 500 liegt;
m im Bereich von 5 bis 500 liegt; und
p im Bereich von 0 bis 500 liegt.

2. Ein Wäschepflegemittel nach Anspruch 1, worin das Blockcopolymeren die nachfolgende Formel aufweist:

\[
\begin{align*}
\text{R} & \quad \text{R}^2 \\
\text{R}^1 & \quad \text{OR}^3 \\
\text{R} & \quad \text{R}^4 \\
\end{align*}
\]
worin:

\[R \] eine difunktionelle Arylgruppe oder eine difunktionelle geradkettige oder verzweigkettige Alkylkette mit 4 bis 16 Kohlenstoffatomen ist,

\[R^1 \] Wasserstoff, eine aliphatische Gruppe mit 1 bis 20 Kohlenstoffatomen, ein Aryl, ein Alkaryl, ein sekundäres Amin, ein Alkalimetallsulfonat, ein Alkalimetallcarboxylat, ein Alkylether oder ein Halogenatom bedeutet,

\[R^2 \] eine geradkettige oder verzweigkettige Alkoxygruppe mit 1 bis 16 Kohlenstoffatomen, eine Aryl- oder eine substituierte Arylgruppe ist,

\[R^3 \] eine geradkettige oder verzweigkettige Alkylgruppe mit 1 bis 16 Kohlenstoffatomen bedeutet,

\[R^4 \] ein UV-absorbierendes Monomeres, absorbierend in dem UVB-Bereich (290-320 nm) und/oder in dem UVA-Bereich (320-400 nm), ist,

\[x \] so ausgewählt ist, daß das Hydrophob 0 bis 49,9 % des Polymeren enthält,

\[y \] so ausgewählt ist, daß die \(R^2 \)-Gruppe 0 bis 49,9 Molprozent des Polymeren enthält,

\[z \] so ausgewählt ist, daß die \((OR^3) \)-Gruppe 0 bis 49,9 Molprozent des Polymeren enthält, worin \(n \) eine ganze Zahl mit einem Wert von zwischen 2 und 200 ist, und

\[w \] so ausgewählt ist, daß \(R^4 \) 0,05 bis 99,9 Molprozent Polymeres enthält, und worin \(w \) plus \(z \) zumindest 0,05 Molprozent entspricht, und \(w \) plus \(z \) zumindest 0,05 Molprozent entspricht.

3. Eine Zusammensetzung nach Anspruch 2, worin \(R \) die nachfolgende Formel

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
\text{O} \\
\text{C}
\end{array}
\]

besitzt und \(R^1 \) Wasserstoff ist.

4. Eine Zusammensetzung nach Anspruch 2, worin \(R^2 \cdot \text{OCH}_2\text{CH}_3 \) bedeutet.

5. Eine Zusammensetzung nach Anspruch 2, worin \(R^3 \cdot \text{CH}_2\text{CH}_2 \) bedeutet.

6. Eine Zusammensetzung nach Anspruch 2, worin \(R^4 \) ein hochkonjugiertes und/oder ein auf Poly(ε-caprolacton) basierendes Derivat und/ oder ein Derivat auf aromatischer Basis ist, enthaltend eine difunktionelle Gruppe.

7. Eine Zusammensetzung nach Anspruch 2, worin \(R^4 \) die nachfolgende Formel bedeutet:

\[
\begin{array}{c}
\text{H} \\
\text{N} \\
\text{O} \\
\text{C}
\end{array}
\]

9. Eine Zusammensetzung nach Anspruch 1, worin die Zusammensetzung ein flüssiges Vollwaschmittel ist, welches enthält:

Von 1 bis 75 Gewichtsprozent einer detergentaktiven Verbindung, worin die detergentaktive Verbindung 0 bis 40 % eines anionischen Surfactants enthält, ausgewählt aus der Gruppe bestehend aus Alkylbenzolsulfonaten, Alkylethersulfaten und Alkylethersulfonaten in Kombination mit 0 bis 40 % eines nichtionischen Surfactants, ausgewählt aus der Gruppe bestehend aus Alkoholalkohylxylaten, Alkylphenolalkohylxylaten, Alkylpolyglycosiden und Alkylglycerinen, und von 0 bis 30 % eines Detergens-Builders, ausgewählt aus der Gruppe bestehend aus Alkali-
10. Eine Zusammensetzung nach Anspruch 1, worin die Zusammensetzung ein pulverisiertes Detergens ist, welches enthält:

(a) Von 0 bis etwa 40 % anionisches Surfactant, ausgewählt aus der Gruppe bestehend aus Alkalimetall- oder Ammoniumsalzen von Alkylbenzolsulfonaten, Alkylsulfaten, Alkylethersulfaten,
(b) von 0 bis etwa 40 % eines nichtionischen Surfactants, ausgewählt aus der Gruppe bestehend aus Alkylalkoxyläufen, Alkylphenolalkoxyläufen, Alkylpolyglycosiden und Alkylglycerinethern,
(c) von 5 bis etwa 70 % eines Detergents-Builders, ausgewählt aus der Gruppe bestehend aus Natriumtripolyphosphat, Natriumaluminosilicaten, Natrium-C₆₋₁₈-Alkylcarboxylaten, Poly(acylsäure) und Copolymeren von Acryl- und Maleinsäure, Alkylethercarboxylaten, Citronensäure und Kombinationen derselben,
(d) von 2 bis etwa 40 % eines Alkalinitätspuffers, ausgewählt aus der Gruppe bestehend aus Natriumsilicat, Natriumcarbonat und organischen Aminen, und
(e) von 0 bis etwa 40 % Natriumsulfat.

11. Eine Zusammensetzung nach Anspruch 1, worin die Zusammensetzung eine gewebeweichmachende Zusammensetzung ist, enthaltend von 2 bis etwa 40 % einer Mischung, bestehend aus:

(a) Von 0 bis etwa 95 % eines kationischen Ammoniumsalzes, ausgewählt aus der Gruppe bestehend aus Alky- oder Alkaryl-quaternären Ammoniumsalzen, Alkylpyridiniumsalzen und substituierten Imidazoliniumsalzen,
(b) von 0 bis etwa 95 % an primären, sekundären oder tertiären Aminen,
(c) von 0 bis etwa 95 % des Kondensationsproduktes einer C₆₋₁₈-Alkylcarbonsäure und eines Alkylpolyamins, und
(d) von 0 bis etwa 40 % eines Polysiloxans oder Alkyl-, Alkoxy- oder Alkyamin-modifizierten Polysiloxans.

12. Eine Zusammensetzung nach Anspruch 11, worin der kationische Weichmacher ein Ester-gebundenes quaternäres Material der nachfolgenden Formel

\[
\begin{align*}
R^1 & \text{N}^+ \text{(CH₂)}_n \text{CHCH₂} \\
R^1 & \text{CHCH₂} \\
R^2 & \text{CHCH₂}
\end{align*}
\]

ist, worin jede R¹-Gruppe, unabhängig, aus C₁₋₄-Alkyl-, Alkenyl- oder Hydroxyalkyl-Gruppen ausgewählt ist; jede R²-Gruppe, unabhängig, aus C₁₂₋₂₄-Alkyl- oder Alkenyl-Gruppen ausgewählt ist;

\[
\begin{align*}
\text{T} & \\
\text{O} & \text{O} \\
\text{O} & \text{O}
\end{align*}
\]

bedeutet,
und n eine ganze Zahl mit einem Wert von 0 bis 5 ist.

13. Eine Zusammensetzung nach Anspruch 1, worin die Zusammensetzung eine Gewebetrocknerlamelle ist, welche enthält:
14. Ein Verfahren zur Herstellung eines Wäschepflegemittels, enthaltend die Stufen des Zusammenmischens von

(a) 1 bis 75 Gewichtsprozent eines Surfactants, ausgewählt aus der Gruppe bestehend aus Seife, nichtionischem Surfactant, anionischem Surfactant, ampholytischem Surfactant, zwitterionischem Surfactant, kationischem Surfactant und Mischungen derselben, und
(b) 0,01 bis 10 Gewichtsprozent eines wasserlöslichen oder wasserdispersierbaren Blockcopolymers der nachfolgenden Formel:

\[-(A)_{n}-(B)_{m}-(C)_{p}^{-}\]

worin A ein von einem Terephthalat verschiedenes Monomer ist, wobei das Monomere fähig zur Absorption ultravioletter Strahlung in dem 280-400-Nanometer-(nm)-Bereich ist und die geeignete Bifunktionalität für die Inkorporierung in die Hauptkette des Polymeren aufweist;

B ein hydrophiles Monomer ist;
C ein hydrophobes Monomer ist;
n im Bereich von 1 bis 500 liegt;
m im Bereich von 5 bis 500 liegt; und
p im Bereich von 0 bis 500 liegt.

Revendications

1. Une composition pour le traitement du linge contenant:

(a) 1 à 75 % en poids d'un agent tensioactif sélectionné parmi le groupe composé de savon, d'agent tensioactif non ionique, d'agent tensioactif anionique, d'agent tensioactif ampholyte, d'agent tensioactif zwitterionique, d'agent tensioactif cationique et de mélanges de ceux-ci; et

(b) 0,01 à 10 % en poids d'un copolymère bloc soluble dans l'eau ou dispersible dans l'eau et présentant la formule:

\[-(A)_{n}-(B)_{m}-(C)_{p}^{-}\]

où A est un monomère autre que o-téréphthalate, ledit monomère étant capable d'absorber les rayons ultraviolets compris dans la gamme allant de 280 à 400 nanomètres (nm), et qui supporte la bifonctionnalité appropriée pour être incorporée dans la chaîne principale du polymère ;

B est un monomère hydrophile ;
C est un monomère hydrophobe ;
n est compris dans la gamme allant de 1 à 500 ;
m est compris dans la gamme allant de 5 à 500 ; et
p est compris dans la gamme allant de 0 à 500.

2. Une composition pour le traitement du linge selon la Revendication 1, dans laquelle le copolymère bloc présente la formule :
où :

R est un groupe aryle difonctionnel ou une chaîne alkyle difonctionnelle linéaire ou ramifiée présentant 4 à 16 atomes de carbone ;

\(R_1 \) est de l'hydrogène, un groupe aliphatique présentant 1 à 20 atomes de carbone, un aryle, un alkaryle, une amine secondaire, un sulfonate de métal alcalin, un carboxylate de métal alcalin, un alkyléther ou un atome d'halogène ;

\(R_2 \) est un groupe alkoxy à chaîne linéaire ou ramifiée présentant 1 à 16 atomes de carbone, un groupe aryle ou un groupe aryle substitué ;

\(R_3 \) est un groupe alkyle à chaîne linéaire ou ramifiée présentant 1 à 16 atomes de carbone ;

\(R_4 \) est un monomère absorbant les rayons ultraviolets compris dans la gamme des UVB (280 à 320 nm) et/ou des UVA (320 à 400 nm) ;

x est sélectionné de façon telle que la partie hydrophobe comprend 0 à 49,9 % du polymère ;

y est sélectionné de façon telle que le groupe \(R_2 \) comprend 0 à 49,9 % en moles du polymère ;

z est sélectionné de façon telle que le groupe \((OR_3)\) comprend 0 à 49,9 % en moles du polymère dans lequel n est un entier compris entre 2 et 200 ; et

w est sélectionné de façon telle que \(R_4 \) comprend 0,05 à 99,9 % en moles du polymère ;

et où w plus z est au moins égal à 0,05 % en moles et y plus z est au moins égal à 0,05 % en moles.

3. Une composition selon la Revendication 2, dans laquelle R est

4. Une composition selon la Revendication 2, dans laquelle \(R_2 \) est -OCH\(_2\)CH\(_2\)-.

5. Une composition selon la Revendication 2, dans laquelle \(R_3 \) est -CH\(_2\)CH\(_2\)-.

6. Une composition selon la Revendication 2, dans laquelle \(R_4 \) est un dérivé fortement conjugué et/ou à base de poly(ène) et/ou un dérivé à base de composé aromatique supportant un groupe difonctionnel.
7. Une composition selon la Revendication 2, dans laquelle R_4 est

![Chemical Structure Image]

8. Une composition selon la Revendication 2, dans laquelle le copolymère bloc est préparé en polymérisant un mélangé de tétraphthaléate de diméthyle, d'éthylèneglycol, de polyéthylèneglycol de masse moléculaire comprise entre 200 et 3 000 et de méthyl-4-aminobenzoate.

9. Une composition selon la Revendication 1, dans laquelle la composition est un détergent liquide à fort rendement comprenant :

1 à 75 % en poids d'un composé détergent actif, où le composé détergent actif comprend 0 à 40 % d'un agent tensioactif anionique sélectionné parmi le groupe composé d'alkylbenzènesulfonates, de sulfates d'alkyle et d'ethoxy sulfates d'alkyle, en combinaison avec 0 à 40 % d'un agent tensioactif non ionique sélectionné parmi le groupe composé d'alkoxylates d'alcool, d'alkylalkoxylates de phénol, de polyglucosides d'alkyle et d'alkyléthers de glycérol ; et

0 à 30 % d'un adjuvant de détérence sélectionné parmi le groupe composé de sels de métal alcalin d'acide citrique, de copolymères d'acide acrylique et mélaïque, d'oxydisuccinate, de monosuccinate de tartrate/de disuccinate de tartrate, d'acides carboxyliques en C8 à C18, de zéolites, de phosphates condensés, et de combinaisons de ceux-ci.

10. Une composition selon la Revendication 1, dans laquelle la composition est un détergent en poudre comprenant :
a) 0 à environ 40 % d'agent tensioactif anionique sélectionné parmi le groupe composé de sels de métal alcalin ou d'ammonium d'alkylbenzènesulfonates, d'alkylsulfates, d'alkylsulfates d'éther, b) 0 à environ 40 % d'un agent tensioactif non ionique sélectionné parmi le groupe composé d'alkoxylates d'alkyle, d'alkylalkoxylates de phénol, de polyglucosides d'alkyle et d'alkyléthers de glycérol ; c) S à environ 70 % d'un adjuvant de détérence sélectionné parmi le groupe composé de tripolyphosphate de sodium, d'aluminium silicates de sodium, d'alkylcarboxylates de sodium en C8 à C18, de poly (acide acrylique) et de copolymères d'acide acrylique et mélaïque, d'alkylcarboxylates d'éther, d'acide citrique et de combinaisons de ceux-ci, d) 2 à environ 40 % d'un tampon d'alcalinité sélectionné parmi le groupe composé de silicate de sodium, de carbonate de sodium et d'amines organiques ; et e) 0 à environ 40 % de sulfates de sodium.

11. Une composition selon la Revendication 1, dans laquelle la composition est une composition adoucissant le linge comprenant 2 à environ 40 % d'un mélange comprenant : a) 0 à environ 95 % d'un sel d'ammonium cationique sélectionné parmi le groupe composé de sels d'ammonium quaternaire d'alkyle ou d'alkaryle, de sels d'alkylpyridinium et de sels d'imidazolium substitué ; b) 0 à environ 95 % d'amines primaires, secondaires ou tertiaires ; c) 0 à environ 95 % du produit de condensation d'un alkylacide carboxylique en C8 à C18 et d'un alkylpolyamine ; et d) 0 à environ 40 % d'un polyléthoxyléthane ou d'un alkyle, d'un alkoxy ou d'un polysiloxane modifié par une alkylamine.

12. Une composition selon la Revendication 19, dans laquelle l'agent adoucissant cationique est une matière quaternaire liée par un ester et présentant la formule :
où chaque groupe R_1 est indépendamment sélectionné parmi les groupes alkyle, alkényle ou hydroxyalkyle en C$_1$ à C$_4$; chaque groupe R_2 est indépendamment sélectionné parmi les groupes alkyle ou alkényle en C$_{12}$ à C$_{24}$; T est

$$
\begin{align*}
&\text{O} \\
&-\text{O} - \text{C} - \text{O} \\
&\text{ou} \\
&-\text{C} - \text{O} -
\end{align*}
$$

et

n est un entier compris entre 0 et 5.

13. Une composition selon la Revendication 1, dans laquelle la composition est une feuille à sécher du linge comprenant en outre : a) 5 à 40 % d’un agent adoucissant le linge ou d’un agent antistatique sélectionné parmi le groupe composé de sels d’ammonium d’alkyle ou d’alkaryl cationiques, de sels de pyridinium d’alkyle, d’alkylamines, d’argiles et de polysiloxanes ; b) 2 à environ 90 % d’un agent dispersant sélectionné parmi le groupe composé d’urée, de carbonate d’ammonium, d’alcoolés éthoxyliés, de polyéthylèneglycols, et de copolymères blocs d’un polyéthylèneglycol et d’un polypropylèneglycol ; et c) une bande de support ou feuille portant ladite composition.

14. Une méthode de préparation d’une composition pour le traitement du linge, comprenant l’étape consistant à mélangener ensemble

(a) 1 à 75 % en poids d’un agent tensioactif sélectionné parmi le groupe composé de savon, d’agent tensioactif non ionique, d’agent tensioactif anionique, d’agent tensioactif ampholyte, d’agent tensioactif zwitterionique, d’agent tensioactif cationique et de mélanges de ceux-ci, et

(b) 0,01 à 10 % en poids d’un copolymère bloc soluble dans l’eau ou dispersible dans l’eau et présentant la formule:

$$-(A)_n-(B)_m(C)_p^-$$

où A est un monomère autre que o-téréphtalate, ledit monomère étant capable d’absorber les rayons ultraviolets compris dans la gamme allant de 280 à 400 nanomètres (nm), et qui supporte la bifonctionnalité appropriée pour être incorporé dans la chaîne principale du polymère;
B est un monomère hydrophilé ;
C est un monomère hydrophobe ;
n est compris dans la gamme allant de 1 à 500 ;
m est compris dans la gamme allant de 5 à 500 ; et
p est compris dans la gamme allant de 0 à 500.