Electrical contact pin for printed circuit board.

Proprietor: CONNECTOR SYSTEMS TECHNOLOGY N.V. 

Julianaplein 22 

Willemstad Curacao (AN)

Inventor: Pigmans, Paulus Johannes Maria 

Grevelingen 37 

NL-5032 TC TILBURG (NL) 

Inventor: Schalk, Peter Wouter Hendrikus 

Hudsonring 90 

NL-5152 VS DRUNEN (NL)

Representative: de Bruijn, Leendert C. et al 

Nederlandsch Octroibureau 

Scheveningseweg 82 

P.O. Box 29720 

NL-2502 LS Den Haag (NL)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The invention relates to an electrical contact pin for mounting in a through hole in a printed circuit board, which contact pin has a pointed part and a longitudinal contact part which interacts with the hole when mounted therein, and the cross-section of which in general has an H-shape formed through four fins which project parallel to the longitudinal axis of the pin and are connected over the longitudinal distance of the contact part by a central cross rib and define two longitudinal recesses situated on either side of the cross rib, each longitudinal recess having an essentially V-shaped floor. Such a contact pin is known from Netherlands Patent Application 8502046 (corresponds to EP-A-0 209 936). Such pins, also known as press-fit pins, are mounted in through holes of printed circuit boards. The holes are provided with a metallization, generally consisting of copper, possibly with a thin layer of tin over it. In such an electrical connection between pin and metallization no solder or similar bonding is required any more, but the electrical contact is obtained by the close form-fit and frictional connection.

In practice, such pins are virtually entirely made of square wire or flat strip material, the longitudinal recesses of the contact part being formed by stamping technology, and the fins being forced or extruded outwards, upwards or downwards. In the case of the pin known from the above-mentioned Netherlands application the object is that the four fins on insertion of the pin into the hole of the printed circuit board should be bent inwards gradually, so that a four-point fixing in the hole is obtained. The H-shaped design means that the risk of the pin turning during mounting is reduced or ruled out. Consequently, as stated above, square pins of the type widely used in the printed circuit board industry can be used. It is very important here that the projecting fins are constructed absolutely symmetrical and have the same thickness, so that when they are being inserted in the hole all four bend over uniformly and engage the metallization in the hole. For, slight differences in thickness and therefore in stiffness of the projecting fins lead to rotation or eccentric positioning of the pin being obtained during insertion, and this can cause serious damage to the metallization in the hole. It can also give rise to more wear in the counter plug present on the rear side of the printed circuit board, through the fact that the rotated square pin then has sharper engaging faces with the fixed counter plug.

In the case of the pin known from the above-mentioned application the flat floors have a V-shape on either side of the cross rib in the longitudinal recesses. The longitudinal recesses with the V-shaped floors are obtained by means of corresponding knife-shaped dies. During this stamping of the longitudinal recess this V-shaped floor acts as a centering facility, so that an absolutely symmetrical design of the fins on either side of the recess with the same thickness and height is obtained.

It has now been found in practice in the case of contact pins, and in particular when their dimensions are very small, that the deformations caused to the hole metallization still exceed those set in the standards. The deformation in the hole metallization is then e.g. greater than the requirement of 0.05 mm of the MIL standard. The transition present in the fin height in the known contact pin from the right pointed part to the contact part, which transition is curved inward slightly, has been found completely inadequate in practice to prevent such deformations.

The object of the invention is to solve this problem. This is achieved according to the invention with an electrical contact pin of the type mentioned in the preamble in that the contact part is made slightly curved at its short sides, each of which has two fins merging into each other over the entire longitudinal distance. In a preferred embodiment the fins are in this case made with their fin ends more strongly curved inwards from the pointed part over an appreciable part of the above-mentioned longitudinal distance. In a further embodiment of the invention the appreciable part comprises approximately half the above-mentioned longitudinal distance. In yet another embodiment of the invention this bending runs inwards, gradually first increasing from the pointed part, and then decreasing.

In the known process for manufacturing an electrical contact pin, as stated above, the longitudinal recesses of the contact part with the V-shaped floors are formed on both sides of the cross rib by means of two corresponding knife-shaped dies. According to the invention, the contact pin is now deformed over the longitudinal distance of the contact part, and in particular over the said appreciable part thereof by a press-on operation using two opposite press-on elements.

The invention will be explained in greater detail with reference to an example of an embodiment shown in the drawings, in which:

Figure 1a gives a perspective view of the contact part after a first step of the manufacture of a contact pin according to the invention;
Figure 1b gives a longitudinal sectional view of the contact part of the contact pin of Fig. 1a;
Figures 1c and 1d give a cross-sectional view of the contact part of Fig. 1a along the lines l-c - l-c and l-d - l-d respectively in Fig. 1b;
Figure 2a gives a perspective view of the contact pin of Fig. 1a inserted into a printed circuit board hole;
Figure 2b gives a cross-sectional view of the contact pin inserted according to Fig. 2a, along the line l-c - l-c of Fig. 1b;
Figure 3a gives a perspective view of the contact
part of a finished contact pin according to the invention;

Figure 3b gives a longitudinal sectional view of the contact part of the contact pin of Fig. 3a;

Figures 3c, 3d and 3e give respective cross-sectional views of the contact part of Fig. 3a along the lines IIC - IIC, IILd - IILd and IIIE - IIIE in Fig. 3b;

Figure 4a gives a perspective view of the contact pin according to the invention inserted into a printed circuit board hole;

Figure 4b gives a cross-sectional view of the contact pin inserted according to Fig. 4a along the line IILd - IILd of Fig. 3b; and

Figure 5 gives a perspective view of the two press-on elements used for the deformation of the finished contact pin of Fig. 4a in the last step of manufacture.

In Fig. 1a the contact part is indicated in its entirety by 1, the pointed part by 9, the longitudinal recess at one side of the contact part by 2, the two fins on either side of the longitudinal recess 2 by 3 and 4, and the gradually increasing and decreasing transition of these fins at the insertion and opposite side of the contact pin during a phase of manufacture by 7 and 8 respectively. Fig. 1b shows a longitudinal section of the contact pin of Fig. 1a, from which it can be seen clearly that the transverse or cross rib has the same thickness over a large part of the longitudinal distance of the longitudinal recess, but that the thickness increases slightly at the insertion side and at the opposite side corresponding to the transitions 7 and 8, as is also indicated in the cross-sectional views of Figs. 1c and 1d.

Fig. 2a shows a perspective view of an electrical contact pin according to Fig. 1a partially inserted into a printed circuit board hole. It can be seen from this that there is initially only a small contact surface between the pin and the hole. Fig. 2b gives a cross-sectional view of the further inserted contact pin along the line 1d - 1d of Fig. 1b, from which it can be seen how the fins are bent inwards slightly in a uniform and symmetrical manner and make contact with the metallization of the hole. The H-shape of the contact part is approximately retained. It will be clear that this slight bending caused by the insertion during mounting does not yet occur at the gradual transitions 7 and 8.

In the case of the known electrical contact pins generally used for one mm holes a press-in force of maximum 200 Newton and a press-out force (after temperature change tests) of minimum 35 Newton are required. In the case of contact pins for holes of 0.7 mm, according to the latest specifications, these values must be maximum 100 Newton for the press-in force and minimum 30 Newton for the press-out force.

As already mentioned, it has now been found that the deformation caused in the metallization, in particular in the case of contact pins of small dimensions, is greater than the 0.05 mm required according to the MIL standard. In order to deal with this problem, the contact pin according to the invention is deformed over an appreciable part of the longitudinal distance of the contact part, so that the fins are curved inwards by their ends.

This embodiment is shown in perspective view in Fig. 3a. Fig. 3b shows a longitudinal section running along the longitudinal axis. Figs. 3c, 3d and 3e show cross-sectional views of the contact pin of Fig. 3a along the lines IIC - IIC, IILd - IILd and IIIE - IIIE of Fig. 3b respectively. It can be seen from this that the fins are bent inwards over an appreciable part of the longitudinal distance of the contact part, gradually first increasing, and then decreasing. At the same time the height of the fins increases from the beginning to a maximum value, accompanied by a decrease in the thickness of the cross rib, as can be seen from a comparison of Figs. 3b, 3c and 3d. The above-mentioned appreciable part can be approximately half the longitudinal distance. A more flexible insertion of the contact pin into the printed circuit board hole is obtained through this inward-bent state of the fins, which is strongest particularly in the part between the cross-sections IIC - IIC and IILd - IILd. The strict requirements of e.g. the MIL standard can be met by this design.

Fig. 4a again shows a perspective view of a contact pin according to the invention inserted partially into a printed circuit board hole. It can be seen here that, unlike the contact pin of Fig. 2a, there is initially a great contact surface between pin and metallization. Fig. 4b shows a cross-sectional view of the further inserted contact pin along the line IIIE - IIIE in Fig. 3b. The enlarged contact engaging faces between the fins and the metallization of the hole can also be seen from the latter cross-sectional view.

In the manufacture of these pins the longitudinal recesses of the contact parts are again made according to the known manufacturing method by means of knife-shaped dies by which the V-shaped floors of the cross rib are obtained with an extremely reliable and symmetrical design of the fins on either side. The deformation of the contact part is then carried out, as a result of which, over the longitudinal distance, the short sides with the fins of the contact part merging into each other are slightly curved, and in particular the fins are curved more strongly inwards over approximately the first part of the longitudinal distance.

Fig. 5 shows a perspective view of the finished and thus already deformed contact pin of Fig. 3a, with the two press-on elements or semi-circular bushes used for the deformation. The two bushes 11, 12 are shown in the retracted position symmetrically below and above the pin contact part respectively. The two bushes in a first embodiment which is not shown each
comprise a straight half cylinder. In another embodiment each semi-circular bush comprises a first semi-cylindrical part 13, a semi-conical part 14, and a second semi-cylindrical part 15. The two bushes are positioned against each other symmetrically in such a way relative to and around the contact pin to be deformed that the opposite-lying transitions between the parts 13 and 14 lie in the transverse plane of the contact part, where the decreasing thickness of the cross rib 10 from the cross-sectional plane IIIc - IIIc in Fig. 3b becomes constant, and in such a way that the opposite-lying transitions between the parts 14 and 15 lie in the transverse plane of the contact part approximately half way along the longitudinal distance thereof. In an example of an embodiment, the diameter of the first cylindrical part is 0.62 mm, the angle of the conical part is 11°, and the diameter of the second cylindrical part is 0.85 mm.

The press-on movement of the two semi-circular bushes around and against the contact pins causes the four projecting fins to be curved inwards, as can be seen well at the top side of the pin in Fig. 3a and at one side of the pin in Fig. 4a. As can be seen in Figs. 3c, 3d and 3e, the H-shape of the contact part now approaches a double C-shape. Through this deformation a better and more flexible insertion into the printed circuit board hole is obtained with a lower press-in force. This means that less deformation of the hole metallization is caused, and the position of the pin, i.e. no rotation, is retained, so that good contact with the counter plug is ensured.

Claims

1. Electrical contact pin for mounting in a through hole in a printed circuit board, which contact pin has a pointed part (9) and a longitudinal contact part (1) which interacts with the hole when mounted therein, and the cross-section of which in general has an H-shape formed through four fins (3, 4) which project parallel to the longitudinal axis of the pin and are connected over the longitudinal distance of the contact part (1) by a central cross rib (10) and define two longitudinal recesses (2) situated on either side of the cross rib (10), each longitudinal recess (2) having an essentially V-shaped floor, characterised in that the contact part (1) is made slightly curved at its short sides, each of which having two fins merging into each other over the entire longitudinal distance.

2. Electrical contact pin according to claim 1, in which in the contact part (1) the fins (3, 4) are made with their pin ends more strongly curved inwards starting from the pointed part (9) over an appreciable part of the above-mentioned longitudinal distance.

3. Electrical contact pin according to claim 2, in which the appreciable part comprises approximately half the above-mentioned longitudinal distance.

4. Electrical contact pin according to claim 2 or 3, in which the curvature of the pin ends gradually first increases starting from the pointed part (9), and then decreases.

5. Process for manufacturing an electrical contact pin according to claim 1, in which the longitudinal recesses of the contact part (1) with the V-shaped floors are formed at both sides of the cross rib (10) by means of two corresponding knife-shaped dies, characterised in that the contact part is enclosed by two opposite semi-cylindrical press-on elements (11, 12) over the longitudinal distance, and is curved at the short sides by pressing-on.

6. Process according to claim 5 for manufacturing an electrical contact pin according to any of claims 2, 3 or 4, in which the above-mentioned appreciable part of the longitudinal distance is curved more strongly through the fact that the two cylindrical press-on elements (11, 12) in the appreciable part have a semi-cylindrical piece (13) with a smaller diameter and a semi-conical piece (14) merging into a remaining semi-cylindrical piece (15) with greater diameter.

Patentansprüche

1. Elektrischer Kontaktstift zur Befestigung in einer durchgehenden Öffnung in einer gedruckten Leiterplatte, wobei der Kontaktstift einen angespitzten Teil (9) und einen longitudinalen Kontaktteil (1) aufweist, der mit der Öffnung eine Wechselwirkung eingeht, wenn er in derselben montiert ist, und dessen Querschnitt allgemein eine H-Ge- stalt hat, die durch vier Flossense (3,4) geformt ist, die sich parallel zur Längsachse des Stiftes er- strecken und über die longitudinale Erstreckung des Kontaktteiles (1) durch eine zentrale Querrippe (10) verbunden sind und die zwei longitudinalen Ausnehmungen (2) definieren, die auf beid- en Seiten der Querrippe (10) gelegen sind, wo- bei jede longitudinale Ausnehmung (2) einen im wesentlichen V-gestalteten Boden besitzt, da- durch gekennzeichnet, daß der Kontaktteil (1) an seinen kurzen Seiten leicht gekrümmt ausge- bildet ist, von denen jede zwei Flossen aufweist, die über die gesamte longitudinale Erstreckung hinweg ineinander übergehen.

2. Elektrischer Kontaktstift nach Anspruch 1, bei
dem in dem Kontaktteil (1) die Flossen (3, 4) so ausgebildet sind, daß deren Flossenenden stärker nach innen gekrümmt sind, und zwar ausgehend von dem angespitzten Teil (9) über einen nennenswerten Abschnitt der oben erwähnten longitudinalen Erstreckung hinweg.

3. Elektrischer Kontaktstift nach Anspruch 2, bei dem der nennenswerte Abschnitt etwa die Hälfte der oben erwähnten longitudinalen Erstreckung umfaßt.

4. Elektrischer Kontaktstift nach Anspruch 2 oder 3, bei dem die Krümmung der Flossenenden ausgehend von dem angespitzten Teil (9) zunächst allmählich zunimmt und dann abnimmt.

5. Verfahren zur Herstellung eines elektrischen Kontaktstiftes nach Anspruch 1, bei dem die longitudinalen Ausnehmungen des Kontaktteiles (1) mit den V-gestalteten Böden an beiden Seiten der Querrippe (10) mit Hilfe zweier entsprechender messerförmig gestalteter Prägestempel hergestellt sind, dadurch gekennzeichnet, daß der Kontaktteil durch zwei sich gegenüberliegende halbzylinderförmige Anpreßelemente (11, 12) über die longitudinalen Erstreckung hinweg eingeschlossen wird und durch Anpressen an den kurzen Seiten gekrümmt wird.

6. Verfahren nach Anspruch 5 zur Herstellung eines elektrischen Kontaktstiftes nach irgendeinem der Ansprüche 2, 3 oder 4, bei dem der oben erwähnte nennenswerte Abschnitt der longitudinalen Erstreckung aufgrund der Tatsache stärker gekrümmt ist, daß die zwei zylinderförmigen Anpreßelemente (11, 12) an dem nennenswerten Abschnitt ein halbzylinderförmiges Teilstück (13) mit einem kleineren Durchmesser besitzen und ein halbkonusförmiges Teilstück (14) besitzen, welches in ein verbleibendes halbzylinderförmiges Teilstück (15) mit größerem Durchmesser übergeht.

Revendications

1. Broche de contact électrique destinée à être montée dans un trou traversant d’une carte à circuit imprimé, cette broche de contact présentant une partie pointue (9) et une partie longitudinale de contact (1) qui interagit avec le trou après son montage dans ce dernier et dont la section transversale présente en général la forme d’un H formé au moyen de quatre ailes (3, 4) en saillie parallèles à l’axe longitudinale de la broche et qui sont reliées sur la distance longitudinale de la partie de contact (1) par une nervure transversale (10), et qui définissent deux évidements longitudinaux (2) situés des deux côtés de la nervure transversale (10), chaque évidement longitudinal (2) présentant un fond essentiellement en forme de V, caractérisée en ce que la partie de contact (1) est rendue légèrement incurvée sur ses côtés courts dont chacun présente deux ailes qui sont jointives sur toute la distance longitudinale.

2. Broche de contact électrique selon la revendication 1, dans laquelle, dans la partie de contact (1), les ailes (3, 4) sont réalisées avec les extrémités d’ailes incurvées plus fortement vers l’intérieur en partant de la partie pointue (9) sur une partie importante de la distance longitudinale mentionnée ci-dessus.

3. Broche de contact électrique selon la revendication 2, dans laquelle la partie importante comprend approximativement la moitié de la distance longitudinale mentionnée ci-dessus.

4. Broche de contact électrique selon la revendication 2 ou 3, dans laquelle l’incurvure des extrémités des ailes augmente d’abord progressivement en partant de la partie pointue (9) pour diminuer ensuite.

5. Procédé de fabrication d’une broche de contact électrique selon la revendication 1, dans lequel les évidements longitudinaux de la partie de contact (1) comportant les fonds en forme de V sont formés des deux côtés de la nervure transversale (10) au moyen de deux matrices correspondantes en forme de couteau, caractérisées en ce que la partie de contact est renfermée à l’intérieur de deux éléments d’emmanchement opposés, semi-cylindriques (11, 12) sur la distance longitudinale, et est incurvée sur les côtés courts par emmanchement sous pression.

6. Procédé selon la revendication 5 pour la fabrication d’une broche de contact électrique selon l’une quelconque des revendications 2, 3 ou 4, dans lequel la partie importante mentionnée ci-dessus de la distance longitudinale est incurvée plus fortement, du fait que les deux éléments cylindriques à emmanchement sous pression (11, 12) présentent, dans ladite partie importante, un élément semi-cylindrique (13) à diamètre plus faible, et un élément semi-conique (14) qui est jointif avec une partie restante semi-cylindrique (15) d’un diamètre plus important.